
Abstract. A mechanical damage of transparent solids caused
by local laser-produced heating is considered. Applicability of
thermoelasticity equations to the analysis of the mechanical
stage of laser damage is substantiated for both short and
ultrashort pulses. Damage criteria have been obtained for the
crack-formation mechanism. On the basis of these criteria,
the conditions for the transition from the crack-formation
damage to defect generation and ablation have been clariéed.
The analysis can be applied to both intrinsic (impact and
multiphoton ionization) and extrinsic (initiated by absorbing
inclusions) absorption mechanisms of laser radiation.

Keywords: laser damage, mechanical damage, crack formation,
ablation, defect formation.

1. Introduction

The interaction of high-power ultrashort laser pulses with
transparent solids has been extensively studied in recent
years [1 ë 4]. An interest in these studies is determined by
the speciéc features of this interaction: as the pulse duration
decreases, the damage character in a transparent solid
changes. Upon irradiation by long pulses (nanosecond
pulses), damage with a crack formation is observed,
whereas irradiation by ultrashort femtosecond pulses causes
damage due to ablation. The type of damage changes when
the pulse duration is several picoseconds.

It was assumed in some papers that the change in the
type of damage was caused by the change in the mechanism
of nonresonance interaction of laser pulses with transparent
solids in the case of ultrashort pulse durations. In particular,
it was pointed out that the spectral width of ultrashort
pulses and some other features should be taken into
account. In the opinion of the authors of papers [1 ë 4],
damage produced by nanosecond pulses is determined by
the absorption by foreign inclusions (i.e., by an extrinsic
absorption mechanism), while the damage under the action
of femtosecond pulses is caused by an intrinsic absorption
mechanism (impact and multiphoton ionisation).

Dividing the laser damage mechanisms into intrinsic and
extrinsic ones is based on the difference in the mechanisms
of absorption of laser radiation. However, there is no reason
to believe that the énal stage of a damage, formation of a
fracture, is determined by the energy absorption mechanism.
The viewpoint formulated in [5], according to which the
character of a damage is determined by the energy absorbed
during the action of a laser pulse, the size of the interaction
region, and the heat removal from this region and is
independent of the radiation-absorption mechanism, seems
to be more natural. The mechanical damage criterion for the
absorption of laser radiation by inclusions formulated in [5]
admits a natural generalisation for the case of intrinsic
radiation-absorption mechanisms. In other words, a change
in the damage character with decreasing the laser pulse
duration cannot indicate to a change in the mechanism of
laser radiation absorption.

The aim of this study is to analyse the processes of
mechanical damage of transparent solids exposed to laser
pulses of different durations and to reveal their features
upon change from short (nanosecond) to ultrashort (femto-
second) pulses.

2. Physical formulation of the problem
and basic equations describing thermoelastic
damage

The characteristic times of the processes playing an
important role in the problem of mechanical damage of
transparent solids caused by local absorption of laser
radiation, which correspond to the electron ë phonon
relaxation (teph), the establishment of thermoelastic stresses
in the region of local heating of size � 1 mm (ts), and the
crack formation (tfr), are of the order of 10

ÿ12 s, 10ÿ9 s, and
10ÿ8 s, respectively. Comparing these times shows that the
crack formation is the slowest process. When analysing the
effect of ultrashort pulses, we can distinguish three
sequential stages of damage: the energy absorption and
formation of a nonequilibrium electronic state during the
laser pulse action, relaxation of the nonequilibrium state to
a local thermodynamic equilibrium, and the development of
a mechanical damage.

It is important that a mechanical damage has no enough
time to develop in the course of the érst two stages. In the
case of ultrashort pulses, the radiation energy is absorbed by
the electron subsystem during the action of the laser pulse,
and the matrix heating and damage occur after the pulse
passage through the interaction region. For a damage to
appear, it is, of course, necessary that, during the action of a
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laser pulse, the electron subsystem should absorb a sufécient
amount of energy for the subsequent heating of the solid
lattice (through electron ë phonon relaxation) to a temper-
ature above which a mechanical damage develops.

