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Abstract. A review of the theory of the natural waves (eigen-
modes) in a dielectric sphere is presented. A special attention
is paid to the eigenmodes with large radial and azimuthal
indices, the so-called whispering-gallery modes. The exper-
imental results of the spectroscopic study of modes in a
dielectric sphere are reported. The fields of applications of
whispering-gallery modes are discussed.

Keywords: Debye potentials, dielectric-sphere modes, whispering-
gallery modes, resonance frequencies, mode Q-factor.

1. Introduction

In Peking, near a famous historical memorial, the Temple
of Sky, there is a miraculous stone wall, which forms an
almost closed cylinder. The ‘miracle’ consists in the fact
that sounds uttered in a low voice in one of the directions
along the wall return back after some time to a person who
uttered them. It seems that somebody invisible behind the
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back of the person pronounce the same sounds by the
person’s voice.

The modern physical explanation of this effect was
proposed by Rayleigh as early as over a century ago [1].
Rayleigh explained the effect on the basis of his own
observations made in an ancient gallery located under
the dome of St. Paul’s Cathedral in London (Fig. 1).
This gave the name whispering-gallery waves for these waves.
Before Rayleigh, this effect was assigned to the reflection of
acoustic ‘rays’ from a surface near the dome apex. It was
assumed that the rays propagated along different large arcs
of the dome in the form of a hemisphere should concentrate
only at the point that is located diametrically opposite to a
sound source. However, Rayleigh found that, along with
this effect, another effect exists: sound ‘clutches’ to the wall
surface and ‘creeps’ along it. The concave surface of the
dome does not allow the beam cross section to expand as
fast as during propagation in free space. While in the latter
case the beam cross section increases and the radiation
intensity decreases proportionally to the square of distance
from a source, the radiation in the whispering gallery
propagates within a narrow layer adjacent to the wall
surface. As a result, the sound intensity inside this layer
decreases only directly proportionally to the distance, i.e.,
much slower than in free space. Rayleigh confirmed his
explanation by direct experiments using a whistle as a sound
source and a burning candle as a detector.

It was found much later, at the beginning of the 20th
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Diameter 32 m

Figure 1. Whispering gallery under the dome of St. Paul’s Cathedral in
London.

century [2—4], that in dielectric spheres the electromagnetic
waves can exist, which have the same spatial structure as
whispering-gallery acoustic waves. The waves of this type
did not attract much attention until the last decade when
they suddenly became the objects of wide studies and
applications in optics. Why?

To answer this question, it is necessary to understand
what the whispering-gallery waves are and under what
conditions they can appear. This requires the study of
the structure of fields in dielectrics. Below, we consider
the electrodynamics of a dielectric sphere. The electro-
dynamics of dielectric cylinders, dielectric spherical
layers, and aspherical bodies remains beyond the scope
of this review. The electrodynamics of a dielectric cylinder
provides the basis for the theory of dielectric fibres and is
described in monographs (see, for example, [5]). As for the
electrodynamics of dielectric spherical layers and aspherical
bodies, it is appropriate to consider these problems in a
special review.

2. Basic equations. Debye potentials

Before studying the waves in a dielectric sphere, we will
show, following book [6], that the solution of Maxwell’s
equations for space with a dielectric sphere can be reduced
to the solution of a scalar equation for the so-called Debye
potentials [3].

Maxwell’s equations for a monochromatic field

rot E =ikH, rot H = —ikE (1)

in the curvilinear coordinate system &, &,, &3 have the form

0 0

y (LmEm) - f (LnEn) = ikLanH/, (23-)
0 0 .
@ (LmHm) - g (Lan> = _lkLanEls (2b)

where k = (w/c)(s,u)l/z; ¢ and p are the dielectric constant
and magnetic permeability of the sphere; L;,L,,L; are
Lame’s coefficients; m =1,2,3,n=1,2,3, and /=1,2,3,
and m # n # [. Upon substituting the specific values of m, n,
and / in Eqns (2), the circular sequence 321, 132, 213 of the

indices should be fulfilled. If this sequence is violated, the
sign of the right-hand side of Eqns (2) should be changed to
opposite.

The solution of the system of equations (2) involves the
obtaining of six scalar functions representing the six
projections of the vectors of the electric and magnetic
fields. However, for certain relations between Lame’s
constants, electromagnetic fields can be divided into two
subgroups: the subgroup of waves of the electric type and
the subgroup of waves of the magnetic type.

For the waves of the electric type (E type), one of the
components of the magnetic field (for example, Hj) is iden-
tically zero, whereas all other components are nonzero,
generally speaking. For the waves of the magnetic type, one
of the components of the electric field (for example, E3) is
identically zero, whereas all other components are nonzero,
generally speaking. In this case, each of the subgroups can
be defined with the help of one scalar function. Let us show
it.

Consider waves of the E type (H; = 0). It follows from
Eqn (2a) for /=3 that

0 0
3z, (LLE>) = 3 (L Ey). (3)

After the introduction of the function W such that

_ow
G

oW

L\E, LE, = 35,

(4)

Eqn (3) is satisfied identically. By substituting relation (4)
into Eqns (2b) corresponding to indices /= 1,2, we find

d L LLyow (
6753([42[{2) =ik Ll 76617 (Sd)
0 Ly oW

a_é?’(LlHl)_ ik L2 afz (Sb)

Let us assume now that L3 = 1 and the ratio L;/L, is
independent of &;. Then, assuming that W = 0U/0¢&;, where
U is an unknown function yet, we find

10U 1 oU
H=—-k——, H=1k——. 6
I ©
In this case, according to Eqn (2b), E; is determined by the
relation
1 0 LzaU) 0 (L]GU)}
Ey=-— |+t 7
: L\L, {351 <L1 o0&, 08, \ L, 08 g

Therefore, all the components of the electromagnetic
field are expressed in terms of one scalar function U. It is
necessary to find to what equation this function satisfies. We
have at our disposal two equations of system (2):

0 0 .

a_éz (L3E3) — a—é} (L2E2) = lkL2L3H1, (83)
0 0 .

& (L\E)) — & (LyE;) = ikLyL, H,. (8b)
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By substituting expressions (6) and (7) into Eqns (8), we
obtain

2{E, 1] (k)
0&; 6532 LyL, | 0& \ L 0&

0 (L,0U Py
+ o <L2652)} Tk U} 0, %)
i{aqur {i(LzaU)
086 | 0¢f  LiLy |08 \L, 8¢,
0 (L,oU Py
+652 <L2652)}+k U}_ o0

Both these equations are satisfied simultaneously if the
function U is the solution of the equation

XU 1 [0d L26U> 0 <L16Uﬂ )
S+ (2 () |+ kU =0. (10
3, L]Lz{agl(u o8, ) T35 \1,35 (10)

Let us summarise our reasoning. If L; = 1 and the ratio
L,/L, is independent of &3, while the function U satisfies
Eqn (10), then the fields of waves of the E type are
determined by the expressions

1 d*U 1 ?*U U,
= o= aa, Bs=—5 k70,
L, 0,08, L,0¢,083 03
(1
ik U ik oU
Ho=——— H=—>, Hy=0.
! Lzafz : LI aél }

We can show in a similar way that the fields of waves of
the H type (E, = 0) are determined by the expressions

ik oV ik oV

Ey=—r, By=——-, E3=0,
YT LeE TP Leg
(12)
1 v 1 v o’V
:77’ :77’ H +k V
'TL0E0E T T L0608 T ae?

and the function V satisfies the same Eqn (10). Although
the function U and V entering expressions (11) and (12) are
determined by the same Eqn (10), they are treated as two
different Debye potentials because they describe the fields
with different structures.

3. Fields of a dielectric sphere
and the whispering-gallery modes (WGMs)

By using Eqn (10) and relations (11) and (12), we determine
the structure of the fields of a dielectric sphere of radius a
placed in vacuum. To solve this problem, it is convenient to
use the spherical coordinate system r, 6, ¢. Assuming that
E=0,& =0, =r we obtain L; = rsin0, and L, =
r, Ly = 1. In this coordinate system, the conditions imposed
on Lame’s coefficients are satisfied (see above) at which the
solutions of Maxwell’s equations can be represented in the
form of the E and H waves.

Equation (10) in the spherical coordinate system takes
the form

@ 1 a( 6U> 1 ?*U

9 sino Y L
or? Jrrzsin660 o0 r2sin? 0 0¢?

+k*U=0,(13)
where k :ko(s,u)l/ % inside the sphere, k =k, outside the
sphere, and ky = w/c. Relations (11) and (12), which
determine the fields, take the following form in the spherical
coordinate system:

82
E,.:<62+k)U, H, =0, )
1°U 10U
_ — 14
Eq ¥ 0ro0’ Hy kr@q) (14)
1 U 1kla_U
? " rsinf@ordgp’ ¢ r o0’
62
H, = (a2+k >V, E, =0,
1*V 107
= — ik 15
0= ae0 BT Mg ()
1 oV _ gl
¢~ rsin00rdgp’ rof )
Let us represent the potential U in the form
U= R(r)0(0)(e). (16)

By substituting (16) into (10), we obtain the following
equations for the functions R(r), @(0), &(¢p):

dzR 2 C|

W+<k —r—2>R:0, (17a)
1 d . de Cc3 o

_sinOE (Sln() @) + (Cz - —Sin20)@ = O, (17b)

d*e

i S =0, (17¢)

where ¢;, ¢;, ¢3 are the constants appearing in the solution
of equations by separating variables. The physical require-
ment of the uniqueness of the solutions of Eqns (17b) and
(17¢) leads to the relations

o=nn+1), cs=m?, (18)

where n and m are integers, including zero. The solutions
have the form

sinme,

0(0) = Py'(c0s0), ©(0) = { cos e, (19)

where P,'(x) are the adjoint Legendre polynomials. After
the substitution R(r):(kr)l/ZZ(kr), Eqn (17a) is trans-
formed to the Bessel equation

2
v 1
+<17;)Z:0,Z:kr,vzn+§.

dZ 1dZz

P zdz (20)



380

A.N. Oraevsky

Physically, the solution outside the sphere should have the
asymptotic form of a runaway wave, because a wave
coming from infinity cannot exist. This means that the
solutions outside the sphere should be expressed in terms of
the Hankel functions of the first kind, which have for large
arguments the asymptotic form of a runaway wave with the
amplitude decreasing inversely proportional to the distance.
As a result, the solution of system (14) inside the dielectric
sphere (r < a) has the form

Upn(r,0,9) = GP)(cos 0) (kr)'/*J, (kr)e™™?, @1

and outside the dielectric sphere (r > a), it has the form

Upn(r,0,0) = CeP;(cos ) (kr) P HD (kor)e ™™, (22)
where C;. are arbitrary constants.

