
Abstract. The nonreciprocity of the characteristics of
counterpropagating waves in a ring resonator formed by
totally reêecting prisms is analysed. The polarisation-
inhomogeneous properties of a prism resonator and their
effect on the nonreciprocity of the frequencies of counter-
propagating waves are studied.
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1. Introduction

In optical ring resonators, whose anisotropy determines the
linear polarisation in the ideal case, the eigenstates of
polarisation of counterpropagating waves differ from linear
ones in practice. In a magnetic éeld, such waves acquire a
frequency shift even in a resting ring laser, which leads to
errors in a laser gyroscope. As a rule, two main factors
responsible for the appearance of ellipticity are considered:
the fabricational and adjustment errors in the resonator,
resulting in a nonplanar deformation of the axial contour,
and the induced linear phase anisotropy (birefringence) of
the material of reêectors.

This problem is of special signiécance for KM type laser
gyroscopes whose resonator is formed by totally reêecting
(TR) prisms [1]. In one of the érst papers devoted to laser
gyroscopes [2], the advantages of TR prisms as ideal
reêectors were mentioned, however, it was also noted
that the above-mentioned factors may lead to considerable
diféculties in the use of prisms in ring resonators. In actual
practice, the frequency shift in a magnetic éeld caused by the
distortions of the prism resonator anisotropy can be reduced
to the required minimum (no more than 0.01 Hz Oeÿ1)
through a combination of constructional and technological
solutions based on the anisotropy studies for a prism
resonator [3 ë 6].

However, the resonator characteristics in the above
papers were analysed without taking into consideration

the polarisation inhomogeneity, which leads to the depend-
ence of the polarisation state on transverse as well as
longitudinal coordinates. The presence of such inhomoge-
neities is the third factor causing the nonreciprocity of
counterpropagating waves. The aim of this paper is to make
up this deéciency.

2. Results of anisotropy studies in a prism
resonator neglecting the polarisational
inhomogeneity of prisms

It is convenient to calculate the ellipticity angle w and the
azimuth angle c for natural waves in a ring resonator by
using the method of polarisation-induced perturbations [5, 7].

The frequency shift Dv in a prism resonator placed in a
magnetic éeld H depends on the geometry of the axial loop,
the perturbation parameter, and the orientation of the
magnetic éeld vector. For a uniform magnetic éeld, the
indicatrix Dv(H ) lies in the resonator plane and has a égure-
of-eight shape, i.e., there exists a zero sensitivity direction.
An important feature of the combined action of anisotropic
prisms is that the resultant frequency shift depends on the
stress distribution in the prism and may even be equal to
zero in principle.

In the ideal situation, the axial loop of a prismatic ring
resonator is two-dimensional, and the amplitude ë phase
anisotropy of the prism is characterised by the coefécient
T � 0:8707 exp (i0:15p). The counterpropagating waves have
a linear polarisation, the loss in the p components being
smaller. The nonplanar deformation of the axial loop of the
resonator makes it sensitive to the magnetic éeld. Note that
in this case, the local magnetic sensitivity nearly coincides
with the sensitivity to a uniform magnetic éeld. This is due
to the fact that the ellipticity of counterpropagating waves in
such a resonator is almost the same in all resonator arms.

In a real resonator, it is necessary to take into consid-
eration the mechanical stresses arising in prisms due to the
fact that the prisms seal the vacuum channels of the
monoblock and are subjected to mechanical strains under
atmospheric pressure. If photoelasticity is taken into
account, the polarisational properties of a prism are
equivalent to the properties of a set of linear phase plates
whose axes rotate gradually upon a displacement from the
centre of symmetry to the periphery of the prism along the y
axis [6]. Fig. 1 shows a system of lines along which the
quasi-principal stresses are directed at each point in a TR
prism (for two projections). Ellipticity does not arise if the
vector E of linearly polarised light wave is directed along
these lines.
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The ellipticity arises on the axis of a beam passing
through a stressed prism if the plane formed by an axial
beam in the prism does not coincide with the centre of
symmetry of the stresses. In practice, this is caused by an
inaccurate adjustment of the resonator or by a violation of
stress symmetry due to defects in the soldered seam around
the prism. The transformation of the components of the
vector E upon the passage of radiation through the stressed
region of the prism can be described in the érst approxi-
mation by the Jones matrix

M � 1ÿ a 2�yÿ y0�2=2 ia�yÿ y0�
ia�yÿ y0� 1ÿ a 2�yÿ y0�2=2

� �
. (1)