In the scheme considered above, the mechanical damage
development is independent of the energy absorption
mechanism. Therefore, a change in the damage morphology
does not allow us to discriminate between the laser-radiation
absorption mechanisms. This scheme implies that the
mechanical damage process under both long and ultrashort
pulses can be analysed using a system of thermoelasticity
equations. In other words, if we are interested in the damage
character of a solid exposed to laser radiation, only the last
(mechanical) stage of this process can be considered
irrespectively of the mechanism of laser-radiation absorp-
tion by a transparent solid (impact ionisation, multiphoton
absorption, or absorbing inclusions).

When investigating the conditions for the development
of a crack in a transparent solid due to local laser heating,
we assume that radiation is absorbed within a spherical
region of radius R and neglect dynamic effects.

The dynamic effects determined by a mechanical inertia
play a decisive role in the crack formation. However, our
aim is not to analyse the crack development but to elucidate
the conditions under which a crack forms. For this purpose,
it is sufécient to investigate the character of stresses at the
stage of local laser heating, which precedes the crack
formation stage. At the local heating stage, the displace-
ments of atoms in the lattice and their velocities are small.
Therefore, the analysis of the conditions for the appearance
of a damage can be performed using a system of equations
of the quasi-stationary thermoelasticity theory. For a spheri-
cally symmetric problem, this system of equations has the
form [6]
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where y � Tÿ T0 is the excess of the temperature T at the
damage location over the initial temperature T0; w, r and c
are, respectively, the thermal conductivity, density, and
speciéc heat of a solid at a constant strain; B is the power
density of heat sources; ur is the radial component of the
displacement vector; a is the linear expansion coefécient; v
is the Poisson ratio; W � (T0=9cV)�(1� v)(1ÿ v)�2a 2c 2L is the
coupling coefécient; cV is the speciéc heat at constant
volume; and cL is the longitudinal velocity of sound.

The strain éelds er and ef for known ur are calculated
from the expressions

er �
dur
dr

, ef �
ur
r
, (3)

and the stress components sr and sf are found from the
Duhamel ëNeumann relations

er ÿ aT � 1

E
�sr ÿ 2vsf�, (4)

ef ÿ aT � 1

E
�sf ÿ v�sr ÿ sf��. (5)

To analyse the conditions for the crack development,
Eqns (1) and (2) should be complemented with a mechanical
damage criterion. In a general case, this criterion has the
form [7]

f �s1; s2; s3� � C�T; de=dt�, (6)

where s1, s2, and s3 are the principal stresses and de=dt is
the strain rate. According to relation (6), the form of the
damage criterion substantially depends on the temperature
T in the damage region and on the strain rate. The criterion
can be adequately selected only after a preliminary study of
the thermoelastic state of a transparent solid in the vicinity
of the locally heated region.

3. Criterion for the mechanical damage
formation

3.1 Strain and temperature éelds

A solution to Eqn (2) for known y(r; t) can be obtained in a
general form [6]. Jointly with relations (3) ë (5), this solution
makes it possible to calculate the strain and stress éelds. In
particular, for the tangential stress component sf(r; t) that
determines the damage, we have
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According to (7), when a transparent solid is locally heated,
a tensile stress formed in the vicinity of the heated region
may lead to a damage according to the tearing off
mechanism.

