
Abstract. A multicore ébre laser is considered in which a ring
waveguide (RW) of length equal to 1/2 or 1/4 of the Talbot
length is used as a spatial élter separating a required
collective mode. Explicit expressions are obtained for the
eigenvalues of the modes in such lasers by using the Gaussian
approximation for the éelds of individual microcores. The
effect of regular and random displacements of microcores and
of the angular misalignment of a multicore ébre (MCF)
relative to the RW is considered within the framework of the
theory of weak perturbations. A change in the mode loss
spectrum caused by a random phase incursion in the MCF is
calculated using the perturbation theory. The explicit
expressions derived for the perturbed eigenvalues are
compared with the results of numerical simulation of the
MCF laser with the RW of length equal to 1/4 of the Talbot
length. Comparison of the results allows the use of these
expressions for estimating the eigenvalues of Talbot reso-
nators with the perturbed parameters of a laser set.

Keywords: ébre laser, radiation phase locking, resonator, Talbot
effect.

1. Introduction

Fibre lasers are widely used in optical communication
systems and have a number of properties that make them
promising for industrial applications. The use of multi-
channel (multicore) ébres (MCFs) makes these lasers more
compact because their length can be reduced due to a more
efécient absorption of pump radiation from diode lasers. A
perspective design of a MCF laser was proposed in Ref. [1].
The active channels are arranged on a circle near the ébre
cladding (Fig. 1). Phase locking of radiation from all the
channels can signiécantly enhance the output brightness.
The relevant studies [2 ë 4] have shown that the most
promising is phase locking achieved by using an intracavity
spatial ring waveguide (RW) élter of width close to the
channel diameter. If channels are arranged periodically over

the azimuth, then the output radiation emerging from them
can be reproduced after the double passage over the RW
with an optical length that is a multiple of the Talbot length
(see, for example, [5]).

The use of such a spatial élter was discussed in many
papers (see review [6]). However, the Talbot effect in a
circular geometry possesses a number of speciéc features. In
addition, the method of MCF drawing prevents the fab-
rication of identical ébres. A small size of channels and a
small length of élters make the alignment of the system quite
difécult. The aim of this paper is to estimate, using the
perturbation theory, the misalignments and parameter
spread of the channels, which are crucial for phase locking
of the laser under study. The analytic expressions that we
obtained are compared with the results of numerical
solution of a scalar quasi-optical equation.

2. The ideal design

Consider the propagation of a scalar wave éeld in the
absence of perturbations in a ring waveguide whose
thickness is much smaller than the ring radius. We assume
that the output éeld of the MCF represents a system of
identical beams, which are arranged periodically over the
azimuth, each of the beams corresponding to the éeld of the
fundamental mode of a channel [single-mode microébre
(MF)]. The éeld of one mode was described in numerical
calculations by known expressions [7]. The propagation of
radiation in the RW is described by a parabolic equation.
The numerical method of direct simulation of radiation in a
composite ébre is described in Ref. [8].
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Figure 1. Design of a MCF laser with a RW spatial élter. lp and llas are
the pump and lasing wavelengths; L is the RW length; N is the number of
microchannels.



The radial operator for a thin ring can be reduced to the
second derivative with respect to a variable changing within
the ring thickness. In this case, a three-dimensional para-
bolic equation formally coincides with a two-dimensional
quasi-optical equation for an angle-periodical plane geom-
etry. If we assume additionally that the RW maintains only
one radial mode, then, by separating variables, we obtain a
parabolic equation describing the radiation propagation
with one-dimensional diffraction over the azimuth. There-
fore, the problem of radiation propagation in the RW
maintaining one radial mode is reduced to a one-dimen-
sional diffraction problem with a periodic condition
imposed on the éeld, which corresponds to the passage
over the azimuth by 2p.

Radiation is incident on the RW from N single-mode
MFs with a éxed transverse structure described by the
function f (r). We consider only real and normalised func-
tions f (r) (

�
f 2(r)dr � 1), which vanish at a distance of

smaller than the structure period. The éeld distribution at
the MF output is approximated in analytic calculations by a
Gaussian beam. Although the éeld does not completely
vanish at a énite distance, it is negligible at the centre of an
adjacent MF under conditions considered here.