According to (14), (15), (21), and (22), it is convenient to
describe the field inside (r < a) and outside (r > @) the
sphere by introducing the vector spherical functions
m,,,(o;k) and m,,(o;k). The vectors m,,,(o;k) and
n,,,(o; k) are presented in Tables A1.1-A1.3 in Appendix 1.

The fields of the E and H types inside the sphere are
described by the expressions

E (1,0, 0) = Cinyy (0 k), (23a)
H,y(r, 0, ) = Cimyy (03 k), (23b)
E,py(r,0,0) = Cim,y, (0: k), (24a)
H,,,(r,0,0) = Cn,,(c; k). (24b)

The corresponding expressions for the fields outside the
sphere can be obtained from expressions (23) and (24) by
replacing Bessel functions J,(kr) by Hankel functions
Hv(l)(kor), and replacing the constant C; by the constant C,.

Note that the subscript ¢ appears in the left-hand sides
of expressions (23) and (24), which is absent in the right-
hand sides. Its meaning will be explained below.

Expressions (23) and (24) should satisfy the conditions
on the sphere boundary. These conditions can be satisfied
after the appropriate choice of a free parameter ky, and
arbitrary constants Cj.. The continuity condition for the
tangential components of the field at the interface between
the sphere and vacuum allows one, first, to find the ratio of
these constants

G (1)‘/4 HY (koa)
Ce \&’n) I lkoa(e)'”]
and, second, leads to the characteristic equations determin-

ing the admissible values of the parameter kga. The
characteristic equation for the E waves has the form

(25)

[(ka)'*J,(ka)]" (F )1/2 [(koa)'* H (koa)]' 26)
(ka)l/zJ‘,(ka) 2 (koa)l/zHé1> (koa) ’

and for the H waves, it has the form
[(ka)' ", (ka)] _ (u> " o )]
(ka)'* 7, (ka) e (koa)'*H" (koa)

where the prime means a total derivative over the argument
on which the function depends, i.e., over ka or kya.

The characteristic equations determine in fact the
relation between the wave number k and the sphere radius
a. Because these equations have many roots, they determine
an infinite set of the wave vectors (eigenfrequencies) for a
given radius of the sphere. In this case, it is necessary to
introduce the third index ¢, which indicates to what number
of the root of Eqn (26) or (27) one or another value of the
wave vector (eigenfrequency) corresponds. For this reason,
the eigenmodes of a dielectric sphere are described by three
indices m, n, ¢. The greater the index ¢ (the root number),
the greater number of zeroes of the function are located
inside the sphere, i.e., the index ¢ corresponds to the number
of nodes of the given mode lying inside the sphere. Note that
this characteristic equation is independent of the index m, so
that the modes of a dielectric body of an ideal spherical
shape prove to be degenerated over this index. This
degeneration is removed when the shape of a dielectric
body deviates from a sphere.

The boundary conditions allow us to find only the ratio
of constants C; and C,, so that one of them remains free. It
is determined by the power of sources exciting the waves.
Therefore, relations (23)—(27) completely describe in prin-
ciple a system of the waves inside a dielectric sphere and
outside it. Which of these waves corresponds to the
whispering-gallery waves (modes)?

Note first of all that the dependence of the fields on the
angle ¢ in the form e*™” corresponds to the counter-
propagating waves running over a circle. According to the
description of Rayleigh, a whispering-gallery wave should
be ‘pressed down’ to the sphere surface. Let us look
attentively at the radial dependence of the field described
by expressions (21) and (22). For a small index n, the
oscillating field fills almost the entire volume of the sphere
(Fig. 2). Such modes cannot be the whispering-gallery
modes. However, for a large index n (for example, greater
than 100), the Bessel function is very small up to r = v/k.
For r > v/k, the Bessel function begins to oscillate with a
decreasing amplitude (Fig. 3). If we choose the value of ka
that is closest to the first root of the Bessel function, the field
near the sphere surface will have the structure without
oscillations.

We can say that the Bessel function determines the radial
transverse structure of the wave. The angular transverse
structure of the wave is described by the function P,"(cos ).
For m = n, the function P,/ ( cos 6) is proportional to sin"0.

) N
0 1 1 1 1 1

—-02 F

Figure 2. Bessel functions with small indices.
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Figure 3. Bessel function with the large index v = 1000.5.
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Figure 4. Function [P/ (cos 0)]? o sin?" 0 for n = 1000.
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Figure 5. Function [P, (cos 0)]* for m = n — 2 and n = 1000.

The corresponding dependence on 6 is shown in Fig. 4. One
can see that the field amplitude continuously decreases with
increasing 0. If m # n, the mode acquires an oscillating
transverse structure (Fig. 5). The oscillations increase with
increasing the difference n — m. Therefore, it is reasonable to
call a whispering-gallery mode (WGM) a wave for which the
Bessel function has no roots inside a sphere and which has
identical and large indices n and m. Note, however, that
modes with indices m # n, but close to n, and with ¢ > 1,
but close to unity, have properties that are close to those of
WGMs. This means that there is no a sharp difference
between WGMs and other modes with nearest indices. For
this reason, the modes with a small difference n—m are
sometimes also assigned in the literature to WGMs. We will

apply the term WGM for definiteness to the modes with
large indices n, m = n, and ¢ = 1.

Note that the spherical modes are similar to the modes
of Gaussian beams with a rectangular geometry [7, 8].
Indeed, a Gaussian beam is described by the Hermite—
Gaussian functions G(&) = H,(vV2&)exp(— &2), where
H,(v/2¢) is the Hermitian polynomial and v is the integer
index. These functions are the solutions of the equation

d’G

d—£2+2(20+1—2§2)G=0. (28)

As shown above, for large indices n, the WGM field is
concentrated in a narrow interval of angles 0 near 0, = m/2.
Equation (17b) for angles 0 lying within this narrow
interval coincides with Eqn (28) if we set in the latter
v=n—m and = (n/2)1/20. Thus, a spherical mode with
large indices n and m and a small difference n—m behaves
as a Gaussian beam with the radius w= (2/n)1/ 2a.
Therefore, we have

Py (0)

_m(y/n0
0 A, (f)exp(—n92/2).

H/1—m (0)

Q

(29)

This approximation can be rather useful in calculations
because it allows one to calculate a Hermitian polynomial
with small indices instead of an adjoint Legendre poly-
nomial with large indices.

4. The evanescent WGM field

The study of the properties of WGMs involves first of all
the calculation of the roots of characteristic equations.
Because we deal with the modes with a large index n, it is
convenient to use the appropriate approximation of Bessel
functions for calculations of these roots. Note that the
successful approximation is useful not only for analytic
calculations but also for numerical calculations because the
calculation of the Bessel functions with large indices is
time-consuming. For example, to plot the function Jjggy(x)
with the help of a modern PC using the Mathematica
program (or similar programs like MathLab or MathCad),
several hours are required.

An appropriate approximation should be chosen bearing
in mind that the argument of the Bessel function for a
WGM near the sphere surface is of the order of its index. In
this case, the Bessel function is well approximated by Airy
functions [6, 9]:

NG
ﬁfv<z>=ﬁ(§) AI(0), o

d 2\"® dAi(0)
&[\/E‘]v(z)] :_\/E(;> dp -

Because the Hankel function determines the solution
outside the sphere, its argument, although remaining
large, proves to be noticeably smaller than its index. In
this case, the expression

1/4
ﬁHZ(”(z):ﬁ( v ) Aiy) —iBi)] @)

sinh#

well approximates the Hankel function.
The functions Ai({) and Bi({) in expressions (30) and
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(31) are the linearly independent solutions of the Airy
equation [9]; and

- (%)1/3(1/—2); n(z) :arcosh(g);

3 2/3
V= {Ev(n —tanhn)} .

The accuracy of approximations (30) and (31) is of the
order of v~'. If v exceeds 1000, then this accuracy is quite
satisfactory for many calculations, and the time of nume-
rical calculations decreases by hundreds times.

Expression (31) for the Hankel function allows one to
calculate the field outside a sphere. When the sphere radius
noticeable exceeds the wavelength, the value of y is large.
The Airy functions with the large argument can be
approximated by the expressions [10]

Ait) = 30 ewp (307,

(32)

33
dAi(y) _111/1/4 x <_ %1/13/2> 3
a2 P73 :
Bi(y) ~ " exp (EW),
3 (33b)

The variation of the field near the sphere surface, when
r/a—1 <1, can be determined by expanding the argument
in a Taylor series in expressions (33):

2 12
%l//m:v[n(kor)—tanh(kor)] :V|:L(S) - %g , (34)
where
s:i; L(s) =1n [s+(s271)1/2]. (35)

koa

It follows from expressions (33)—(35) that outside the
sphere, but near its surface, the imaginary part of the
complex Airy function is very small, so that the field in
this region is determined by the real part of this function. By
substituting (34) into (33a), we find that the field exponen-
tially falls with increasing coordinate r according to the
expression

|E| oc exp —27:(8;4—1)1/2’7‘ ,

7 (36)

where A is the wavelength in vacuum. The expotential decay
of the field amplitude at the surface vicinity makes the
reason to refer this field as evanescent. This result can be
also obtained by directly analysing Eqn (20). Indeed, for
r > a, Eqn (20) near the sphere surface can be approxi-
mated as

&’z 1 dz y?

—+———+|1l—-——|Z=0.

a2 keadz { (koa)Q]
The solution of this equation, which decreases at infinity,
has the form

(37

V2

Z(kyr) = const X exp {_ {W _

T— ]1/2 : }k (38)
— — r.
dkoa)]  2koa 7"

We will show below that [see expression (45)] that kya ~
v/ (e,u)'/ 2> 1. Taking this into account, the exponent of the
exponential in (38) is approximately equal to (2m/2)
x(eu — 1)1/2r, and we arrive at expression (36). Beginning
from ¢ r>v/ky =~ (ew)?a, the quantity 1 — v2/(kor)* in
(20) becomes positive, so that the solution proves to be
close to a sinusoid with a slowly decreasing amplitude.

The role of the imaginary part of the Airy function
increases with increasing r. The contribution of the ima-
ginary part becomes equal to that of the real part for the
radius determined by the relation n(kyr) — tanh y(kyr) = 0,
i.e., by the relation y(kyr) = 0. Taking into account the
definition of the parameter n(kyr) [see (32)], we find that this
occurs at the distance r ~ a(s,u)l/ 2. When the contributions
from the real and imaginary parts become equal, the expo-
nentially decreasing field transforms to a runaway wave with
the amplitude that decreases inversely proportional to /r.

