
Abstract. An electrodynamic problem of laser radiation
scattering in an integrated-optical waveguide containing small
statistical irregularities (interface roughness and irregularities
of the refractive indices of the waveguide-forming media) is
considered. The possibility of using the waveguide scattering
of laser radiation for extracting the information on the
statistical properties of irregularities from noisy data of the
scattering diagram in a far-éeld zone is shown. An algorithm
for reconstructing the autocorrelation function of irregu-
larities for the correlation interval changing within a wide
range is described. The possibility of restoring a given
Gaussian autocorrelation function that describes statistical
irregularities of the waveguide substrate surface for a
correlation interval changing between 10 nm and 10 lm
and a high-level additive white real noise is shown by
computer simulation.

Keywords: integrated-optical waveguide, statistical irregularities,
inverse waveguide scattering problem, white noise.

1. Introduction

The extensive development of integrated optics in the three
recent decades has promoted the investigations of laser
radiation scattering in irregular planar optical waveguides
(PWs) in various aspects [1 ë 10]. As a rule, the main
attention of authors was focused on the solution of a so-
called direct scattering problem, when the amplitude ë phase
distribution or the intensity distribution of laser radiation
scattered in a waveguide are sought for. The scattering
diagrams (indicatrices) thus found were employed to solve
an inverse scattering problem (ISP) by the known compar-
ison method, when, using one or another technique, the
coincidence (e.g., within the rms accuracy) of the measured
and theoretically calculated scattering diagrams is achieved.

Sometimes, in order to solve the ISP, simpliéed
approaches based on a formal inversion of the expressions
for scattering diagrams are exploited. As was correctly noted
in [10], to acquire the statistical data for the spectral
components of irregularities from the light scattering

data in a suféciently wide frequency band, more complex
models than such a simpliéed model are necessary. Indeed,
the use of a fairly simple expression for the scattering
diagram when solving the ISP is justiéed, if a spatial
resonance between the incident plane wave and continuous
spectrum of irregularities [2, 11] is observed, i.e., when the
observation point and the radiation source are located in the
Fraunhofer zone with respect to the scattering region. In
such a geometry of the problem, only a narrow beam of
plane waves corresponding to a certain harmonic in the
spectrum of irregularities reaches the point of interest. This
type of scattering is sometimes called resonant or selective.

In this case, the scattered radiation is detected in a so-
called zone of spectrum separation [11]. When irregularities
are of statistical nature, diffraction spectra become spread
and, instead of a sum of a énite number of plane waves,
there is an integral éeld expansion in terms of plane waves at
each point [2, 11, 12]. If the scattering conditions for the
waveguide mode over the statistical ensemble of irregu-
larities (this can be a statistical surface roughness or a
statistical irregularity of the refractive index of the wave-
guide layer) satisfy the érst approximation of the
perturbation theory, then the scattered-radiation intensity,
which is detected by a point (with a suféciently small
aperture) photodetector in a far-éeld zone or in a Fourier
plane equivalent to it, is actually a mapping of the spectral
density function (SDF) of the ensemble in the space of wave
numbers.

As is known, in this case, the scattering coefécient
depends only on the second-order statistical characteristics
of the ensemble of irregularities: the SDF or its Fourier
transform, which is the autocorrelation function (ACF). The
ACF and SDF contain the complete information on the
basic parameters of the ensemble under investigation. In the
case considered, the érst approximation of the perturbation
theory is satiséed, if, for example, the rms height of
statistical irregularities of the optical PW boundaries is
small compared to both the laser radiation wavelength and
waveguide layer thickness.

When direct and inverse scattering problems are solved,
both differential (scattering diagrams) and integral scatter-
ing characteristics can be used. The following characteristics
can be classiéed as integral ones: the relative loss of the
waveguide mode power due to scattering (damping coefé-
cient); the ratio of powers scattered backward and forward
at a speciéed angle; and the ratio of upward- and down-
ward-scattered light powers [2, 7, 8]. In this work, prefe-
rence is given to the differential scattering characteristics
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due to the fact that they contain more information than the
integral characteristics of waveguide scattering of laser
radiation [12 ë 14].