The problem of propagation of a periodic set of beams
has been analysed many times. We will follow the approach
described in Ref. [9], where this problem was reduced to the
solution of a system of equations for the éeld amplitudes of
individual beams. The éeld produced by N radiation sources
(ébres) at the RW entrance can be written in the form

E�r� �
X
n

C�Rn� f �rÿ Rn�.

Here, r is the tangential variable; Rn � 2pRcn=N is the
coordinate of the nth channel; Rc is the average radius of
the ring; and C(Rn) is the éeld amplitude. The projection of
the total éeld on f (r) at the distance z from the entrance at
the location of the MF can be written in the form

C�Rn; z� �
X
n 0

M�Rn;Rn 0 �C�Rn 0 �. (1)

In this case, matrix elements have the integral representa-
tion

M�Rn;Rn 0 � �
�
ÿ ik0
2pz

�1=2

�
�
drdr 0f �rÿ Rn� f �r 0 ÿ Rn 0 � exp

�
ik0
2z
�rÿ r 0�2

�
, (2)

where k0 � 2pn0=l; n0 is the refractive index of the medium;
z � 2L is the radiation propagation length; and L is the
RW length. In the geometry considered here, radiation is
reêected from the remote end of the RW and returns back
to the MCF, by exciting MF modes. After the double
passage over the MF, the éeld is again radiated to the RW.
Assuming that the passage of radiation over channels in the
passive MCF results only in the phase incursion, which is
the same for all the channels, we can write the condition of
the éeld reproduction after the round trip in the resonator
in the form

gC�Rn� �
X
n 0

M�Rn;Rn 0 �C�Rn 0 �, (3)

where g is the eigenvalue. In the case of a periodic arran-
gement of radiation sources [because the matrix M(Rn,Rn 0 )
is a difference matrix], Eqn (3) has solutions in the form
Cm(Rn) � exp (iqmRn), where qm � 2pm=(Nb); m is the num-
ber of a collective mode; and b � Rn=n is the period of the
MF grating. By substituting the solutions to the system of
equations (3), we can easily obtain the expression for the
eigenvalues gm of the system (3) (see [9])

gm �M�qm� �
X
n 0ÿn

exp �iqm�Rn 0 ÿ Rn��
�
fF�q� fF�ÿq�

� exp

�
ÿ iq 2z

2k0

�
exp �iq�Rn 0 ÿ Rn��

dq

2p
, (4)

where

fF�q� �
�
f �r� exp�iqr�dr

is the Fourier transform of the function f. For the RW
length equal to half the Talbot length zT � k0b

2=p �
2n0b

2=l, the expression

M�q� �
X
k

exp

�
izTq

2

2k0
ÿ ibqk

�

�
�
f �r� f

�
rÿ zTq

k0
� kb

�
dr. (5)

was obtained in Ref. [9]. For the RW length equal to one
fourth of the Talbot length, we can obtain

M�q� �
X
k

exp

�
izTq

2

4k0
ÿ ibq

�
k� 1

2

��

�
�
f �r� f

�
rÿ zTq

2k0
� b

�
k� 1

2

��
dr. (6)

In particular, by approximating the éeld distribution for
one channel by a Gaussian beam

f �r� � exp

�
ÿ r 2

2a 2

�ÿ
a
���
p
p �ÿ1=2

(7)

we can énd the explicit expressions for the eigenvalues

g �zT=2�m �
X

k�0;�1
exp

�
ÿ
�
b

a

�2�
kÿ 1

2
�m

N

�2

� 2pi
�
kÿ 1

2
�m

N

�2
ÿ p�kÿ 1�2i

2

�
(8)

for L � zT=2 and

g �zT=4�m � exp

�
ÿ pi

4

�

� exp

�
ÿ
�

b

2a

�2�
m

N
ÿ 1

2

�2
� pi

�
m

N
ÿ 1

2

�2 �
(9)

for L � zT=4.
Expressions (5) and (6) were derived by assuming that

the function f (r) strictly vanishes at the énite distance.
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Because this condition is not satiséed for the Gaussian
approximation, the terms of the order of exp fÿ�b=(2a)�2g in
(8) appearing due to the overlap of the éelds from the
adjacent MFs should be omitted. For z � zT, the eigenva-
lues g0 (inphase mode) and gN=2 (antiphase mode) are equal
to 1 and ÿi, respectively. This means that both modes have
no losses (exact self-reproduction) and differ by their fre-
quencies. For odd N and z � zT, only the inphase mode is
reproduced, which is of an obvious practical interest. Modes
with m � (N� 1)=2, for which jg�N�1�=2j � exp fÿ�b�
(2Na)ÿ1�2g, have minimal losses. Therefore, in this case
the degeneration in losses is lifted, and the discrimination of
the undesired modes is determined by the quantity jg�N�1�=2j.