Because the field amplitude at distances r > a (g,u)'/ 2
becomes very small, the intensity of radiation emitted from
the sphere is very low. This is confirmed by the direct
calculation of the WGM Q-factor. As a result, we can
imagine the following picture. The WGM field occupies a
volume bounded by a spherical surface of radius a(a,u)l/ 2,
Radiation is emitted outside from this volume in the form of
a runaway wave with very small amplitude. However, the
field occupies in fact not the entire volume of a sphere with
radius a(ew)'/? but it is ‘pressed down’ to the surface of the
dielectric sphere, extending outside the sphere by the
distance r = A/[2n(ep — 1)"/?] < a(ew)'’* [see (36)]. For
such materials as glass and quartz, this distance is smaller
than the wavelength in free space, not to mention dielectric
with large ¢, for example, diamond (& &~ 6) or semiconductor
materials (¢ > 10). Note that in the case of semiconductors,
we are dealing with radiation frequencies that are consid-
erable lower than the frequency of interband transitions. In
this case, the absorption of radiation due to the interband
transitions is insignificant.

5. Roots of characteristic equations
and eigenfrequencies

Consider now the roots of characteristic equations. By
using relations (30)—(33), we represent Eqns (26) and (27)
in terms of Airy functions to obtain

Ail(C) dltlié(g) - (;)‘/2@)‘/3{ [;;(ﬁu)l/zr - 1}]/2

1/3
x [1—iexp(—=2T)], C:(%) (v—ka), T=v(n —tann) (39)

for the E waves and

Ail(z) déiiz(t) = <g>l/z(§>l/3{ [k—va (8#)1/2]2 - 1}1/2

x [1—iexp(—27)]

(40)

for the H waves.

If the parameter v is large, so that the value of (11/2)1/3 is
also sufficiently large, we can find, following [10], the roots
of Eqns (39) and (40) analytically. If v were infinitely large,
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then Eqns (39) and (40) would be satisfied by the roots of
the equation

Ai(0) = 0. (41)

Let us denote the roots of this equation by {, and find
the correction A, in the first approximation to these roots.
Let us expand the right- and left-hand sides of Eqns (39)
and (40) into a series with an accuracy to linear terms in A{,
and solve then for A{,. Then, we have

) 2\/3 M 1/2 ]
= (3) L] trieveoml @

v

for Eqn (39) (the E modes)

2\ 1/3 c 1/2
AL, = (;) {m} [14iexp(=2T,,)]. (43)
and for Eqn (40) (the H modes) where
i 1/2 1/3
12 eu—1 v
T, = v{arcosh(s,u) 2 _ (T) } + <§>
V2
qu(g" ) .y (44)
m ¢

Taking into account that { = (2/v)!/3(v — ka) [see (39)], the
eigenvalues of the wave numbers can be represented in the
explicit form

v— (v/2) (¢, +AL,)
a(en)' '

kan = (45)

Because the quantity A{, is complex, the eigenvalues of
the wave numbers are also complex. The real part of the
wave number determines the eigenfrequencies of the modes.
By using the numerical value of the first root of the Airy
function ({; = —2.33811), we present the expressions for the
eigenfrequencies of WGMs to the form convenient for
calculations

: 1
oF ~ S |y 1.85576 3=~
)72 B

el l/2+0( 71/3)
e — 1 ! '

(46a)

1 1/2
of ~— [v+1.85576v1/3——<8—'u> +0(v-1/3)}
alep p\ep—1

(46b)

The symbol 0(171/3) means, as usual, that the terms
omitted in expressions (46) are of the order of y 13

The asymptotic expressions allowing the calculation of
the positions of resonances of the modes of a dielectric
sphere (DSMs) were refined in papers [11, 12]. In paper [11],
the corrections Aw M to expressions (46) are given, which
allow the calculation of the WGM frequencies with higher
accuracy:

83/2

Aoy =— [%1.8557%4/3 ——
aew) L10/3 3V2(e— 1)

x 1.8557v2/3 + 0(v*‘)}, (47a)
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The WGM resonances were experimentally studied in
paper [13] where an excellent agreement of the observed
spectra with the prediction of the Mie theory was pointed
out.

As mentioned above, the eigenfrequencies for modes
with the same index n but different indices m are degen-
erated. This degeneration is removed when the shape of a
dielectric body deviates from a sphere. For a spheroid with a
small eccentricity, we can calculate a correction to the
frequency using the perturbation theory. For this purpose,
we will use the energy levels calculated in a slightly
aspherical potential well (see p. 171 in [14]). Finally, we
obtain

Aa n?—m?
WDy = Wy |:1 _7 (2+3T>:|a

where Aa is the deviation of the minor axis of the spheroid
from the initial radius of the sphere, and w, is determined
by expressions (46). Expression (48) shows that the
deviation of the shape of a dielectric body from a sphere
not only removes the degeneration over the index m but
also shifts the WGM frequency. This circumstance makes it
possible to change the WGM frequency by weakly
compressing the dielectric sphere.

The authors of papers [15, 16] demonstrated locking of
the WGM frequency to the frequency of a tunable laser. The
WGM frequency was tuned by the axial compression of a
microsphere. Some other methods for tuning the WGM
frequency were also discussed in the literature. For example,
the WGM frequency tuning by drawing together two
dielectric spheres was studied theoretically and experimen-
tally in paper [17]. When the two spheres draw together, the
coupling appears between them, which is caused by a near-
surface field, resulting in the shift of the WGM eigenfre-
quencies. This shift increases with decreasing distance
between spheres.

The splitting of resonance frequencies of spherical
modes, which correspond to different indices m, was
experimentally observed by the authors of paper [18].
They explained the splitting by a strong interaction of
WGMs with a substrate on which microspheres were
fixed. The authors of paper [19] measured the frequency
shift and a change in the WGM Q-factor caused by a change
in the sphere shape. They specified the configuration of the
perturbation of the sphere shape and calculated the cor-
rections to the WGM frequency and Q-factor caused by
these perturbations.

The deviation of the shape of a dielectric body from a
sphere does not remove the degeneracy in sign of m: the
counterpropagating waves have the same frequencies. This
type of degeneracy is removed by the coupling that appears
between the frequency-degenerated waves due to their
scattering. Scattering can be caused both by the sphere-
surface roughness and by the inhomogeneities of the
substance density. This type of scattering is commonly
called the Rayleigh scattering.

(48)
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6. Effect of the permittivity inhomogeneities
on the WGM frequency

The authors of paper [20] observed and studied the
frequency splitting of two counterpropagating WGMs.
By studying the WGM resonances, they found two peaks
separated by the distance that varied from 270 kHz to
several megahertz, depending on a specific microsphere
(Fig. 6). Unfortunately, the authors [20] have not pointed
out whether these variations were related to different
spherical samples of the same diameter or different split-
tings corresponded to spheres of different diameters.
However, they claim that the splitting cannot be explained
by volume (Rayleigh) scattering because the latter can only
produce splitting that is ten times smaller than the observed
splitting. This circumstance suggests that the frequency
splitting is caused by the mutual coupling of the degenerate
modes due to surface scattering. We failed to find in the
literature a consistent theoretical analysis of the WGM
frequency splitting caused by scattering. An attempt of such
a calculation is presented below.

Figure 6. Frequency splitting of the (WGM caused by backscattering
(experiment [20]); the peak width is Av = 270 kHz.

The surface roughness, as volume inhomogeneities, can
be described by introducing the fluctuations of the dielectric
function of a sphere material. For this purpose, we represent
the equation for the electric vector of a monochromatic field
in the form

V x V x E(r) + kieE(r) = —kide(r)E(r), (49)

by separating the fluctuating part de(r) of the dielectric
function. Let us define the quantity de(r) so that its mean
value over the sphere volume is zero. The right-hand side of
this equation, under the condition d¢(r) < ¢, can be treated
as a perturbation, and we can use the well-known method
for solving such problems [14]. We assume that the
degeneracy over the modulus of the index m is removed
due to a small eccentricity, and consider the modes that are
doubly degenerate over the sign of m. These are the waves

having the same n and the same modulus of m, but
counterpropagating along a major circle.

The first-order correction to the eigenfrequencies of
doubly degenerated modes is described, according to [14]
(p. 175, task 1), by the expression, which has in our notation
the form

S \EH
( ©n ) :—{68;;—0—88;;

W, 4¢

1/2
+ [(63,;,7 — Sty ) + 436 2} } (50)

where
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Each of the indices 7 and j in expression (51) can denote ‘+’
or =, and the product of vectors n,,,n;,, corresponds to the
E modes and that of vectors m,,,m;,, to the H modes. The
parameter Ng g is determined by the normalisation integral.
According to expressions (Al.6), (Al.7), and (A2.6), we
have

a , T 2n ni ni*
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0 0 0 my,, My,

(5D

3 ( n+1

n
_a 2n—+lG"’1(ka) +2n—_~_le+1(ka)7 (52)
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Fluctuations 0¢(r) are, as a rule, small-scale and they
rapidly change compared to variations in the eigenfunctions
of the dielectric sphere. Therefore, 3¢, = 3¢, = 0 because
these quantities linearly depend on d&(r). The quantity

Set— 2 _ 1 S n;; n = d3r
| Emn - 2 ‘C(r) + —* !
NE,H my,;, m,,

o —
non
XJJJ&S(V’){ n }d3r’,
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which is quadratic in 6¢(r), is nonzero. The method for
calculating integrals with a random and rapidly changing
quantity in the integrand is described, for example, in book
[21]. By applying this method for the case of volume
scattering, we obtain

. %2
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EH m

mn mmn

(54)

(55)

The angle brackets mean the averaging over the sphere
volume V. As a rule, volume fluctuations in a sufficiently
perfect material are weaker than surface fluctuations. The
thickness of a scattering surface layer is usually several
nanometres, which is much smaller than the WGM layer
thickness, so that
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where the averaging is performed over the sphere surface S,
and the eigenvalues of the wave vectors in the integrand
must be attributed to the surface.

Therefore, the frequency of the mode, which is degen-
erate in the sign of m, splits into two frequencies, which are
equally shifted from the unperturbed frequency to the red

and blue:
(560,&” >E’“ d ( (8e?)
—n — 4= 8
W, a\ ¢
where (8¢ is the value determined by the parameters of a
rough surface. The calculation of DEH (ka) is cumbersome

in the general case; however, it is comparatively simple for
WGMs (m =n > 1) and leads to the expressions

} sin 0d0, (56)
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The analysis of expressions (58) shows that the function
DE (ka) oscillates depending on ka, but nowhere vanishes,
whereas the function D,E(ka) vanishes at the zeroes of Bessel
functions. The eigenfrequencies of the H modes for large
indices n prove to be close to the zeroes of Bessel functions,
so that the frequency splitting for the H modes in the
resonance region is very small. By tuning the resonance
frequency of the H mode, the splitting can be made close to
zero with high accuracy. The frequency splitting of the E
mode also can be made very small by frequency tuning. The
matter is that the minima of the function DY (ka) prove to
be small for large indices n.