Here, the coordinate axis y is connected with the axial loop
of the resonator, which is displaced relative to the centre of
symmetry of stresses by a small amount y0 � 0ÿ 1 mm in
the sagittal plane, and a is the linear phase anisotropy
parameter, which depends on the conditions of fastening of
the prism (in particular, on the state of the soldered or
glued seam around the prism) and the étting surface of the
monoblock. This parameter characterises the variation in
the anisotropy of the prism in the longitudinal and
transverse directions. Since the prism rests on the mono-
block all along the edge of the channel, the shear stresses
determining the ellipticity for the incident p-component of
the radiation increase in the longitudinal z-direction from
zero to the maximum value near the centre of the prism in
the total internal reêection (TIR) region. The value of a in
an assembled resonator can be estimated from measure-
ments with a polarimeter whose axes are oriented along the
x and y axes (Fig. 1). Usually, the value of this parameter is
a � 1:4� 10ÿ3 ÿ 4:4� 10ÿ3 rad mmÿ1.

The results of investigation of the effect of nonplanarity
and stresses on the polarisation parameters of the KM-11
prism ring resonator are presented in Table 1.

3. Consideration of the polarisation
inhomogeneity of a prism resonator

Theoretical and experimental studies have revealed that
laser radiation is polarisation-inhomogeneous in most
optical instruments, including laser gyroscopes. The state
of polarisation of polarisation-inhomogeneous waves
(PIWs), speciéed in a uniéed polarisation basis at all
points in space, varies regularly in both transverse and
longitudinal directions. A plane wave is a polarisation-
homogeneous wave in a Cartesian basis, while the dipole
radiation in the wave zone is polarisation-homogeneous in
a spherical basis.

The entire computational formalism existing at present
[7] has been developed for plane waves, and the interrelation
between polarisation and wave characteristics (the magni-
tude and direction of the wave vector, the beam diameter,
and the wavefront curvature) is completely neglected.

The analysis of waves with a complicated polarisation
structure [8 ë 11] is mainly based on the ray approach
according to which the radiation is treated as a set of
rays with different states of polarisation. In such an
approach, one has to consider the evolution of the polar-
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Figure 1. Induced linear phase anisotropy of a TR prism in two projec-
tions: ( 1 ) axial loop plane; ( 2 ) stress symmetry plane; ( 3 ) plane for
anisotropy measurements on a polarimeter; ( 4 ) vacuum channel; ( 5 )
axial beam; ABC is the beam trajectory in the prism.

Table 1.

Polarisation characteristics
of the resonator

Nonplanar axial loop

Stress (birefringence)
Misalignment of the reêecting spheri-
cal face of the prism

Tilt of the refracting face of the
prism in sagittal plane

Error parameter sg � 3:7 0 s � 10 0 ea � 28, y0 � 0:5mm

Maximum ellipticity angle
� 0 2 3 6

Polarisation loss (%) 5� 10ÿ5 1:8� 10ÿ4 0:9� 10ÿ4

Maximum sensitivity to local
magnetic éeld

�
Hz Oeÿ1 � 0:38 � 0:57 � 0:8

Maximum sensitivity to uniform
magnetic éeld

�
Hz Oeÿ1 � 0:45 � 0:62 � 2:3
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isation state of many rays, but the phase relations arising
between them because of a difference in their path lengths
that remains constant over the cross section of the rays are
neglected. It is important to note that the ray approach is
not applicable for solving the polarisational problems in
optical resonators since the methods used in this approach
are based, as a rule, on separate calculations of polarisation
and optical wave characteristics. In actual practice, such
characteristics for a resonator with TIR are not separable in
principle.

The main property of PIWs is that the components of
the vector E have different amplitude ë phase distribution in
an arbitrary polarisation basis that is common for all points
in space. In other words, the presence of a PIW can be
described with the help of a superposition of three com-
pletely or partially coherent waves with orthogonal orien-
tations of the vector E. The ray vectors of these waves as
well as their phase velocities may not coincide at an
arbitrary point in space.

The prism ring resonator considered here has a consid-
erable polarisation inhomogeneity. It was mentioned in
Ref. [1] that even in a perfectly adjusted resonator, the
disagreement between the curvature of the wave front and
the optical surface leads to polarisation inhomogeneity of
the radiation, i.e., to the spatial dependence of the ellipso-
metric parameters in transverse and longitudinal directions.
A similar situation takes place for a stressed prism. If the
axial beam passes in the stress symmetry plane in which the
shear stresses are equal to zero ( y0 � 0), the ellipticity angle
at the periphery of the beam ( y � wy � 0:35 mm) attains a
value of 6 0. In this case, the ellipticity angle at the other end
of the beam will have the same value but the opposite sign.

Consider now the effect of such a polarisation inhomo-
geneity on the nonreciprocity of counterpropagating waves.
For this purpose, we use the method of polarisation-wave
matrix [13 ë 15] applicable for calculations of distortions of
the polarisation structure, losses, and radiation frequency in
an optical resonator.