The antiphase mode with an additional phase plate,
which straightens the phase front, also can be of interest.
For the RW of length zT=4 and even N, only the antiphase
mode has the eigenvalue gN=2 � exp (ÿip=4) whose modulus
is equal to unity. The modulus of the eigenvalue for two
modes nearest to the antiphase mode is jgN=2�1j �
exp fÿ�b=(2Na)�2g.

Therefore, one mode can be separated by two methods.
We can use either a RW of length zT=2 and a MCF with an
odd number of channels (inphase mode) or a RW of length
zT=4 and a MCF with an even number of channels
(antiphase mode). The selectivity proves to be same in
both these cases. Note also that the modes with numbers m
and Nÿm have equal eigenvalues. Physically, it is obvious
because the éeld envelopes Cm(Rn) and CNÿm(Rn) differ only
in the direction of the phase variation.

The expressions presented above describe the ideal
design of a laser shown in Fig. 1. The misalignment of
the MCF and RW and the spread of channel parameters
(MF parameters) eliminate the Talbot effect, reduce the
eigenvalue of the selected mode, and can induce lasing at the
adjacent modes. Phase locking of a MCF laser emitting an
antiphase mode was experimentally demonstrated in
Ref. [5]. In the next sections, we will consider analytically
the effect of misalignments and of the spread of MF
parameters for two RW lengths (L � zT=2 and zT=4) and
compare it with numerical calculations performed for a real
laser built in Ref. [5].

3. Analysis of weak perturbations

When deviations from an ideal design are small, the effects
produced by them are added independently. Therefore, we
can analyse separately the following perturbations: the
parallel displacement of the RW relative to the MCF, the
angular misalignment of the RW, the random displace-
ments of the MFs relative to their regular arrangement in
the MCF plane, and the random spread of the radiation
propagation constants in MFs resulting in phase êuctua-
tions of the éeld propagated through the MCF. Our
analysis is based on a standard theory of weak perturba-
tions for the diffraction operator of radiation propagation
in the RW maintaining one radial mode. We considered the
perturbation of the parameters of the inphase (L � zT=2)
and antiphase (L � zT=4) modes.

3.1 Parallel displacement

In the case of the parallel displacement of the RW across
the axis, the displacement of channels depends on their
positions and the direction of the RW displacement. It is
obvious that when the number of channels is large, one

should not expect a strong dependence of the eigenvalue
change on the displacement direction. In the case of a one-
dimensional analytic model, the azimuthal displacement of
the MF upon parallel displacement can be written as a
function of the MF number n in the form

Dn � S sin
2pn
N

, (10)

where S is the maximum displacement of the MF axis. This
perturbation will cause a change in the coupling matrix
M(Rn,Rn 0 ) in Eqn (3):

M�Rn;Rn 0 � �
�
dq

2p
fF�ÿq�fF�q�

� exp

�
ÿ iq 2z

2k0
� iq�Rn 0 ÿ Rn� � iq�Dn 0 ÿ Dn�

�
. (11)

This matrix is no longer a function of the difference in
the channel numbers, and therefore the system (3) cannot be
solved. By using the perturbation theory up to the second
order inclusive, because the érst nonvanishing term proves
to be proportional to S 2, we can obtain the following
expressions for the eigenvalues of the inphase (L � zT=2)
and antiphase (L � zT=4) modes for even N, respectively,

g0
g�0�0

� 1ÿ S 2

4a 2

�
1ÿ g�0�1

g�0�0

� 2g�0�1

g�0�0 ÿ g�0�1

b 2

�aN�2
�
, (12)

g �zT=4�N=2 � �ÿi�1=2
�
1ÿ S 2

4a 2

�
1ÿ

g�0�1�N=2
g�0�
N=2

�
2g�0�1�N=2

g�0�N=2 ÿ g�0�1�N=2

b 2

�2aN�2
��

, (13)

where the superscript (0) denotes the unperturbed eigen-
value. In a real laser, displacements in the radial direction
make a comparable contribution to the losses until these
displacements are much less than the RW thickness. In this
case, to obtain the total losses, it is sufécient to square the
modulus of eigenvalues (12) and (13).