To excite electromagnetic oscillations in a dielectric
sphere, an excitation source should be approached to the
sphere (see the following sections of the review). This source
introduces a perturbation into the system and can result,
along with scattering, to the DSM frequency splitting. This
phenomenon requires both the experimental and theoretical
study.

7. The effective WGM volume

An important characteristic of a mode is its effective
volume

jaﬁ,( )dr
Vw - E;czn(rmax) 7 (59)

where x is the index of the field projection running the
values of r, 0, ¢; and 7 is the combined index (n, m, q) of the
mode. The effective mode volume defined in this way is
connected with a particular projection of the field and the
values of this projection at the given point ry,,. The
effective mode volume can be also defined differently as
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A S TzA .

K

(60)

In this case, V,, is the characteristic of the mode as a whole.
Depending on the problem being solved, expression (59) or
(60) can be used. For definiteness, we will analyse in detail
expression (59). The integral in (59) is reduced to a product
of three integrals over the coordinates r, 0, ¢. The integrals
over the angles ¢ and 6 can be calculated analytically. As a
result, the effective volumes for the ¢ component of the
field of the E mode and for the 6 component of the field of
the H mode have the form
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is the radial part of integral (59) to which the ¢ component
of the electric field of the E type from (23) is substituted;
and ¢’ =r/a. To calculate 1/f3, the § component of the
electric field of the H type from (24) should be substituted
into integral (62). The integrdtlon 1n the second integral in
(62) is performed up to & = (¢w)'/?. However, this integral
can be neglected because the contrlbution of the exponen-
tially decaying external part of the field to the effective
volume is comparatively small. As a result, by approximat-
ing the Bessel function by the Airy function, we obtain
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The effective volumes for the 0 and ¢ components of the

field are related by the expressions

V(?]IE’I = (6/2) V(/Eﬂ

Von = (&/2)Vin» (64)
where e is the base of natural logarithms. Here, we use only
the index n as the mode index because n = m and ¢ = 1 for
WGMs.

Along with a concept of the effectlve volume, we can
also introduce the effective area Smp .0 and effective thick-

ness hmp,n{, of WGMs:

1/2
EH 2of W EH a
Sn(/),nH = 4na ’ hn(/) no — EH °
16n fo
ne,n

It is convenient to calculate the integrals in expression
(63) numerically, by introducing the value determined by

(65)
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expressions (46) as the wave number of a mode or by
calculating this value by solving numerically Eqns (39) or
(40) by neglecting the imaginary term in the right-hand side
of the equations. We will calculate the effective volume by
substituting the value of the ¢ component of the field on the
sphere surface into the denominator in (63). The radial
coordinate ry,, corresponding to the maximum of the ¢
component can be calculated numerically. Table 1 presents
the WGM parameters calculated for the E modes.

Table 1. The E modes.

n ka (39) ka (46a) (. fE 2.1131%642
6000  6033.66 6033.67 6034.21 563 563
5000  5031.67 5031.68 5032.22 500 501
4000  4029.40 4029.40 4029.94 431 434
3000 3026.70 3026.71 3027.25 359 360
2000 2023.32 2023.33 2023.86 278 278

We assumed in the calculations that the dielectric sphere
is made of quartz (¢ =2.37, u = 1). The second and third
columns present the eigenfrequencies, which were numeri-
cally calculated from Eqn (39) or calculated from expression
(46a). The radial position (kr),,, of the maximum of the
square of the modulus of the corresponding projection is
presented in the fourth column. The parameter .fﬁ and the
expression 2.113 n*%* approximating it are presented in the
fifth and sixth columns. The approximating expression was
selected empirically, and, as one can see from Table 1, well
describes the dependence of f(PF;, on the mode index n.

It follows from Table 1 that the maximum of the field
determined by the Bessel function lies formally outside the
sphere: (kr),,, > ka. However, the field outside the sphere is
described by the Hankel function rather than the Bessel
function, and it rapidly exponentially decays with distance
from the sphere, so that the field maximum for the E modes
lies on the sphere surface.

The calculations described above lead to the following
simple expression for the effective volume:

0.63 [4n
E 3
Von = PRRES (Ta )

One can see that the effective WGM volume occupies only
a small fraction of the total volume of the sphere and
decreases approximately inversely proportional to the mode
index. Table 2 presents the parameters of a WGM of the H

type.

(66)

Table 2. The H modes.

n ka(40)  ka(466)  (kr)n.. oo 0.7952%%% (£,
6000 6032.90 603291 6015.13 246 246 3.44
5000 5030.91 5030.92 501426 218 218 3.45
4000  4028.64 4028.64 401326 188 188 3.48
3000 3025.95 302595 301208 156 156 3.46
2000 2022.56 2022.57 201059 120 119 3.44

Our calculations show that the square of the modulus of
the field on the sphere surface is virtually independent of the
mode index and is several tens times smaller than the square
of the modulus of the field at the field maximum, which is
located inside the sphere. The parameter (ﬁ)',f)sur corres-
ponding to the field on the sphere surface is small and

virtually independent of the mode index, at least in the range
of indices studied. The effective volume of the H mode is
described by the expression

0.24 [(4n
H_ an 3
Von ITNED < 3 a )

Expressions (66) and (67) show that the effective WGM
volume for large mode indices occupies only a small
fraction of the total sphere volume.

(67)

8. The WGM Q-factor

The imaginary part of the eigenvalue of the wave number
(45) determines the decay of the given mode, so that the
modes of a dielectric sphere always decay. This is caused by
radiation of a wave from the dielectric sphere, and therefore
such a decay can be called the radiative decay. This decay is
caused by the fact that, unlike a flat surface, the total
internal reflection (TIR) from a curved surface does not
exist. But to what extent can we assume that a WGM is
formed nevertheless due to TIR? The answer to this
question can be found by calculating the Q-factor of the
mode caused by radiative losses. The Q-factor Q,, is
defined as the ratio of the real and imaginary parts of the
eigenvalue of the wave number. It follows from (45) that

o Rekan _ X |:8(£:u_1)

e ot ] (68)
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Because the roots {, of the Airy function are negative, the
value of T, decreases with increasing the root number g.
For this reason, the mode Q-factor rather rapidly decreases
with increasing ¢. Consider a particular example for {; =
—2.33811 and ¢, = —4.08795. It follows from expressions
(44) and (68) that for the mode with the index n = 2000 and
¢ = 2.37 (quartz), Q,;, exceeds Q,, more than by 11 orders
of magnitude.

It is easy to calculate the mode Q-factor Q,,; for a quartz
sphere (¢ =2.37, u=1) for n=2000. It proves to be
astronomically huge, of the order of 10*°. The Q-factor
drastically decreases with decreasing index n. For example,
the radiative Q-factor for a quarts sphere for n = 66 is
~3x 1010, while for n =60, it is an order of magnitude
lower.

It follows from expression (45) that approximate esti-
mates at large mode indices can be performed using the
expression

v
1/2°

ko ~
a(en)

(69)

To the index n = 2000 for the radius of a quartz sphere of
100 um, the resonance frequency of the order of
3x 10" Hz corresponds, while the Q-factor calculated
above corresponds to a fantastically huge radiative lifetime.
This means that, although the internal reflection is not
total, it is close to the total reflection for sufficiently large
values of n. Therefore, WGMs can be treated approxi-
mately, but with very high accuracy, as TIR waves. The
accuracy of this approximation increases with .

For large values of n, the nonradiative losses determine
in fact the Q-factor of the WGM. There exist other
mechanisms that cause losses in WGMs. This is first of



Whispering-gallery waves

387

all the scattering of an electromagnetic wave by the rough-
ness of the sphere surface and volume scattering by the
inhomogeneities of the substance density. Also, absorbing
impurities can exist both inside the sphere and on its surface.
In this connection, it is convenient to introduce the partial
Q-factors Q; of the mode related to each type of losses. The
total mode Q-factor is described by the well-known expres-
sion

1 1
0 20

The best modern optical quartz fibres have the Rayleigh
scattering coefficient of about 0.2 dB km ™! at the radiation
wavelength of about 1.5 um. This scattering coefficient
corresponds to the Q-factor Oy =~ 10'!, which is the upper
limit of the WGM Q-factor. The experimental Q-factor is
much lower.

The Q-factor of the WGMs was experimentally studied
in papers [20, 22, 23], where the Q-factor of quartz micro-
spheres manufactured in vacuum was measured. The
maximum WGM Q-factors of microspheres measured in
vacuum were 1.4 x 10’ [20], 4.9 x 10° [23]and (8 £ 1) x 10°
[22].

A change in the WGM Q-factor upon a contact of
quartz microspheres manufactured in vacuum with atmos-
pheric air was observed in papers [22, 23]. According to the
results obtained in paper [22], the Q-factor of a quartz
microsphere taken out of vacuum to atmosphere decreased
by a factor of 4-5 for about 4 min and then remained
constant for many hours. This effect is explained by
absorption of radiation by a nanolayer of molecules (first
of all by water molecules) adsorbed by the microsphere
surface. The authors of paper [23] confirmed this fact
experimentally. It is known that the Q-factor of a resonator
mode is related to the absorption coefficient % of the wave
intensity by the resonator medium by the expression

(70)
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The partial Q-factor of a WGM of a microsphere, which is
caused by absorption of radiation in a layer of absorbed
molecules, can be calculated by multiplying the Q-factor
(71) by the ratio Jd,, of the absorbing layer thickness to the
effective thickness of the WGM layer. As a result, we have

OEH ~ e 1 a
¢ /“%ab(/h) 5abf;,E’H ’

(72)

where %,;,(1) is the absorption coefficient by adsorbed water
molecules.

The authors of paper [23] studied experimentally in
vacuum the dependence of the WGM Q-factor on the
microsphere diameter and the radiation wavelength. The
sphere diameter was varied from 100 to 800 pum. Fig. 7
presents the relevant experimental data. The solid curve
shows the dependence of the Q-factor on the sphere
diameter calculated by the expression

3e(e+2)°
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(73)
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Figure 7. Experimental [23] (points) and calculated (73) dependences of
the WGM Q-factor on the sphere radius a.

Here, d is the mean height of surface inhomogeneities (the
scattering layer thickness) and B, is the mean size of
inhomogeneities along the coordinate on the surface.
Expression (73) was presented in [23] without the derivation
and without references to other papers. Let us attempt to
substantiate it.