To calculate sf(r; t) in the explicit form, we represent
y(r; t), following [8], in the model form
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where y(t) is the temperature in the energy absorption
region, z(t) is the heating depth, and Z(x) � 0 for x < 0 and
Z(x) � 1 for x5 0. Substituting (8) into (7) and integrating,
we obtain
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where dimensionless variables �r � (rÿ R)=R and
d(t) � �z(t)ÿ R�=R are introduced and

�sf��r; d� �
sf�r; t��1ÿ v�

ay�t�E . (10)

The temperature kinetics in the heated region is deter-
mined, according to (8), by the time dependences y(t) and
z(t) [or, which is equivalent, by d(t) in (9)]. Substituting (8)
into (1) and imposing the conditions for the conservation of
energy, we obtain the equations
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where C � cr(1� W) and t � crR 2=w. The solutions to (11)
and (12) with the initial conditions

y�0� � 0 and d�0� � 0 (13)

detemine the temperature kinetics in the laser-radiation
absorption region. The variation dynamics of the tangential
stress component for known y(t) and d(t) is determined by
relation (9).

The calculated dimensionless quantities �sf(�r; �t ) �
�y(t)=T0��s(�r; d) and �y(�r; �t ) � �y(r; t)=T0� obtained using rela-
tions (8) and (9) and Eqns (11) and (12) are presented in
Fig. 1. It was assumed in calculations that B � kI, where k
is the absorption coefécient in the interaction region and I is
the laser radiation intensity.

Fig. 1 demonstrates substantial features of the stress
variation in the vicinity of the heated region. First of all, we
see that max sf(r; t) always lies in the `cold' region of the
transparent solid. Numerical estimates give

ymax s�t�4 0:02y�t�. (14)

Here, ymax s(t) is the temperature at the point where sf(r; t)
is maximum at a given time instant. It is important that the
fulélment of inequality (14) is not related to the model form
(8) taken for y(r; t). Variations of (8) show that the features
of the �sf(�r; �t ) and �y(�r; �t ) behaviour presented in Fig. 1
remain unaltered, and so does inequality (14).

3.2 Crack formation criterion
According to inequality (14), the temperature in the crack
formation region is not high. Indeed, assuming for an
estimate that y(t) � 104 K (such temperatures in the
absorption region are typical of laser damage [9]), we
obtain from (14) that, in the region of the sf(r; t)
maximum, the temperature is within 500 K.

Since, according to the data in Fig. 1, a signiécant tensile
stress arises in the `cold' region of a locally heated trans-
parent solid, a damage will develop according to the tearing
off mechanism. An adequate criterion for a mechanical
damage is then [10] given by the inequality

max
r;t

sf�r; t�5sth, (15)

where sth is the ultimate stress, an excess of which causes a
crack formation.

3.3 Laser damage criterion

Numerically calculated functions max
r

sf(r; t) are shown in
Fig. 2. According to these plots, the maximum stress rises
for t4 1:15t and then monotonically falls. Such a stress
behaviour is physically natural. Since the stress is propor-
tional to the temperature gradient, a temperature rise at the
initial stage of energy absorption determines a stress
increase. At t > 1:15t, the heat diffusion into the trans-
parent solid bulk reduces the temperature gradient and,
thus, the pressure.

Taking into account the numerically calculated data
shown in Fig. 2 and relations (10) and (15), we derive the
criteria for laser damage through the crack formation
mechanism:

y5ycr, ycr �
sth�1ÿ v�

Ea
, (16)
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Figure 1. Dependences of the ( 1 ë 3 ) temperature �y(�r,�t ) and ( 4 ë 6 )
tangential stress component �sf(�r,�t ) on the distance �r to the heated
region at successive moments t � 0:075t ( 1, 4 ), 0:62t ( 2, 5 ), and 1:64t
( 3, 6 ).
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Figure 2. Dependences of the maximum stress in the vicinity of a locally
heated region on time for the heat release power Bt=CT0.
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Inequality (17) implies that, if the heating rate is
suféciently low, the stress does not reach its ultimate value
and, therefore, a crack does not develop.

4. Crack formation

If sf(r; t) reaches the threshold value sth in the course of
local heating, then, according to (15), a crack appears
within a certain vicinity of the heated region of a
transparent solid. We denote its boundaries as r1 and r2
(r1 < r2) or, in the dimensionless variables, �r1 and �r2.
Within the crack region (r1 4 r4 r2), the tangential
component of the stress tensor vanishes: sf(�r; t) � 0.
Equation (2) is incompatible with this requirement and
does not allow us to calculate the thermoelastic state in the
crack region, but it is still applicable beyond the region
r1 4 r4 r2.