3.2 Angular misalignment

The tilt of the optical axis of the MCF with respect to the
RW is equivalent to an optical wedge deêecting the beams
returned from the MCF. The phase factor corresponding to
the action of such a wedge on the circular set of MFs can be
written in the form exp �ik0cRc sin (r=Rc)�, where c is the
axis tilt, and then

M�Rn;Rn 0 � �
�
ÿ ik0
2pz

�1=2 �
drdr 0f �rÿ R� f �r 0 ÿ Rn 0 �

� exp

�
ik0
2z
�rÿ r 0�2 � ik0cRc sin

Rn 0

Rc

�
. (14)

The quantity k0cRc 5 1 can be used as a small param-
eter of the perturbation theory. Upon the expansion of the
exponential in (14), the terms will appear that are propor-
tional to sin (2pn=N) and sin2 (2pn=N) and couple the mth
unperturbed mode with the adjacent (m� 1)th and
(m� 2)th modes. As a result, the system becomes sensitive
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to such perturbations. To describe the effect of the axis tilt
more accurately, we will take into account in the perturba-
tion theory the coupling between nearest modes, not
assuming that this coupling is weak. Note that the modes
adjacent to the inphase or antiphase mode have the same
losses. However, because the perturbing term has a certain
symmetry [sin (2pn=N )], a mode is excited which represents
an odd combination of two adjacent modes. Therefore, the
problem can be reduced to the calculation of two modes
interacting with each other.

This problem has an analogue in quantum mechanics:
the mixing of two levels by the resonance perturbation.
After the appropriate transformations, we can obtain the
following expression for the perturbed eigenvalues of the
interacting modes

~g0;1 �
1

2

��
�g0 � g1�

�
1ÿ j 2

4

�
ÿ g1g2
g0 ÿ g2

j 2

2

�

� jg0 ÿ g1j
�
1ÿ j 2

j 2
c

�1=2�
. (15)

Here, j � k0cRc; g0 � jgN=2j � 1 is the moduli of the
unperturbed eigenvalues of the modes being reproduced;
g1 and g2 are the moduli of the unperturbed eigenvalues of
the adjacent modes [along with the mixing of two reso-
nantly interacting modes, the perturbation of these modes
by more remote modes is also taken into account in (15)];

jc � �1ÿ g1�
� �1� g1�2

2
ÿ g1g2�1ÿ g1�

1ÿ g2

�ÿ1=2
is the critical parameter determining the axis tilt after which
the renormalised modes have equal losses:

j~g0;1j � g 1=21

�
1ÿ j 2

4

g2
g0 ÿ g2

�
.

For j5jc, the contributions of the mode being rep-
roduced and of the adjacent mode are of the same order,
resulting in a change in the éeld amplitudes C(Rn) in the
MF. The contrast of the éeld amplitudes is

K � max

���� C�Rn�
C�Rn�N=2�

����
�
�
g0 � 2g1 � 2�g0 ÿ g1�

ÿ
jÿ2c ÿ jÿ2

�1=2
g0 � 2g1 ÿ 2�g0 ÿ g1�

ÿ
jÿ2c ÿ jÿ2

�1=2 �1=2.
3.3 Random MF displacement

The position of a MF, its size, and shape can vary during
the manufacturing of MCFs. Consider érst a random
displacement of the MF relative to its ideal position. The
spread in the MF size or shape leads to a random change in
the propagation constant of the ébre mode, resulting in
turn in a random phase incursion, which will be considered
in the next section.

It is reasonable to assume that random displacements of
the MF over two coordinates are statistically independent
and, in the case of small displacements, cause the same
decrease in the mode eigenvalue. In this case, the results of
the theory developed here for the one-dimensional geometry

can be applied to real lasers by squaring the modulus of the
found eigenvalue. It is convenient to consider displacement
perturbations using the Fourier representation [see (4)]. By
denoting the random displacement of the MF centre as Dn,
we can write the Fourier transform of the MF éeld as

F � f �rÿ Rn ÿ Dn�� � F � f �rÿ Rn�� exp�ÿiqDn�.