The extinction coefficient %,. caused by scattering from
the inhomogeneities of a surface can be calculated by
treating the surface as an ensemble of independently
scattering particles with linear sizes that are much smaller
than the wavelength. Within the framework of such a
model, %, = o N, where o, is the scattering cross section
for an electromagnetic wave by a particle, and N is the
density of scattering particles. The scattering cross section
calculated in paper [21] is

o4 —24n3<8_1>292

&2 74
e+2) % 74

where Q is the volume of a scattering particle. For closely
packed particles, the volume @ is proportional to N~'. The
coefficient of proportionality should be measured exper-
imentally; however, it is clear from the physical point of
view that it is of the order of unity. Because a WGM is
located within a layer whose thickness exceeds the wave-
length, the effective scattering coefficient for the WGM is

d

Heff = Xsc Z7 (75)

where £ is the effective thickness of the WGM layer (the
mode indices at & are omitted). By substituting (75) and (65)
into (71), we obtain

En Ve [e+2 22_3 a
¥ 12r?\e—1) QdfEH

(76)

This relation differs somewhat from expression (73). The
thickness of the WGM layer in paper [23] was assumed to
be (22(1)1/ 2, whereas in expression (76) we used a more exact
value of the layer thickness. Nevertheless, for the E waves,
expressions (73) and (76) give close dependences of the Q-
factor on the diameter of a dielectric sphere, because
0642 "which is close to a square root dependence. In
turn, noc @, and we see that the dependences of Q-factors



388

A.N. Oraevsky

(73) and (76) on the microsphere radius are virtually
identical.

For the H waves, the values of f,};,n(, corresponding to
the surface field of the sphere are virtually independent of
the mode index and, hence, of the sphere radius. Therefore,
the Q-factor for WGMs of the H type should increase
linearly with the sphere radius. However, the H waves are
excited less efficiently because the maximum of the electric
field is remote from the sphere surface.

The authors of paper [24] present, referring to paper [25],

the expression
1/3
2]

3 ¢’

0= io5t |57
for the Q-factor of a WGM, which gives a very strong
dependence on the diameter of a dielectric sphere. The
experimental results [23] do not confirm this expression.
Although the experimental data (Fig. 7) have a rather large
statistical scatter, they undoubtedly contradict to expression
(77), which gives the dependence of the Q-factor on the
sphere radius in the form (Za)m/ 3,

The authors of paper [23] measured also the statistical
parameters of the inhomogeneous surface of silica spheres
made by them and obtained d= (1.7+0.5) nm and
B =(5+0.5 nm. The substitution of these values into
expression (73) for 2 =800 nm and a =400 um gives
O, =(7.5+5) x 10°, in satisfactory agreement with the
experimental value of ~ 8x 10°. Expression (76) gives
almost the same values.

Although expressions (73) and (76) satisfactorily
describe the dependence of the Q-factor on the microsphere
radius, they do not describe correctly the wavelength
dependence of the Q-factor. Experiments performed in
paper [23] showed that the Q-factor was almost independent
of the wavelength in the 679-850-nm range, whereas
expressions (73) and (76) predict that the Q-factor should
increase more than twice when the wavelength is changed
from 679 to 850 nm. Therefore, the theory of losses in
WGMs should be further developed. We will present below
some considerations in this respect.

In section 6, we calculated the first-order correction to
the mode frequency caused by scattering. To calculate the
Q-factor caused by scattering, it is necessary to take into
account the second-order correction to the mode frequency.
According to [14], this correction is

660152) B Z 8811 n’88n’ n
Wy 28 an .

One can see that this correction is complex because the
eigenvalues k, are complex. Therefore, Re(6w,§2)/w”)E‘H
determine the correction to the mode frequency in the next
approximation, and the expression

Im < Swn(
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(78)
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determines the WGM Q-factor caused by scattering from
the surface roughness or volume inhomogeneities of the
substance density.

As mentioned above, the imaginary part k, determines
the radiative decay of a WGM. Because this decay is weak,
the imaginary part k,, or k, is very small for large values of

nand n'. But if n’ is small, then the imaginary and real parts
of the eigenvalues are comparable. This means that the
terms with small »’ make the main contribution to the
decay.

Because the eigenvalues with small indices are consid-
erably lower than the eigenvalues with large indices, we can
write approximately

(o)
Osen EH B

where k', and k!, are the real and imaginary parts of the
eigenvalues.

Formula (80) is a more rigorous expression for the
WGM Q-factor caused by scattering than expressions (73)
or (76). An analysis of (80) as a function of the wavelength
and the microsphere radius requires a special, most prob-
ably, numerical study. We are not aware of any relevant
publications. Our estimates show that the Q-factor (80)
increases with increasing wavelength as ~A'/3. This means
that the Q-factor changes only within 10% when the
wavelength changes from 600 to 800 nm. Therefore, the
wavelength dependence of the Q-factor predicted by expres-
sion (80) does not contradict to the experimental results
obtained in paper [23].

The authors of paper [26] studied experimentally the
lifetime of photons in ethanol drops of radius ~ 45 pum.
They found a strong influence of stimulated Raman
scattering on the Q-quality of modes excited in the drops.

Let us summarise the above discussion. The WGMs are
distinguished among other DSMs first of all by their high Q-
factor and small effective volume. The effective volume of
the mode increases with decreasing index m, and for m = 0 it
exceeds by a factor of /n the volume of the WGM with
m = n. As shown above, the radiative losses are independent
of the index m. However, the losses caused by surface
scattering increase with decreasing m because the effective
area of the mode on the sphere surface increases with
decreasing m. The maximum Q-factor of the WGM is
restricted by the volume Rayleigh scattering and approaches
~ 10", However, in practice the Q-factor of the order of
(1 —5) x 10° can be achieved, which is limited by scattering
of light from the surface inhomogeneities of a dielectric
sphere. In this connection, it would be interesting to perform
experiments with liquid quartz drops, in which the surface
scattering can be weaker than in solid microspheres.

1 ki
8_2; 6871;1'88/1% k! 20

(80)

9. Excitation of WGMSs by a plane wave

The use of WGMs for solving various scientific and applied
problems is closely related to the problem of their
excitation. In practice, WGMs are excited by near-surface
fields. These can be the fields of near-surface TIR waves,
planar or fibre waveguides. The excitation of WGMs by a
plane wave is not used. Experiments have shown that a
plane wave cannot in fact excitt WGMs. To understand
why it is so, it is necessary to consider consistently the
problem of excitation of WGMs by an external source.
Excitation of WGMs is a particular case of excitation of
any DSMs. The problem of excitation of WGMs by a plane
wave can be solved using the theory of diffraction of this
wave by a dielectric sphere, which was developed by Mie [2].
The method for solving the problem used by Mie became
typical for problems of this kind and it consists in the
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following. An external wave is represented as a super- b 1 [(ka)l 2y (ka)}’
position of WGMs. In book [4], referring to a paper of " (S”)I/Z v
Mie [2], the expression
— by [(koa)*H{V (koa)] " = [(koa)'*J,(koa)] . (870)

00 1/2
E,. = Eyexp(—iwt) Zl"( )
1

2n+1
nn+1)

[mis(1500) — iny (14| 81)
is presented for the expansion of a plane wave propagating
along the z axis and polarised along the x axis. Here, we
present only the electric component of the electromagnetic
field because the magnetic component can be readily written
by using the expression

H=iSrotE (82)
(0)]

and the relations
I'Ot[ mn(o k)] kn’;tn(g; k) I'Ot[ mn(a k)} km,fn(a; k) (83)

A wave reflected from a dielectric sphere (with the index
r) and a wave induced inside the sphere (with the index t)
can be also presented as a superposition of the WGMs:

00 1/2
E. = Ejexp(—imt) Zl(;)
1

2n+1 £n. r
X m [d r,mi,(2;k) lbnnln(z k)} (34)
00 1/2
E, = Eyexp(—iwt) Z "( )
1
2n + 1 t+1. gt
X I’l(l’l ¥ 1) |:anmln(1a k) lbn"ln(17k):| . (85)

The coefficients «a," and b.;' should be determined. To
determine them, we will use the fact that the total field of
the waves incident and reflected from the sphere and the
field induced in the dielectric sphere should satisfy the
continuity conditions for the tangential components of the
electric and magnetic fields at the sphere boundary (r = a).
These boundary conditions lead to two pairs of the
inhomogeneous equations

1

a, e (ka)'J, (ka)
—ay(koa) P H" (koa) = (koa)' T, (koa), (86a)
a‘% [(ka)"/27, (ka)] '
—a}[(koa)'*H" (koa)] " = [(koa)'* T, (koa)] ', (86b)
wiwmmawm
— ba(koa)' P H" (koa) = (koa)'*J,(koa), (87a)

Equations (86) and (87) allow us to determine the required
coefficients:

t_ O‘nOB;O - O(:/IO.BHO bl _ o‘:/l()ﬁn() — Ocn().[));lo 38
a, = 7 7 ) - R B ) ( )
anﬁno - anﬁno an/ no an/ no
Ol b — 0L 0 oc’oc Oty oc’
0~ 0 0~ 0
arll‘ — _ n 7 :’l n , b;’l — n n n , (89)
anﬁ no O‘n.[))no n:Bn()
where we introduced for simplicity the notation
1/2 1/2
, = (ka) / Jn+1/2(ka)7 a0 = (koa) / Jn+1/2(koa),
(90)

By = (ka)'*H\), ,(ka), B = (koa)'*H,)), ,(koa);

the prime in expressions (88) and (89) denotes the full
derivative over the argument on which the function
depends, i.e., over ka or kya. Expressions (88) and (89)
are called the Mie coefficients.

As follows from (84) and (85), a plane wave excites
WGMs with different indices n. However, by selecting the
frequency of the exciting wave closely to that of the WGM
with a certain index n, we can excite predominantly the
given mode. One can clearly see it from expressions (88) and
(89). If the denominators in these expressions are set to zero,
we obtain characteristic equations (26) and (27). This means
that the real part of the denominators in expressions (88)
and (89) vanishes upon substituting into them the frequency
equal to the real part of the eigenvalue of the wave number
(46a) or (46b). Only the imaginary part remains in the
denominators in (88) and (89), which, as we have seen, is
much smaller in modulus than the real part. This imaginary
part corresponds to radiative losses, which are small in
WGMs and do not determine the actual WGM Q-factor.
For this reason, the Mie coefficients for WGMs will be
strongly overstated if we retain in the denominators the
imaginary part corresponding only to radiative losses. The
actual Mie coefficients in the resonance region can be
estimated as follows.