The thermoelastic state in the crack region can be
calculated using the thermoelasticity equation for stresses.
This system of equations allows us to take the requirement
sf(�r; t) � 0 into account in an explicit form. For a spheri-
cally symmetric problem, the thermoelasticity equation for
stresses, which determines the radial component of the stress
tensor sr(r; t), has the form [6]

d�sr
d�r
� 2

�r
�sr � 0. (18)

Formula (18) takes into account that �sf � 0 in the crack
region, and the dimensionless stress is deéned similar to
(10):

�sr��r; t� �
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The solution to equation (18) is

�sr �
C1

�1� �r�2 . (20)

Using the deénition of er [see (3)] and relation (4), we
derive the equation that determines the displacement vector
in the region r1 4 r4 r2. By introducing the dimensionless
quantities
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we write the solution as
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Outside the crack region, the solutions to Eqn (2) are as
follows:
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Relations (23) ë (25) make it possible to determine the
strain and stress éelds over the entire region of a transparent
solid in the presence of a crack. They contain four
integration constants A, B, C1, and C2 and unknown
boundaries of the damage region �r1 and �r2. These constants
are found from the requirement of the continuity of �sr and
�ur and also from the fulélment of the equalities �sf � �sth at
�r � �r1 and �r � �r2. Excluding A, B, C1, and C2 from (23) ë
(25) and using the above conditions, we come to a system of
equations specifying the boundaries of the damaged region:
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It is important that the system of Eqns (26) and (27)
admits the existence of a crack of only a énite size. A crack
of a minimal possible length arises at the exact equality of
the maximum stress in the locally heated region to the
critical stress sth. Under such conditions, at the moment of
damage, y(t) � ycr, and, as the numerical analysis of the
system of Eqns (26) and (27) shows, the crack size is r2ÿ
r1 ' 1:59R.

In accordance with the fracture mechanics theory [10], a
crack is characterised by the energy

Em � 2p�r 22 ÿ r 21 �g ' 39R 2g, (28)

where g is the surface energy density. For a damage to
form, the mechanical energy stored in the deformation éeld
must exceed the energy determined by relation (28). This
implies that the condition for achieving a laser damage of a
transparent solid through the crack formation mechanism is

kWEp 5Em, (29)

where Ep is the laser pulse energy and k is the factor
characterising the fraction of the absorbed energy. In
addition, as it follows from the laser damage theory [11],
the radiation intensity must exceed the threshold intensity
Ith:

I5 Ith. (30)
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For long laser pulses, the fulélment of the condition (30)
involves the validity of the requirement (29), i.e., the
absorbed energy is sufécient for crack formation. As the
pulse duration decreases (with a laser radiation intensity
being constant), the absorbed energy decreases, and, as
follows from (29), in the range

tp < 39R 2g=kWWp � t �p (31)

(where Wp is the laser-pulse radiation power), the crack
formation becomes impossible.

It is obvious that an increase in the incident radiation
intensity (for a constant pulse duration) should again lead to
the production of cracks. However, a necessary condition
for the accomplishment of this process is the absorption of
an additional energy at the érst stage of the damage process
(during the formation of a highly nonequilibrium state).
This can be impossible, for example, because of the screen-
ing of the incident radiation by the produced plasma, or due
to some nonlinear process (self-defocusing of radiation by
nonequilibrium carriers, nonlinear scattering, etc.). This
means formally that the k value in (29) decreases with
increasing laser intensity, i.e., a saturation occurs.