It follows from this expression that a random spread in the
positions of the MF centres results in the modiécation of
the elements of the coupling matrix by a simple multi-
plication of the integrand in (11) by an exponential factor.
If the displacements Dn are independent and are described
by a normal distribution, we can obtain explicit expressions
for the eigenvalues averaged over an ensemble of samplings:

g �M�q� �
X
k

exp

�
ib 2q 2

2p
ÿ ibqk

�

�
� �

f �r� f
�
rÿ D� b 2q

p
ÿ kb

��
dr (16)

for L � zT=2 and

g �M�q� �
X
k

exp

�
ib 2q 2

4p
ÿ ibq

�
k� 1

2

��

�
� �

f �r� f
�
rÿ D� b 2q

2p
ÿ b

�
k� 1

2

���
dr (17)

for L � zT=4. Here, D is a random variable and the angle
brackets mean averaging over an ensemble of samplings.
Recall that q runs the values qm � 2pm=(Nb), where m is
the number of a collective mode, which varies from zero to
Nÿ 1.

In the case of the Gaussian approximation of the MF
éeld, the expressions for the eigenvalues have the form

g �zT=2�m � 1

�1� s 2=a 2�1=2
X

k�0;�1
exp

��
kÿ 1

2
�m

N

�2

�
�
2piÿ b 2

a 2 � s 2

�
ÿ p�kÿ 1�2i

2

�
(18)

for L � zT=2 and

g �zT=4�m � exp�ÿip=4�
�1� s 2=a 2�1=2

� exp

��
m

N
ÿ 1

2

�2�
piÿ b 2=4

a 2 � s 2

��
(19)

for L � zT=2. Here, s is the dispersion of a random MF
displacement.

3.4 Random phase incursion

As we note above, a random spread of éeld-phase incur-
sions after the passage through MFs is caused by the dif-
ference between their sizes or shape. For weak phase
perturbations, the system of linear equations for the wave-
éeld amplitudes at the MF end has the form

gC�Rn� � �E� Vn�
XNÿ1
n 0�0

Mnn 0C�Rn 0 � .
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Here, E is the unit matrix; the matrix Mnn 0 corresponds to
the ideal system; Vn � exp�ifn� ÿ 1 are the elements of the
diagonal matrix, which contain the phase differences jn

appearing after the double passage of the éeld trough the
MCF. For doubly degenerate modes with the numbers m
and Nÿm, it is sufécient to use the érst-order perturbation
theory, which gives

g �1�m � g �0�m

N

�X
k

Vk �
�X

k

V 2
k

�1=2 �
. (20)

After averaging over a random spread, we énd

g �0�m � g �1�m

g �0�m

� eÿs
2=2 �

� �1ÿ eÿs
2=2�2 ÿ eÿs

2�1ÿ eÿs
2�

N

�1=2

� 1ÿ s 2

2
� i

�
s 2

N

�1=2
. (21)

The latter equality is obtained in the case of a small dis-
persion of the phase incursion. For nondegenerate modes
with the numbers m � 0 and m � N=2, the perturbation
theory in the second order gives the expression

g �1�m � g �2�m � g �0�m

N

X
k

Vk

� g �0�m

N 2

X
k

V 2
k

X
m 0

g �0�m 0

g �0�m ÿ g �0�m 0
. (22)

For a inphase mode (m � 0), the second-order perturbation
theory gives, after averaging over random phases, the
general expression (L � zT=2)

g0
g �0�0

� eÿs
2=2 � 1� eÿ2s

2 ÿ 2eÿs
2=2

N

�
X
m

g �0�m

g �0�0 ÿ g �0�m

� 1ÿ s 2

2
ÿ s 2

N

X
m

g �0�m

g �0�0 ÿ g �0�m

. (23)

By using the Gaussian approximation and expression
(8), we can obtain the approximate expression

g0 � 1ÿ s 2

2
ÿ s 2

N

�
2g �0�1

1ÿ g �0�1

ÿ 2ig �0�1

1� ig �0�1

ÿ i

1� i

�
. (24)

For the RW of length L � zT=4, taking into account
expressions (9) for the eigenvalues, we obtain

��
i
p

g �zT=4�N=2 � 1ÿ s 2

2
ÿ s 2

N

2g �0�1�N=2
g �0�
N=2 ÿ g �0�

1�N=2
. (25)