Let us denote the denominators in expressions (88) and
(89) by D,(f”b)(a)). We expand them into a Taylor series near
the resonance and take into account that D" (w') =0 at
the resonance point. Then,

dD a,b)
D) (4) — _ @
e (w “*k&)dw

where @}, is the real part of the eigenfrequency of the mode
with the index n. If Q,, is the total Q-factor of the WGM
caused by any losses, we obtain for the Mie coefficients the
approximate expressions, which well describe the actual
excitation amplitude.

Note that expressions (84) and (85) contain the terms
only with the index m = 1. It appears that a plane wave
cannot excite the DSM with the index m > 1 and, hence, it
cannot excite WGMs. However, this opinion is erroneous.
Expressions (84) and (85) only show that the waves with the

; C2))

w=w,
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azimuthal index m > 1 cannot be excited in the azimuthal
plane, perpendicular to the direction of propagation of the
plane wave. Let us now choose the azimuthal plane parallel
to the direction of propagation of the plane wave. The angle
0 in the old coordinate system is related by the expression
0',¢' with the coordinate angles in a new system.

According to the so-called addition theorem [26], the
Legendre polynomials in the old coordinate system are
expressed in the new system in terms of the sum of adjoint
Legendre polynomials with different (including large) azi-
muthal indices. As a result, this sum also contains the terms
with m = n, i.e., WGMs.

However, we will not perform cumbersome transforma-
tions of the expressions from one coordinate system to
another for calculating the coefficients of excitation of
WGMs by a plane wave, but consider instead the excitation
of WGMs by the waves in a planar dielectric waveguide and
in TIR prism. The excitation of WGMs by a plane wave will
follow from the expressions obtained as a particular case.

10. Excitation of WGMs by a waveguide wave

In practice, WGMs are excited by evanescent grazing waves
on the sphere surface. Such waves can be excited by using,
for example, a TIR prism or a dielectric waveguide of a
circular or rectangular cross section (Fig. 8). The evanes-
cent fields in the TIR prism and waveguides exponentially
decrease with distance from the prism (waveguide) surface.
By changing the distance to the prism (waveguide), we can
control the degree of the WGM excitation.

The problem of WGM excitation has been studied in
dozens of papers, many of which have been published quite
recently [27—41]. The problem of WGM excitation with the
help of a waveguide or a prism could be solved by
expanding the excitation wave in the eigenmodes of the
combined sphere-waveguide or sphere-prism system. How-
ever, the problem of calculation of modes in a combined
system is very complicated mathematically and has not been
solved so far. Therefore, we should use the approximate
method by neglecting the effect of the waves reflected by the
sphere on the initial waves of the waveguide or prism.
Consider, using this approximation, the excitation of
WGMs by a wave in a plane dielectric waveguide.

Let us choose the origin of the coordinate system at the
centre of the dielectric sphere (Fig. 8). According to the
chosen orientation of the axes, the right-handed screw
WGM has the azimuthal dependence in the form
exp (— ing), while the left-handed screw WGM has the
azimuthal dependence in the form exp (ing).

Figure 8. Scheme of excitation of a WGM by a evanescent wave in a
planar waveguide; (/) microsphere; (2) planar dielectric waveguide; (3)
near-surface waveguide wave.

The waveguide TM field near the waveguide surface
facing the sphere is described by expressions [6]

E)® = —dyexp [ —y(I—y)] exp(ihx), H® =0, (92a)
E® =idhexp [ — (/- y)] exp(ihx), H* =0,  (92b)
EXM =0, H" =idexp [ —y(I—y)] exp(ihx), (92¢)

where A is the maximum value of the x component of the
field inside the waveguide; / is the shortest distance from the
sphere centre to the nearest wall of the waveguide. The
wave parameters y,g,h are related by the expressions

p +g’ =kilen—1), h* —9> =kg,

93)
1 tan ga,,
7dp = ggg“p{ —cotgay,
where &, is the dielectric constant of the waveguide

material and a,, is the thickness of the waveguide plate. The
meaning of parameters y and / follows from expressions
(92). The parameter g determines the transverse structure of
the field inside the waveguide. The corresponding expres-
sions for the field inside the waveguide are not written
because they will not required below. The structure of the
field of a planar dielectric waveguide is described in more
detail in book [6].

As shown in section 4, the amplitude of the wave of a
dielectric sphere decreases by a factor of e at a distance of
r=r, = A/[2n(en — 1)1/2} from its surface. The waveguide
field decays by a factor of e at a distance of ry, = =
{2n(eu — 1)1/2//1]2 —g?}7" from the waveguide boundary.
One can easily see that, if the waveguide and the dielectric
sphere are made of the same material, then always ry, > 1.
Therefore, the approximation adopted above, which neg-
lects the effect of a wave reflected from the sphere on the
waveguide field, is quite real.

The first step in the expansion of the waveguide field in
the spherical eigenvectors is the transformation of the field
projection from the Cartesian coordinate system to the
coordinate system coupled to the sphere surface. The unit
vectors of the Cartesian coordinate system are expressed in
terms of the unit vectors of the coordinate system coupled to
the sphere as

e, =e,sinfcos @ +eycostcos g —e,sin @,

e, = e,sin0sin @ 4 ey cos 0sin ¢ + e, cos @, 94)

e. =e.cos0 —eysind.

According to these relations, the waveguide field E™®
(92) in the system coordinate coupled to the sphere surface
has the following projections

EM® = BsinOexp(ihx + yp)(—ycos ¢ + iksin @),

. (95a)

HY® = iB}i—cos Oexp(ihx — yy),
0
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Ep*® = BcosQexp(ihx + yy)(—ycos ¢ + ihsin ),

(95b)
Hy"® = —iBsin 0 exp(ifx — yy),

E,® = Bexp(ihx + yy)(ysin ¢ + ihcos ),

o, (95¢)

where B = Aexp (—yl).
Let us expand now the field (95) in the spherical vectors:

Ewg:BeXp(—iwt)Z |:fxmnmmn(1 k) +ﬁmn mn(l kO):|

(96)

H"® = —iBexp(=i00) (st (156) + By (1K) .

m,n

where o, and B are the expansion coefficients of the

waveguide field. The presence of the spherical vectors in
expansion (96) only with the index ¢ =1 (i.e., of Bessel
functions; see Appendix 1) is caused by the fact that the
amplitude of the waveguide field is finite over the entire
space, so that sums in (98) cannot contain Hankel
functions, which have a singularity at zero.

The coefficients ., u X are determined either by a
pair of scalar products of E“em5(1;k) and E“en5r (1;k),
or H"“®m> (1;k) and H“®n:(1;k), integrated over the
angle 0 from 0 to —r with the weight factor sin f and over
the angle ¢ from 0 to —2n. Below, we will consider only the
magnetic pair because the structure of the magnetic field is
simpler, according to (95).

Below, we will consider only WGMs (m = n), which is
justified by the following circumstances. The application of
DSMs most often concerns the high-Q WGMs. In a perfect
spherical body, all the modes with indices m < n should be
excited along with WGMs. But because a real body is never
a perfect sphere, the degeneracy over m is lifted [see (48)].
The relative width of the WGM resonance is Aw,/w, =
07!, while the relative frequency interval between the
nearest modes with m=n and m=n—11is Aw,, /o, =
6(Aa/an). If the WGM Q-factor is of the order of 10° — 108,
then the difference between the neighbouring frequencies
proves to be far away from the resonance even for
Aaja~1070 = 1074,

Let us find the scalar products required for the calcu-
lation of the coefficients of the series (96) by using relations
(95) and Table A1.2. We have

HYnE = (=1)"'n(2n — 1)lexp(ihx + yy T ing)
- Joi1(kor)
x sin” 0 cos 0 T)l/z’ 97
H™m:" =i(—1)"n(2n — ) exp(ihx 4 yy T ing)
x sin” 0 JV(kolr)z. (98)
ko}") /

To express the near-surface wave exp (i2x + yy) in terms of
the Bessel functions, we will use the expansion [26]

o0

Z i"J,,(zsin 0) exp(imo).

m=—0oQ

exp(izsinfcos ¢) = (99)

Let us transform the expression ikx + yy so that it will be
similar to the exponent in the left-hand side of equality (99):

12
ihx 4y = i<h2 - y2) rsin0cos( + i),

(100)
y

(h2 o yz)l/Z'

By substituting the expression

sinhyy =

exp [i(h? — )" *rsin 0 cos(o + )],

into the left-hand side of (99), we obtain

exp(ihx—&—yy):Zl <Z+?) Ju(korsin 0) exp(img). (101)

Expression (101) is a key formula for further calculations.
Scalar products (97) and (98) should be integrated over the
angles ¢ and 0 with the weight sin 0. We will call the WGM
a copropagating mode if it propagates in the same direction
as the excitation wave; the WGM propagating in the
opposite direction will be called a counterpropagating
mode. The integration over the azimuthal angle leaves in
sum (101) only the terms with the index m =n for the

copropagating WGM and with the index m = —n for the
counterpropagating WGM because
2n
J exp(ime) exp(Fing)de = 21, 1. (102)
0

For this reason, we should calculate the integrals
I

J sin” 0 cos 0 J ., (korsin 0)d0 and J sin” 0 J, (kyr sin 6)d6.
0 0

By using expressions A2.7 of Appendix 2, we find

2n T
J d(pJ HYnE"sin0do = 0, (103)
0 0
2n T
J d(pJ HYm;" sin0do
0 0
1/2
:~ _ n E _ ” (kor)
i(—1) <2> n(2n —1)! ur (104)

Now, by using (104) and expressions (Al1.4) and (A1.7) of
Appendix 1, we calculate the expansion coefficients

1/22 n +n/2
g gyt n2n— DI (h+y
B = 1(=1)" 2mkq (2) 2+ 1 <h—y - (105)

To calculate the fields excited by the waveguide field
inside the sphere and outside it, we represent them in the
form

E, = Eyexp(—ion) Y [Afmy, (136) + Bl (16|, (106)

mpn

E,=Eyexp(—ioN)y [ Ayimy (2:6) + Blng, (2:6)]. (107)

Ariti

The expansion coefficients A,,, Bl EtE

mn

and are deter-
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mined by the boundary conditions on the sphere surface,
which lead to the equations

1
B)Eni ; (k(l) 1/2']\1 (ka) - Blgni (kOa) 12 ngl) (koa)

= B (koa)'*J, (koa), (1082)

Bl [(ka)'"*J,(ka)]' — B [(koa)'* HY (koa)]'

(ep)/?