2. Theoretical analysis of the waveguide
scattering problem

Consider the scattering of a waveguide mode excited by
laser radiation in an integrated-optical waveguide contain-
ing random (statistical) irregularities (see Fig. 1). As a rule,
a three-layer PW consists of the following layers: a framing
medium, a wave-guiding layer, and a substrate with the
refractive indices n1, n2, and n3, respectively. The irregu-
larities of the PW structure can be caused by irregularities
(roughness) of the interfaces of the waveguide-forming
media, subsurface defects (a so-called disturbed or cracked
layer), and irregularities of the refractive index of the
waveguide layer. When considering a scattering problem,
the waveguide-layer irregularities and subsurface defects
can be described in a similar way ì as the refractive index
irregularities in the corresponding waveguide medium. To
simplify the analysis of the problem, we neglect these
irregularities as well as the cross-correlation coupling
between irregularities of interfaces.

The electrodynamic problem of the scattering of a
waveguide mode propagating in an integrated-optical wave-
guide with random irregularities is solved by the method of
coupled modes using the perturbation theory. In a general
case, the electromagnetic éeld E in an irregular PW is
described by an equation that has the following form in
Cartesian coordinates [2]:

H 2E� H
�
E
Hei
ei

�
� o 2meiE � 0, (1)

where ei is the permittivity of the ith PW layer (i � 1, 2, 3);
o � 2pf ; f is the frequency of the electromagnetic éeld E; m
is the magnetic permeability of the layers; o

������
mei
p � nik; ni is

the refractive index of the ith layer; k � 2p=l; l is the laser
radiation wavelength in vacuum; and H 2 � D is the
Laplacian.

Consider the propagation of the fundamental TE mode
with the components E0y, Hx, and Hz in the waveguide
along the z axis (the TM mode is analysed similarly). The
total éeld in an irregular optical PW can be written as the
sum of the éelds of the incident waveguide mode E0y and
scattered wave Es: E � E0y(x; z)� Es(x; y; z). We assume
that the permittivity can be represented in the form
ei(x; y; z) � e0i(x; z)� Dei(x; y; z), where e0i(x; z) describes
the regular properties of the corresponding PW layer,
and the additional term Dei(x; y; z) characterises three-
dimensional irregularities of the waveguide structure
(both the roughness of the interfaces of the PW media
and irregularities of the refractive index of the PW ith layer).

In this case, Eqn (1) can be written as an approximate
three-dimensional equation. Retaining only the érst-order
smallness terms in Es and Dei(r) in Eqn (1), we obtain an
approximate inhomogeneous wave equation, which can be
regarded as a homogeneous wave equation with a pertur-
bation in the form of a source on the right-hand side:

H 2Es�x; y; z� � o 2me0iEs�x; y; z�

� ÿo 2me0iDei�x; y; z�E0y�x; z�, (2)

where E0y is a solution of the homogeneous nonperturbed
equation describing the propagation of the fundamental TE
mode in the waveguide. From the energy viewpoint, the
source on the right-hand side of Eqn (2) is the intensity of
the mode incident on an irregular part of the waveguide
and scattered in all directions (three-dimensional scatter-
ing). The solution to this inhomogeneous wave equation
can be obtained in the form of a convolution of a certain
Green function G(x; y; z; x 0; y 0; z 0� with the expression for
the source:

Es�x; y; z� � ÿo 2me0i

���
Dei�x 0; y 0; z 0�G�x; y; z; x 0; y 0; z 0�

�E0y�x 0; z 0�dx 0dy 0dz 0. (3)

Analysis of Eqn (3) shows that, in this case, polarisation
effects cannot be ignored, and the consideration of the
problem of waveguide light scattering (which is multiple in
essence) by three-dimensional irregularities becomes much
more complex, because énding the analytical expression for
the Green function G(r; r 0) is a serious problem. Indeed, in
this approach, hybrid modes having six components (unlike
the TE and TM modes with three components) may arise in
the waveguide [2]. The condition q=qy � 0 is not satiséed for
hybrid modes, so that éeld variations exist in this direction.