Expressions (24) and (25) give a possiblity to estimate the
maximum number of MFs in a one-dimensional set Nmax all
lasers of which are included into phased lasing. A criterion
based on a comparison of the correction the eigenvalue
with the difference of the nearest eigenvalues [10] gives for
the system under study for L � zT=2 the value
Nmax � �b 2=(sa 2)�2=3 and for L � zT=4, we have Nmax �
�b 2� (4sa 2)ÿ1�2=3. When the number of MFs in the ring
exceeds Nmax, the entire set can be divided into groups with
the average number of MFs equal to Nmax [10].

4. Comparison of the results of analysis
with numerical calculations

Numerical studies are based on the three-dimensional
diffraction program [see (8)], which describes the propa-
gation of monochromatic radiation in the approximation of
scalar paraxial optics. We considered a construction rea-
lised experimentally [5] and representing two spliced ébre
pieces, one of them including a circular set consisting of
18 MFs of diameter 8 mm arranged at a radius of 131 mm,
and another containing the RW with the ring thickness
slightly exceeding the microchannel diameter (Fig. 1).

The resonator is formed by mirrors located close to the
ends of the ébres, and the RW length is L � zT=4. We
calculated the éeld after the double passage over the RW.
The resulting éeld distribution was projected on a set of
modes of microchannels. The coefécients obtained in this
way were multiplied by the éeld in each MF, and the
calculation of the double passage over the RW was re-
peated. These iterations were continued until the divergence
was obtained, i.e., until the reproduction of the complex
coefécients of the expansion in the MF modes with the
prescribed accuracy. In this case, as in usual iteration
calculations of an optical resonator, a complex eigenvalue
was obtained, whose amplitude determined the losses after
the passage and the phase determined an exact resonance
frequency. The propagation of radiation in the MF was not
considered.

We assumed that the round trip in each MF could only
result in a change in the complex amplitude of an MF mode.
In accordance with the perturbation under study, we
introduced the MF displacement in the output plane of
the MCF, the phase incursion simulating a wedge in the case
of the tilted axis, or a random phase incursion.

Figs 2 and 3 show the moduli and phases of the
eigenvalues calculated for experimental conditions by
expressions (8) and (9) for 18 modes for the RW length
L � zT=2 and zT=4. The radius a of a Gaussian beam
approximating a MF mode in analytic calculations was
set equal to 3 mm and the period of arrangement of the MFs
on the ring was b � 2pRc=N � 45:7 mm. Because the dis-
tance between MFs is noticeably greater than the beam
diameter, the RW spatial élter eféciently discriminates
fractional modes for L � zT=2. However, two modes
(inphase, m � 0, and antiphase, m � 9) have no losses
and are excited in the same way. For the RW with

0 3 6 9 12 15 m

jg �zT=2�m j; jg �zT=4�m j

0

0.2

0.4

0.6

0.8

1.0

Figure 2. Moduli of eigenvalues g�zT=2�m (*: inphase mode) and g�zT=4�m (&:
antiphase mode).
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L � zT=4, only one antiphase mode has no losses; however,
the discrimination of the nearest modes is not so strong in
this case. To achieve phase locking with the parameters
presented above, the RW length should be equal to zT=4.
For this reason, we performed numerical calculations for
verifying the analytic expressions using this RW length.

In numerical calculations, the problem of a proper
choice of the RW width appears. When the RW width
coincides with the MF size, the construction will be obvi-
ously too sensitive to the MF displacement in the radial
direction. A RW of large thickness will maintain several
radial modes, which eliminates the Talbot effect. We have
chosen a compromising variant and the RW thickness was
set equal to 12 mm (the numerical aperture was 0.16). In this
case, the radial structures of the MF modes and of the RW
mode do not completely coincide. However, the calculation
shows that the extent of reproduction of the antiphase-mode
structure after the double passage over the RW is rather
high, namely, the eigenvalue modulus is 0.936.

We neglected the radial structure of the éeld in analytic
calculations and considered diffraction in the azimuthal
direction. To take into account the difference between the
analytic and numerical results, we compared the results of
analysis with the eigenvalue moduli calculated numerically
and normalised to 0.936. The results of this comparison are
presented in tables.