5. Discussion

The results obtained in this study show that the mechanical
damage process is identical for both the intrinsic mecha-
nism of laser-pulse energy absorption and the absorption
caused by inclusions. The insensitivity of mechanical
damage to the energy absorption mechanism is associated
with a low damage-formation rate. In the case of short
pulses (tp 4 10ÿ8 s), a crack forms after the termination of
a laser pulse. A change in the damage character with
shortening the laser pulse duration is related to energy
limitations during the crack formation.

Probable speciéc features in the laser-radiation inter-
action with matter and their effect on the damage process
can be related only to the stage of absorption of the laser
radiation energy. The effect that should be primarily noted
here is the screening of laser radiation by a plasma produced
due to the interaction. This effect evidently accounts for a
rise of the damage threshold for a quartz surface irradiated
by femtosecond pulses observed in paper [2]. There is no
doubt that the nonresonance interaction of laser radiation
with a transparent solid may undergo more substantial
changes in the case of ultrashort pulses. This is associated
primarily with a much more signiécant role of nonlinear
effects at a laser radiation intensity close to the threshold
one and also with the spectral width of femtosecond pulses.

Since t � 10ÿ7 s, inequality (17) is always valid for pulses
of duration tp 5 t considered in this study. The limitation
imposed by (17) is important for the laser damage of
transparent solids by long laser pulses. If the condition
(17) is not satiséed, cracks do not develop in a locally heated
region despite the fact that the temperature exceeds ycr. This
evidently implies that, as a result of an exposure of a
transparent solid to laser radiation, a melt appears in it.
However, this problem requires a special study.

A numerical estimate of t �p for the experimental con-
ditions of paper [1] is of interest. According to [1], when
fused silica is damaged, the crack formation is observed for
pulse durations of up to 20 ps. The value of t �p is calculated

from (31). In the case of a damage caused by a photo-
ionisation thermal explosion of an absorbing inclusion, the
size of the damaged region is R � mÿ1 � 3� 10ÿ6 m ( m is
the absorption coefécient for UV radiation at the boundary
of the transparent region of the material under study) [11].
According to [10], the surface energy is assumed to be
Ea=100 (a is the value on the order of the interatomic
spacing). For fused silica, E � 6� 1010 N mÿ2 [12] and a '
4� 10ÿ10 m. According to [1], for a pulse duration of 10 ps,
the threshold energy density of laser radiation is 5 J cmÿ2 at
a focal spot diameter of 5� 10ÿ4 m, yielding Wp � 109 W.
Taking into account the values of the material constants for
silica [13], the coupling coefécient is W � 5� 10ÿ5. Finally,
we will assume that the fraction k of the absorbed energy is
(R=R0)

2 � 3:4� 10ÿ5 (R0 is the laser beam radius). Sub-
stituting the above numerical values into (31) results in the
estimate for tp ' 50 ps, which agrees well with the exper-
imental data [1].

For laser pulse durations at which condition (30) is valid
and (29) is not, a crack cannot be formed. In this case, the
absorbed energy will lead to the formation of defects (of the
type of F centers) in the bulk of a transparent solid or to an
ablation process under the surface irradiation. Irreversible
changes of this type will accumulate in the material under
multiple irradiation.

6. Conclusions

The theory developed above explains qualitatively a
transition from the crack formation to ablation observed
upon irradiation by ultrashort laser pulses. The crack
formation process upon laser damage is independent of the
laser-energy absorption mechanism. Upon irradiation by
long (nanosecond) laser pulses, the damage process in a
transparent solid occurs via the crack formation mechanism
due to local thermoelastic stresses, whereas upon irradiation
by ultrashort (femtosecond) pulses, a solid can be damaged
through the ablation and defect-formation mechanisms
without the formation of cracks.

The formulated crack-formation criterion upon local
laser heating, the calculated minimum crack size, and the
minimum energy required for its formation make it possiblle
to determine the conditions for implementing these types of
laser damage in transparent solids. The theory developed
above consistently explains the change in the damage
morphology: a transition from the crack formation to
ablation with decreasing pulse duration.
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