The basic idea behind the method is as follows. The
polarisation-inhomogeneous laser radiation is presented as a
coherent vector superposition of the transverse Hermitian ë
Gaussian modes with different polarisation states, ampli-
tudes, and their own phase shifts. The intensity of modes
decreases with increasing mode order, and the analysis can
be restricted only by zeroth, érst and second-order modes in
the paraxial region.

Calculations are performed in the following order:
(1) The parameters of the fundamental mode of the

optical system are calculated by neglecting the polarisation
inhomogeneity.

(2) The polarisation-wave vector D whose components
are complex Hermitian ëGaussian modes is written. The
radiation of an optical resonator without polarisation
inhomogeneity contains only one nonzero component,
which is the Jones vector of the fundamental Hermitianë
Gaussian mode. `Parasitic' modes appear in a real reso-
nator, and the vector D can be written as D0 �
(D00;D10;D01;D20;D02;D11)

ÿ1.
(3) The block polarisation-wave matrix is constructed

for each polarisation-inhomogeneous element (PIE) taking
into account the wave parameters of radiation that were
determined earlier. For this purpose, the Jones matrix is
recorded for the PIE, its elements being functions of
transverse coordinates. Each such function is expanded

into a descending series in the Hermitian polynomials,
the quantities

���
2
p

x=wx and
���
2
p

x=wy being chosen as their
arguments, where wx and wy are the beam radii in the
meridional (xz) and sagittal (yz) planes. The polarization-
wave matrix describes the interaction between modes
forming the PIW.

(4) The block matrix of isotropic optical gaps between
PIEs is written. This is a diagonal matrix, each matrix
element being the product of a unit matrix and the coefé-
cient Gmn, which has the form Gmn � �(1� d1Q

�)=(1�
d1Q)�1��m�n�=2 in the particular case of an optical system
without astigmatism. Here, Q � rÿ io; o � l=pw 2; r is the
curvature of the wave front; w is the beam radius; and d1 is
the length of the optical gap. This matrix describes the
intermode dispersion.

In the general case, a laser system may also contain
polarisation devices, which can be treated as polarisation-
homogeneous. Such devices are described by a diagonal
polarisation-wave matrix whose elements are Jones matri-
ces.

Let us apply this method for analysing the nonrecipro-
city of counterpropagating waves in a prism resonator
caused by polarisation inhomogeneity of the TR prisms.
Consider a simpliéed resonator scheme: four reêectors have
the amplitude ë phase anisotropy of the TR prisms with a
coefécient T � jT j exp (iy); the focal length of the reêecting
surface in the sagittal plane is fy � 2100 mm, the length of
the resonator arm is l � 110 mm, and the PIE which is a
nonreciprocating element in this case, is placed in the middle
of the resonator arm (in the waist as shown in Fig. 2). The
elements of the Jones matrix (1) of the given PIE depend on
the coordinate y.

A formal inclusion of this matrix in the matrix equation
according to the Jones method is not possible because the
PIE distorts the wave parameters of the beam and,
conversely, the variation of the polarisation state in the
cross section depends on the curvature of reêecting surfaces
and the perimeter of the resonator. We shall use the
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Figure 2. Schematic diagram of a ring resonator: ( 1 ) resonator cross
section behind polarisation-nonreciprocal element along the forward
wave (�); ( 2 ) resonator cross section behind polarisation-nonreciprocal
element in the direction of the backward wave (ÿ); ( 3 ) polarisation-
nonreciprocal element; ( 4 ) reêector with an amplitude-phase trans-
mission coefécient T.
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following notation: M̂d is the block matrix; Mmn is the
internal matrix in which the indices m and n correspond to
the Hermitian ëGaussian mode indices like as for Dmn. The
natural waves are obtained from a solution of the equation
for the polarisation-wave matrices:

L
D00

D01

D02

0@ 1A � M̂d

I 0 0
0 I exp�if0y� 0
0 0 I exp�i2f0y�

0@ 1A

�
M00 M01 0
M01 I 0
M02 M01 I

0@ 1A D00

D01

D02

0@ 1A, (2)

where

M00 � A00 0
0 D00

� �
; M01 � 0 B01

C01 0

� �
;

M02 � A02 0
0 D02

� �
;

A02�D02 �ÿa2w 2
0y=16; B01�C01� iaw0y=2

���
2
p

; A00�D00�
1� 2A02; w0y � 0:35 mm is the beam radius in the cross
section in front of the PIE (at the beam waist) for the
sagittal plane; f0y is the phase incursion for the TEM01

mode as compared to the TEM01 mode after the round trip
in the resonator, which is determined by the trace of the
cyclic ray matrix M1y for the sagittal section: f0y �
arccos�(Ay �Dy)=2� (Ay, Dy are the diagonal elements of
M1y; in our case, f0y � 1408).