Hence, in the case of three-dimensional irregularities, an
arbitrary éeld distribution in an optical PW must be
represented as an expansion in terms of all possible PW
modes, including the summation and integration over the
modes corresponding to the éeld variation along the second
transverse coordinate, namely, along the y axis. A more
detailed analysis of the direct problem of three-dimensional
waveguide scattering and approaches to the solution of the
corresponding inverse problem will be considered in our
following works. Equation (3) can also be employed in the
analysis of single (Rayleigh) scattering. Note that this
scattering in irregular waveguides was analysed in several
papers (e.g., [15]).

Equations (1) ë (3) can be simpliéed, if the polarisation
effects arising during scattering [2, 8] are neglected. This can
be realised if we demand that the relative change of the
permittivity on a distance of one wavelength is much smaller
than unity [2]. This condition is often satiséed in optical
media. In this case, the second (depolarisation) term in
Eqn (1) is much smaller than the two other terms, because
its ratio to any of them is of the order of De=e0. Con-
sequently, De=e0 5 1, the exact equation (1)* can be replaced
by an approximate wave equation

DE� n 2
i k

2E � 0, (4)

which is valid for each Cartesian component of the electric
éeld vector. For the fundamental TE mode propagating
along the z axis under the condition q=qy � 0, Eqn (4) takes
the form

*A method for taking into account the three-dimensional character of
random irregularities of the waveguide for the scattering observed at small
angles of deviation from the plane of incidence xz was proposed in [8].
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q2Ey

qx 2
� q2Ey

qz 2
� n 2

i k
2Ey � 0, (5)

where n 2
i (x; z) � n 2

0i(x; z)� Dn 2
i (x; z); n0i(x; z) describes the

regular properties of the corresponding PW layer; and the
addition Dn 2

i (x; z) describes irregularities of the PW
structure (roughness of the interfaces of the PW media
and irregularities of the refractive index of the ith PW
layer).

For the perturbation theory to be applied, it is not
obligatory that Dn 2

i (x; z) should be a small quantity. It is
quite sufécient that the region within which this additional
term is nonzero should be very narrow. A solution to
Eqn (5) using the approximate method of cross sections
(Marcuse method of ideal modes [2]) is sought for in the
form of an expansion of an arbitrary radiation-éeld dis-
tribution in terms of PW orthogonal modes:

Ey �
�1
0

q�r;L�Ey�r; x; z�dr, (6)

where q is the effective scattering amplitude of the TE mode
deéned as the coefécient of éeld expansion in terms of all
radiation modes; L is the length of the region with
roughness; r � (k 2n 2

1 ÿ b 2)1=2 is the transverse component
of the scattering-mode propagation constant; b is the
longitudinal component of the propagation constant of the
scattering modes that form the diagram of scattering by
irregularities (object's optical image). The expansion coefé-
cients are found from the system of the derived integro-
differential equations using the orthogonality relations and
the perturbation theory. By using expression (6), we can
derive the expressions for the éelds in the near-, inter-
mediate-, or far-éeld zone, as well as for the corresponding
powers of the scattered radiation.

If the condition q=qy � 0 is satiséed, then any arbitrary
éeld distribution in the PW can be written in the form of a
superposition of orthogonal TE and TM modes of an ideal
rectilinear waveguide [2]. After that, the total laser radiation
power transferred in the waveguide or, for example, the
radiation power determined by the scattering of the propa-
gating mode by waveguide irregularities can be found. If the
scattering occurs from random irregularities, the scattered
radiation power is determined by averaging over the
ensemble [2, 7 ë 9, 12 ë 14].

Thus, a solution to the direct waveguide-scattering
problem can be obtained in the form of an amplitude ë
phase distribution or a solution that describes the intensity
distribution of laser radiation scattered by irregularities. The
applicability of the two-dimensional analysis of the scatter-
ing problem can be provided in experiments, for example, by
placing a slit diaphragm parallel to the plane of incidence
and a polariser in a far-éeld zone (or in the Fourier plane)
[7, 8]. The two-dimensional scattering diagram measured in
this way can be used for énding an approximate correct
solution to the ISP for three-dimensional structural irreg-
ularities of an optical PW.