= B [(koa) 7, (koa))'

for the E modes and to the equations

(108b)

Ayt —75 (ka) "2 (ka) = A3, (koa) 2 HD (ko) =0, (109)

(ep
ALt ;% [(ka)' ), (ka)]' — Api [(koa) P HY (kga)] =0 (109b)

for the H modes. By solving these equations, we obtain

Ay = A, =0, (110a)

Bi = by =1"(=1)""
" 2n+1 2n (h+y
nn+1) ) \ h—y

+n/2
) exp(—bf,  (110b)

Bt = by = 1"(=1)""

41 20 (h+y\™? At
Xn(n+1)(2n)!! <h7y> exp(—yl)b,. (110c)
Expressions (110) demonstrate an important fact that in
order to calculate the excitation coefficients of WGMs (and
of DSMs in general), one should multiply the coefficient of
expansion of the exciting wave over the spherical vectors by
the corresponding Mie coefficient [27].

As follows from expressions (110), the TM wave of a
planar dielectric waveguide does not excite WGMs of the H
type. The copropagating WGM of the E type is excited by a
factor of [(h + y)/(h — y)]" more efficiently than the counter-
propagating mode. This difference can be huge for large
indices n. For example, upon excitation of a wave with the
parameter kya =~ 3 in a quartz waveguide plate, the value of
[(h+9)/h(h = )] is ~ (19)".

Along with the TM waves, the TE waves can be also
excited in a planar waveguide. The waveguide field of the TE
type adjacent to the waveguide surface facing the sphere is
described by expressions [6]

H, = —Ayexp[—y(— y)]exp(ihx), E, =0,  (Illa)
H, =iAdhexp[—y(l — y)|exp(ihx), E, =0, (111b)
H. =0, E. = —idexp[—y(/ — y)] exp(ihx). (111c)

The wave parameters 7y, g, h are related by the expressions

gt =kile—1),
(112)

tan ga
2 2 _ 72, _ P’
h” — Y= kO y Ydp = gap{ —cotgap.

The calculations, which are completely similar to the
previous calculation for the TM wave, lead to the following
results:

rtEt _ prEtE
B, "~ =B, =0,

(113a)

ALE = BEpr =i"(—1)"!

2n+1 2n (h—l—y

+n/2
% nn+1) 2o \ h— y> exp(—y)b,, (113b)

ANE = Baby =i"(—1)""!

" 2n+1 2n (h+vy
nn+1) )\ h—y

Therefore, the waveguide TE wave excites the WGM only
of the H type. All other conclusions concerning excitation
of the WGM by the waveguide TM wave are also valid for
excitation by the TE wave.

The above calculations are relevant to excitation of the
WGM in the azimuthal plane of the sphere, which is
perpendicular to the planar waveguide plane. To calculate
excitation of the WGM in the azimuthal plane of the sphere
parallel to the planar waveguide plane, one should inter-
change the y and z components of the field in relations (92)
and (111). By performing calculations, which are similar to
those presented above, we find that the WGM cannot be
excited in the azimuthal plane. This is reasonable according
to geometrical considerations.

Consider the dependence of the quantity [(h+7)
x(h— y)fl]l/z = (h+7y)/ko on the dielectric constant &,
of the waveguide material. It follows from relations (112)
that [(7 +9)/Ko]pax = &al + (6wg — 1)"/2. On the other hand,
the function J,(kga) depends on the dielectric constant of the
sphere material. For large indices v and large arguments kqa
and the condition v > kya, we have

N 1 koa\" N 1 1Y
N(zn)l/z v N(21‘[)1/2 el/2 )7

and, therefore

h+”/ n 1 8vl~/éz+(8wg71)l/2 n

+n/2
) exp(—=yl)b,. (113¢)

Jy(koa) (114)

It follows from expression (115) that, to excite the WGM
efficiently, the waveguide should be made of the material
whose optical density is not lower than that of the sphere
material. One should also bear in mind that for WGMs
with high indices, the right-hand side of inequality (115) is
very sensitive to even small changes in the dielectric
constant of the waveguide and sphere.

11. Excitation of WGMs by a plane wave
through a TIR prism and by waves
of other configurations

Excitation of the WGM by a TIR wave was studied in
papers [30, 31]. The TIR wave can be formed by coupling a
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Figure 9. Scheme of excitation of a WGM by a evanescent wave in a TIR
prism: (/) microsphere; (2) TIR prism; (3) evanescent wave in the
prism; 6; is the ange of incidence.

plane wave into a TIR prism (Fig. 9). The evanescent field

of the TIR wave polarised perpendicular to the plane of

incidence has the form [21]
1/2

2ep/ cos 0

/2 cos 0; +i(e, sin® ; — 1) 12

Epz = E(] 1
€p

exp(ihx —yy), (116)

where E| is the amplitude of the plane wave; 6, is the angle
of incidence of the plane wave on the interface between two
media; ¢, is the dielectric constant of the prism material;
and

h:koepl/zsin()i; y:ko(apsinz()if 1)1/2. (117)
This wave is similar to the TE wave in a planar waveguide.
One can see from expressions (92) and (116) that the
coordinate dependence of the TIR wave is similar to that of
a waveguide mode of a dielectric waveguide. The projec-
tions of the TIR wave in the coordinate system fixed at the
sphere surface have the form

E,, = BcosOexp(ihx +7y), (118a)

E,p = —BsinOexp(ihx + yy), (118b)

Epp =0, (118¢)
where

28& 2 cos 0;

Osp 1/2 cos 0; +i(e, sin? ; — 1) 1/2

exp(—iwt). (119)

By projecting this field to the spherical eigenvectors, we
obtain

Eyn,(13ko) = B(—1)"n(2n — 11!

x sin""! @ cos @ exp(ihx — yy + ing) M, (120)
(kor)
E,m,, (1;ky) = —B(—1)"n(2n — 1)!!
x sin"! 0 exp(ihx — yy =+ ing) le(k)‘)lr/l. (121)
ol

The integration over ¢ leaves only one term with m = n, so
that

LG Lﬂ En(1;k)desin 0d0 = 2nBn J(l;‘)(fj;) (2n— 1

X J: J,(krsin 0) sin” 6 cos 0 d0 = 0, (122)
rn J E,m,5;(15k)dgsin 0d0 = 2nBn J"(kl’) (2n— 1)t
o Jo (kr) 2

X J: J,(krsin 0) sin” 6 cos 6 d6

— 4nBn(2n — 1)!!(%)1/2 (J;()klz (123)

As a result, upon excitation of the WGM by the TIR wave
polarised perpendicular to the plane of incidence, we obtain

1/2
ATEtE in(il)n+1 <TE) / (2}1 + 1) 2n

" 2 n(n+1)(2n)!
12 o .2 12 1" rt
X [ep sin0; + (e, sin” 6; — 1) } exp(—ya,”, (124a)
BIEYE = 0. (124b)

Such a wave, as we see, excites only the H waves. The
magnetic field of a wave polarised in the plane of incidence
has only one component, which is perpendicular to the
plane of incidence (the z component in our notation). This
wave is similar to the TM wave of a dielectric waveguide.
All our previous reasoning and calculations applied to the
magnetic field of the WGM lead to the expressions

AT =0, (125a)

1/2
Bri,ti _ in(il)iﬁrl E / (27’1 + 1) 2n
" 2) n(m+1) @)

+n
x [g;/z sin 6; + (¢, sin>0; — 1) ‘/2} exp(—yl)b5t.  (125b)

We can obtain the coefficients of excitation of the WGM
by a plane wave from expressions (123) and (124) by setting
y =0 and 8;/2 sinf; = 1. For a plane wave polarised along
the z axis, we have

i (T) 20+ 1)
™\ 2 n(n+1)2n)1’

rt__
Bnn - 07

(126)

and for a plane wave polarised along the y axis, we have

n>1/2 2n(2n+ 1)
n

A =0, Byy =2n =) ——
“(2 (n+ 1)(2n)!

(127)
A comparison of expressions (123) and (124) with (126) and
(127) shows that the action of the plane wave through the
TIR prism enhances excitation by a factor of
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+n
[81,1/2 sin 0; + (&, sin 0, — 1) 1/2] exp(—y/). (128)

If the distance from the prism surface to the plate is not too
large, the advantage in the excitation efficiency can be
immense when the WGM index is large (1000 and more).

The features of excitation of WGMs with the help of a
prism were experimentally studied in paper [7]. The light
beam incident of the prism had a Gaussian shape in the
cross section. As mentioned earlier, the WGM wave (m = n)
is similar to the Gaussian beam of the fundamental mode.
DSMs (m # n), which are similar to higher-order Gaussian
beams, have a structure that is virtually orthogonal to that
of the beam coming out of the prism and are excited very
weakly. If a dielectric body has the shape of an ellipsoid of
revolution, then the incidence of the Gaussian beam coming
out of the prism strictly perpendicular to the rotation axis of
the ellipsoid does not violate excitation of modes in the
ellipsoid. However, if this beam is incident in the plane that
is inclined to the ellipsoid axis at an angle less than ©t/2, the
beam proves to be nonorthogonal to the modes with n £ m,
and these modes are excited along with WGMs.

When the exciting wave is incident at an angle of 9 =
+arccos (m/n), the WGM is almost not excited, and only
the mode with m # n is excited. In turn, this mode excites in
the prism an outgoing wave of the type of the highest mode
of a Gaussian beam, which has a circular transverse
structure and the transverse index n —m. Such a wave
has the form of a circle [7] and is projected on a detector
in the form of two spots, whose position is determined by
angles 3 = tarccos (m/n). When the index m is even, the
fundamental mode is excited along with the highest mode of
a Gaussian beam.

The filament dielectric waveguides, which are similar to
optical fibres used for communication, can be also
employed, along with prisms and planar waveguides, for
excitation of WGMs. A core of such waveguides, through
which the waves propagate, is surrounded by a protective
cladding, which makes difficult a contact between the
waveguide and a sphere being excited. For this reason,
the waveguide either is polished to form a half-block in the
region of its contact with the sphere (Fig. 10) or is drawn to
form a tapered waist disclosing the core at the contact
(tapered fibre) [37].

Figure 10. Scheme of excitation of a WGM by a wave in a skewed
optical fibre: (/) microsphere; (2) optical fibre.