By solving Eqn (2), we obtain the correction to the
eigenvalues of the unperturbed resonator, the correction to
the polarisation variable on the beam axis, and the
distribution of the ellipsometric parameters of the wave
in transverse as well as longitudinal direction. From Eqn (2)
we obtain the polarisation variable for a forward wave
passing through the resonator clockwise (in the cross section
( 1 ) behind the PIE along the path of the forward wave):

G ���1 � iay

1ÿ T 4 exp�if0y�
.

Thus, the presence of a PIE leads to the appearance of
the orthogonal s-component of the vector E in the reso-
nator, having the same distribution as the TEM01 mode.
The beam is stretched along the y axis. In addition, the
radiation also contains the TEM02 mode having the p-
polarisation, as the fundamental mode, but its effect on the
polarisation state can be neglected. Because of the phase
incursion between the modes TEM00 and TEM01 forming a
PIW, the optical gap is equivalent to the linear phase
anisotropy distributed in the longitudinal direction. Measu-
ring the distance z from the waist containing the PIE, we can
write

G ��� � iay exp�ify�z��
1ÿ T 4 exp�if0y�

.

Here, fy(z) � arctan(lz=pw 2
0y). Therefore, the ellipticity and

the azimuth vary continuously not only in transverse, but
also in longitudinal direction. At each reêector, the value of
G ���(z) is multiplied by the amplitude ë phase anisotropy

parameter T. As a result, we obtain in the cross section ( 2 )
after the round trip of radiation in the resonator

G ���2 � B01T
4 exp�if0y�z��

1ÿ T 4 exp�if0y�
.

For the backward wave (see Fig. 2), the distribution of
the polarisation state in the resonator is symmetric relative
to the PIE: G �ÿ�1 � ÿG ���2 and G �ÿ�2 � ÿG ���1 .

The above analysis shows that, in contrast to the
conventional polarisation nonreciprocity of counterpropa-
gating waves [4, 5, 16], the polarisation inhomogeneity leads
to the dependence of the difference in the intensities of
counterpropagating waves in a given cross section on the
transverse coordinates:

I ��� ÿ I �ÿ� � Ka 2y 2 exp

�
ÿ 2x 2

w 2
x

�
exp

�
ÿ 2y 2

w 2
y

�
, (3)

where K is a coefécient that depends on the amplitude ë
phase anisotropy of the reêectors, curvatures of the
reêecting surfaces, and the optical length of the resonator.

The corrections to the eigenvalue of the Jones operator
caused by the polarisation inhomogeneity are identical for
counterpropagating waves. This means that there is no
nonreciprocal frequency shift in a resonator without an
active medium. The losses are proportional to the square of
the product of the anisotropy parameter a and the beam
diameter wy.

If the prism resonator is placed in a magnetic éeld H but
there are no distortions of linear polarisation on the beam
axis (the polarisation variable G0 is equal to zero [7]), there
is no nonreciprocity of frequencies and losses of counter-
propagating waves either. Thus, the reciprocity condition of
counterpropagating waves is the symmetry of polarisation
inhomogeneity relative to the meridional and sagittal cross
sections of Gaussian beams in the ring resonator.

If the polarisation inhomogeneity is asymmetric, the
frequency shift Dvn and the losses of natural waves in the
prism resonator placed in a magnetic éeld H are propor-
tional to the product B02G0VHd, where d is the optical path
length in all prisms, V is the Verdet constant, and B02 �
a 2w 2

y � 10ÿ7. In this case, the polarisation inhomogeneity
gives a small correction to the existing nonreciprocity of
counterpropagating waves, and hence it can be neglected
while calculating Dn=H for a prism resonator.

It should be noted that in the case of frequency
degeneracy of transverse modes (f � 0), the above method
is not applicable (the corrections increase sharply) and
further investigations must be carried out.

4. Conclusions

Thus, an analysis of the nonreciprocity of counterpropa-
gating waves in a prism resonator shows that the optical
elements of the prism resonator generate polarisation-
inhomogeneous waves with an ellipticity angle varying over
a wide range (from ÿ60 to �60) in the cross section.

There is no polarisation-inhomogeneity-induced fre-
quency shift of counterpropagating waves in a magnetic
éeld. Upon a distortion of the resonator anisotropy caused,
for example, by tension, the contribution to the magnetic
sensitivity due to polarisation inhomogeneity is negligibly
small.
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The beam diameter, and the curvature of the wave front
of counterpropagating waves in the resonator in the general
case, which are caused by the polarisation inhomogeneity,
do not coincide in a given cross section. In the presence of
an active medium, this may lead to a nonlinear non-
reciprocity of counterpropagating waves.
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