3. Direct and inverse waveguide scattering
problems

Consider the solutions to the direct and inverse problems of
waveguide scattering of laser radiation in the presence of
random additive noise speciéed over a limited range of
wave numbers (in the region of existence of the observed

scattering modes). Note that papers devoted to the study of
the correctness of the inverse problem of waveguide
scattering of laser radiation are actually inavailable.
Works [12 ë 14] are evidently the only papers in which
the direct and inverse waveguide scattering problems were
formulated and analysed for the case of a scattering
diagram measured in a far-éeld zone. It should be also
noted that no publications on the theory and model
analysis of waveguide scattering, in which the inêuence of
additive white noise on the solution of the direct and
inverse problems has been investigated, are available.

3.1 Direct waveguide scattering problem

Using the solution to the problem of scattering of a
propagating waveguide mode in an irregular optical PW
obtained earlier for a high signal-to-noise ratio [12], we
proceed to solving a direct waveguide scattering problem in
the presence of a random additive noise. The solution to
this problem consists in énding the laser-radiation scatter-
ing diagram due to the PW irregularities under study (see
Figs 1 ë 4). The scattering diagram is measured predom-
inantly in the near-éeld or far-éeld zone. When a point
photodetector is used (the photodetector éltration function
is the delta function), the scattering diagram with noise
P(b; g) can be represented in the far-éeld zone in the form

hP�b; g�i � C0hF�b; g�F�b; g�i � hNw�b; g�i, (7)

where g is the effective refractive index (phase slowing-
down coefécient); C0 is a normalisation factor; F(b; g) is the
optical transfer function of the PW*; F(b; g) is the SDF of
the statistical ensemble of irregularities; Nw(b; g) is the
intensity of the white additive real noise speciéed over the
measurement range of the scattering diagram; angle
brackets denote the averaging over the ergodic ensemble
of statistically identically systems.

The érst term on the right side of Eqn (7) is the
scattering diagram at a signal-to-noise ratio S=N5 102,
where S and N are the signal and noise spectral densities,
respectively. The scattering diagram of laser radiation is
written in the form of a discrete digital set of response
intensities at � 500ÿ 3000 experimental points. The noise
nature in the experiment is the subject of a special study and
is not treated in this paper.

3.2 Inverse waveguide scattering problem

The solution to the inverse problem of laser-radiation
scattering by statistical irregularities in a waveguide consists
in the reconstruction of the ACF (and/or SDF) and deter-
mination of the appropriate parameters of irregularities
from the data of waveguide-mode scattering obtained in the
near-éeld or far-éeld (Fourier plane) zone [12 ë 14].

If the scattering mode intensity is recorded in the far-
éeld zone by a point photodetector, the reconstructed
smoothed ACF Rsm(u; g) can be determined from the
measured scattering diagram (7) using the formula [12]

Rsm�u; g� � Cÿ10

� hP�b; g�iF �E�u; b�
jFj2 � mrM

exp� i�b0 ÿ b�u�db, (8)

*The expression for the optical transfer function of a symmetrical PW is
similar to that of an asymmetrical PW (see the integrand in the second term
of (1) in [9]).
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where mr is the regularisation parameter; the simplest pth-
order stabilisers are taken in the form M � b 2p or M �
(b0ÿ b) 2p; p5 0 is the regularisation order; b0 � kg is the
propagation constant of the waveguide mode; E(u; b) is the
éltering (smoothing) function selected from the condition of
the minimum rms error of the ACF reconstruction [12];
u � zÿ z 0; z and z 0 are the coordinates in the waveguide
substrate plane. In principle, the function M may have an
arbitrary order of rise at b!1. Formula (8) makes it
possible to obtain an approximate correct solution to the
ISP using the quasi-optimal éltration procedure [12, 14].
For M � mÿ1r (S=N)ÿ1, formula (8) yields an optimal
regularised solution to the ISP, which coincides with the
result of applying the Wiener optimal éltration [16].