4.1 Parallel displacement

Comparison of the analytic and numerical results demon-
strates their good agreement, which conérms our assum-
ption about the independent contributions from radial and
angular displacements in the mode losses.

4.2 Angular misalignment

For the numerical simulations, jc � 0:13, so that all the
calculations were performed for j > jc. Note that,
although a change in the eigenvalue is small, the per-

turbation theory cannot be applied in this case. A strong
mixing of the modes results in the inhomogeneous dis-
tribution of the éeld in the MF, which is characterised by
the contrast K. The approximation in which the perturba-
tion caused by the next to the nearest mode is taken into
account in the perturbation theory proves to be adequate to
the real situation. The analytic estimate gives satisfactory
agreement with the numerical calculation, both for the
eigenvalue modulus and for the contrast of the éeld
distribution in the MF.

4.3 Random MF displacement

The effect caused by random MF displacements was
simulated numerically in two ways. In the érst case, we
considered only angular random MF displacements, in
complete agreement with the analytic theory. For each
average displacement, an eigenvalue was found for several
particular realisations. Comparison of the second and third
columns in Table 3 demonstrates that the value of jganalj
obtained by averaging over many realisations falls inside
the spread interval jgnormj for all calculations. In addition,
we determined the eigenvalue numerically when random
displacements in different directions on the plane were
assumed to occur with identical dispersions. It was expected
that for such perturbations (the corresponding values in the
two last columns of Table 3 have the superscript 2d), we
have hjgj2di ' hjgji2, or in other words, hjgj2dijs ' hjgjijs ��2p .
Comparison of the second, third, and éfth columns shows
that these relations are fulélled within a random spread.

4.4 Random phase incursion

We calculated the eigenvalues for three particular realisa-
tions of random quantities for prescribed dispersion of the
phase incursion. Within the dispersions chosen, the vari-
ations of the eigenvalue modulus depending on the sam-
pling are not too large and are in reasonable agreement
with the analytic values.

�arg g �zT=2�m �=p; �arg g �zT=4�m �=p

0 3 6 9 12 15 m
ÿ0:5

ÿ0:4
ÿ0:3
ÿ0:2

ÿ0:1
0

0.1

Figure 3. Phases of eigenvalues g�zT=2�m (*: inphase mode) and g�zT=4�m (&:
antiphase mode).

Table 1.

S
�
mm jgj jgnormj jganalj2

0 0.936 1 1

0.5 0.907 0.97 0.97

1 0.81 0.86 0.89

1.5 0.72 0.77 0.766

Table 2.

c
�
mrad j jgnormj jganalj K Kanal

0.2 0.157 0.954 0.91 1.57 1.75

0.3 0.235 0.915 0.9 2.46 2.79

0.4 0.314 0.894 0.89 3.75 3.48

Table 3.

s
�
mm jgnormj jganalj s 2d�mm jgnormj2d

1

0.94

0.95

ë ë

0.906 ë ë

0.93 ë ë

���
2
p

0.906

0.9 1

0.872

0.87 0.888

0.823 0.860

2

0.855

0.83

ë ë

0.839 ë ë

0.682 ë ë

0.694 ë ë

2
���
2
p 0.74

0.73 2

0.684

0.737 0.708

0.662 0.715
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5. Conclusions

We have analysed in detail the collective modes of a one-
dimensional circular set of identical radiation sources and
obtained explicit expressions for the eigenvalues of Talbot
resonators of lengths zT=2 and zT=4 by using the Gaussian
approximation of the éelds of individual radiation sources.
We have considered within the framework of the theory of
weak perturbations the effect of regular and random
displacements of the positions of radiation sources, as
well as of the angular MCF misalignment relative to the
RW playing the role of a spatial élter separating a desired
collective mode. By using the perturbation theory, we have
also calculated a change in the mode losses caused by the
random phase incursion in the MCF. The explicit
expressions derived for the perturbed eigenvalues have
been compared with the results of numerical simulations of
a MCF laser with the RW of length zT=4. In this laser, the
generation of an antiphase mode have been observed
experimentally in Ref. [5]. A comparison of the results have
shown that the expressions derived by us can be used for
estimating the eigenvalues of Talbot resonators with
perturbed parameters of a laser set.
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s
�
rad jgnormj jganalj

0.2

0.982

0.960.978

0.984

0.4
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0.840.855

0.855
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