4. Computer simulation. Results of calculations

The irregular integrated-optical waveguide considered and
schematic diagram of the system for detecting the scattered
laser radiation are shown in Fig. 1. The point photo-
detector scans the scattering diagram in the far-éeld zone in
the domain of existence of the observed scattering modes.
The laser that excites the TE modes and certain devices (for
signal processing, etc.) are not shown. A symmetrical PW is
formed by two quartz plates and a thin waveguide layer of
optically transparent liquid located between them with
refractive indices n1 � n3 � 1:46 and n2 � 1:59, respectively
(for the wavelength l � 0:63 mm of a He ëNe laser radia-
tion). The scattering from the surface irregularities of
identically treated quartz plates (taken from a common
ergodic ensemble) is investigated. This allows us to consider
that the plate surfaces under study are described by one and
the same SDF with identical statistical surface-roughness
parameters. Therefore, we further analyse one of two surfa-
ces. During computer simulation, the effective refractive
index g of the fundamental TE mode was taken equal to
1.479, 1.525, 1.556, and 1.571 for the waveguide thickness
h � l=5, l=2, l and 3l=2, respectively.

The computer simulation was performed for a Gaussian
SDF of statistical stationary irregularities of the PW
substrate surface

hF�b; g�i � 2s 2rLÿ1 exp
�ÿ �b0 ÿ b�2r 2=2�, (9)

where s is the rms roughness height and r is the correlation
interval. The ACF corresponding to it has the form B(u) �
s 2 exp �ÿ(u=r)2�. Note the surface irregularities of êat
samples with a high degree of surface smoothness is
determined predominantly by a random roughness. Such
irregularities are usually studied using a Gaussian (normal)
distribution law [11, 17]. Therefore, the use of a Gaussian
function in model calculations seems to be justiéed.

Figs 2 ë 4 show the most typical curves of the exper-
imental scattering diagrams with noises and the ACFs
reconstructed from these diagrams for subwavelength cor-
relation ranges of surface irregularities. The signal-to-noise
ratio in Figs 2 ë 4 is given for those parts of the scattering
diagrams where the scattered laser radiation intensity is
maximum. The dynamics of the scattering indicatrices with
changing r is obvious. At r � 10 nm, the rms error in the
reconstruction of the speciéed ACF for the phase slowing
factor g � 1:571 (curve 4 in Fig. 2) is � 35% and can be
lowered by selecting the ISP and E(u; b) parameters. The
rms reconstruction error for r � 30 nm and g � 1:571 (curve
4 in Fig. 3) is � 22%; for S=N5 102, selecting the ISP and
E(u; b) parameters allows us to determine the ACF to within
an accuracy of < 20%. The reconstruction error at
r � 0:3 mm for optimal g � 1:525 [12, 13] (curve 2 in
Fig. 4) amounts to � 70% and can be reduced to 60%
by selecting the ISP parameters. For g � 1:525, the scatter-
ing intensity in the PW reaches its maximum and,
correspondingly, the ratio S=N is also maximum.

The computations performed have shown that, at S=N >
10, the algorithm developed enables one to reconstruct the
speciéed Gaussian ACF of irregularities with a maximum
error of at most 60% for the correlation interval changing
from l=60 to 15l. The speciéed ACF can be determined
with a maximum error below 30%, if the correlation
interval changes from � l=30 to 3l. In this case, the
parameters of irregularities are determined with super-
resolution [12 ë 14]. When developing planar waveguides
and integrated-optical devices of new generation, this
method can undoubtedly serve as an efécient tool for
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monitoring their metrological characteristics and parame-
ters. This is an absolute method, because s and r are
determined only from the waveguide scattering data [12, 13].
The problem of increasing the precision of the solution of
the inverse waveguide scattering problem was analysed in
detail in [12 ë 14].

5. Conclusions

The method developed for énding an approximate correct
solution to the ISP allows the reconstruction of the ACF of
statistical irregularities from the data on laser radiation
scattering in a PW obtained in a far-éeld zone in the
presence of signiécant additive white noise. This technique
has an acceptable experimental accuracy. The solution is
based on the application of a quasi-optimal regularisation
operator employing the least-squares method. An impor-
tant advantage of the waveguide scattering technique is the
in-phase scattering of laser radiation by the surfaces under
study, which increases the measurement sensitivity by two ë
three orders of magnitude compared to single scattering.
Another advantage, similar to that of the Mie theory, is the
possibility of studying the light scattering within a wide
range of the lateral sizes of irregularities.
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