The rigorous theory of excitation of WGMs by waves in
such devices is more involved mathematically than the
theory of excitation by the field of a planar dielectric
waveguide. However, the calculation algorithm is the
same and consists in the representing of the wave in the

fibre waveguide as a series in the WGM eigenfunctions. The
field in a waveguide at the contact of a tapered waist with a
dielectric sphere is commonly described approximately,
assuming that the exciting wave is the fundamental wave
of a circular dielectric waveguide [37]. The latter is described
outside the waveguide by the cylindrical Hankel function [5],
which can be approximated by an exponential (see sec-
tion 4). As a result, the exciting field in the case of tapered
fibres can be written in the form

E; = Epexp [ —y(p — b)], (129)
where Ey, is the field near the waist surface; p is the radial
coordinate with the centre at the fibre axis; b is the fibre
radius; and

HY (i

yp = iocf%. (130)

Hy ' (ioyb)

In turn, o is the root of the characteristic equation [5, 37]

Jolkb) . HV(iogb)

P A Aty 131

T~ H Gagh) (130
in which

ki = kg (e = 1) = af: (132)

and ¢ is the dielectric constant of the fibre material. In the
case of a half-block, the waveguide field is more compli-
cated [37] than field (129), and we do not consider it here.

Having the expression for the waveguide field, the
problem is reduced to the representation of the fields of
a microsphere and a waveguide (129) in a common
coordinate system and the calculation of the coefficients
of expansion of the waveguide field over spherical vectors.
This problem is quite cumbersome, and we are not aware of
studies where it would be consistently analysed.

Because a plane wave almost cannot excite WGMs,
some studies were devoted to the analysis of excitation of
WGMs by a noncentrally focused plane wave or a Gaussian
beam whose axis did not pass through the sphere centre.
Because these excitation methods were not used in experi-
ments so far, we will not consider their theoretical grounds,
which are reported in original papers [28, 29, 33].

12. The coupling Q-factor

Coupling between the fields of a sphere and a waveguide
causes not only excitation of the waves in the dielectric
sphere but also the energy drain from the sphere, i.e.,
energy losses. The relevant Q-factor is called the coupling
Q-factor. To calculate the coupling Q-factor, one should
solve the inverse problem of excitation of a wave in a
waveguide at the expense of the energy stored in the WGM.
Physically, this problem is similar to a classical problem of
calculation of the damping of an oscillating dipole when the
dipole emits the field whose reverse action on the dipole
causes the damping of dipole oscillations [42].

A rigorous approach to the problem of excitation of
waves in a waveguide or a TIR prism involves the solution
of the boundary problem at the waveguide or prism surface
taking into account the WGM fields. We are not aware of
papers based on such an approach. Instead, the problem of
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the mutual influence of the waveguide (prism) and the
WGMs is solved by the following approximate method [35].
The method is based on solving Maxwell’s equation

0’ O*E(r, 1)
(?-F VxVx )E(r7 ) = _4TEX(V)T’ (133)
whose solution is represented as the superposition
E(r,t) = (134)

E,(r) + ) Ce(1)Ex(r),
k

where E,(r) and Ej(r) are the normalised fields of the modes
of an isolated sphere and an excitation device. These fields
satisfy the equations

2
[ +TVXVX} L, (1) =0, ey(r) = 1+ dmyy,(r), (135)

2
[wlz, —I—%V xV ><:| Ei(r,t) =0, g,(r) = 1 +dmny,(r), (136)
P

where y,(r) [or x,(r)] is constant within the sphere (or the
excitation device) and is zero outside it. It is clear that the
representation of the field in this form is approximate
because a rigorous solution of the problem requires the
calculation of the eigenfunctions of the system consisting of
the sphere and the excitation device. As the excitation
device, a waveguide or a prism is used. Their eigenfunctions
have a continuous spectrum, so that the sum in (134) is in
fact an integral.

By substituting (134) into Eqn (133) and multiplying
both sides of (133) by E,(r), we integrate the obtained
expression over the effective volume of a spherical mode. As
a result, we have

d2
(@‘FQ),?)C t

le=an [z, [ BB 00+ 7, [ BB (0] 139)

(137)

— Z IszCk(t)
k

The expression for the frequency w, contains the correction
introduced by the excitation device, so that

w2 = (Uno 4y, [|E, )‘2d3r, (139)
where ®,, is the frequency of the unperturbed spherical
mode. The overlap integral (138) is small, as a rule, and can
be treated as perturbation. This circumstance justifies the
choice of the field in the form (134).

Let us multiply now both sides of Eqn (133) by E;(r)
and integrate over the effective volume of the excitation
device. The obtained equation for the amplitude C; has the
form

2
(%4» () )Ck(t) = 71]:601126111([)’ (140)

The system of equations (137) and (140) allows us to
calculate the damping of the WGM caused by the coupling
of the spherical modes with the excitation device. We will
solve this system by the Laplace transformation method. Let
us introduce the Laplace transforms C,(p)=C,() and
Cir(p)=Ci(?). Then, Eqns (137) and (140) take the form

(p*+o))C, Zlk(uzCk(p (141a)

(P* +0)Cilp) = (141b)

—[{ 0, C,y(p),
where p is the Laplace parameter. The unit in the right-
hand side of the first equation corresponds to the step
excitation of the WGM at the instant z = 0. By solving the
system (141), we obtain

G, (p)

The damping coefficient w,/Q, of the WGM is determined
by the real part of a pole of the function C,(p). Note that
the calculation of I'(p) and poles of the function C,(p) is
similar to that in the problem of spontaneous emission of
an atom [43]. In the case of a waveguide, when only one
transverse mode of the waveguide wave is resonant with the
WGM, the sum in (142) is reduced to a one-dimensional
integral and

1
Zm Z \1A| (142)

I (p) = impay, |Iy, . (143)
The calculation of the pole of the function C,(p) in the
approximation I'(p) < w? leads to the expression

)
o =2l (144)
for the coupling Q-factor. Now, the problem is reduced to
the calculation of the overlap integrals entering (138). The
corresponding calculations were performed in papers [35,
37]. We present here the expression for the coupling Q-
factor for the case of excitation of the WGM by a wave of a
planar waveguide [35]:

4l 12 3

A& T 1y32%
Qn (8 _1) (b 1) /14

2
27nl(sb ey e ha)

X exp , (145)

where a, is the thickness of the waveguide plate; / is the
distance between a sphere of radius a and the waveguide
plate; and /& and y are the parameters of the waveguide
wave introduced in section 10.

13. Dynamic equations for the WGM amplitudes

The applications of WGMs necessitate the analysis of
nonstationary dynamic processes of excitation of WGMs by
external sources.

This problem can be solved by using expressions (110),
(113), (124), and (125) assuming that they were obtained for
the Fourier trasforms of the relevant quantities or Laplace
transforms if w and k, are complex quantities. In other
words, if we expand the excited field of a dielectric sphere in
a series over the WGM eigenfunctions, but with coefficients
depending on time

Z [C};n ([) m,

n

E(r,t) = + Cy(t)m,], (146)

then
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o0

cm(r) = qnj K™ () Eoy (@) expliondo,  (147)

—w

where Eq () = [ Eex () exp (— iwf)ds; Ee(¢) is the field of
the excitation device; and the indices at the spherical vectors
m., and n, are omitted for simplicity. In the case of the

TM wave of a planar waveguide [see (110)], we have

_ (= 1/2in 2n+1 2n
=\2) "am+ e

K" () = (h 2; y)in eXp(vl){a'g(w)’

(148)

by(o).

To solve some problems, it is convenient to replace the
integral representation of the solution (147) by the
corresponding differential equation. It follows from (147)
that

dz 2 ~ 2 2
dr? + wn) Cr;n’" = an (0 —o7)
—

XK’;'""(Q))EEX[((,U) exp(iwt)dw. (149)

Although the coefficients @, and b, have different resonance
properties, for = w,, the difference w? — w” makes the
product (v — wz)K,;”‘”(w) = K;""(w) a continuous function
of frequency. If a signal from an external source is
sufficiently monochromatic, then

j K (00) Evet (@) explioon)do & K™ (e Eva().  (150)

-

where wp,,x 18 the frequency corresponding to the maximum
of E.(w). In addition, o} = —y’ — 2wy, = Q7 —
2iw,y,, and we have, with an accuracy to the terms of
the higher order of smallness in y,/®,,

dac,"
dr

—2iw,y, C" &~ 2, (151)
As a result, we can write the differential equation (149) for
C,"" in a standard form

d’ d
(7 +2 + 'an> C;;"‘” = qui;mn(wmax)Eext(l)' (152)

dt2 Vna

To take into account the frequency shift and the
intermode coupling due to scattering, a model of two
coupled modes is used. For example, in paper [44] devoted
to the stabilisation of a semiconductor laser with the help of
WGMs, a model was used described by the equations

dE. 1

W—i_Z_‘C(lJFIA)EL

o 1 .
—Z(l+1oc)g(ne)EL:§K1C,(t—Tl)exp(lcurl), (153a)
dne L - (n)‘EL|2 (153b)
dr e Eallle) g hin”
ac. 1 .
o ta (H)C = %ch+, (153¢)

dc, 1
F‘Fz—‘co(l —|-15)CJr

i 1
:%kCC, S KyEL(f— 1)) explion), (153d)

2
where Ej is the complex amplitude inside the laser; #, is the
electron concentration in the conduction band; J is the
pump-current density; w is the frequency generated by the
laser —external microresonator system; C, and C_ are the
complex amplitudes of the fields of direct and opposite
WGM waves; 1 is the decay time of the field in the
resonator; 7y is the passage time of a signal from the laser
to the microsphere; 7, is the decay time of the WGM
determined by total losses; 7, is the relaxation time of the
inverse population in the laser; g,(n.) is the gain of the laser
active medium; (1 4 ix)g,(n.) is the complex gain of the
laser active medium; w, is the eigenfrequency of the laser
resonator for g = 0; 4 = (0, — w)t and 6 = (wy) — w)7, are
the normalised detunings; w, is the WGM frequency; K,
and K, are the coupling coefficients of the laser field with
the WGMs, which are similar to coefficients determined, for
example, by expressions (110), (113), (124), and (125); and
k. is the coefficient of coupling of the direct and opposite
WGM waves due to scattering. It is well known that the
model (153) predicts the splitting of equal resonance mode
frequencies into two frequencies: o> = w, + k.. For this
reason, k./w, = 8w,§l> /o, and is determined by expression
(57).

14. Applications of WGMs

Of interest are historical paradoxes: when the first lasers
were developed, the researchers apprehended that WGMs
in dielectric rods would prevent the outcoupling of laser
radiation in the form of a highly directed beam. This
concern was not in vain. To eliminate WGMs in laser rods,
the side surface of the latter was purposely made rough
(mat). This technology is still being used. However, at
present WGMs attract attention as high-Q resonances. In
the optical wavelength range, WGMs with large indices n
and, therefore, with a weak radiative decay can be excited
even in small spheres. It was shown that losses of other
types are also rather small in spheres of radius of about
100 pm and above, so that the Q-factor can be 10° and
higher. The possibility of obtaining high-Q WGMs even in
small dielectric spheres stimulated great interest to such
spheres as resonators of the optical range for the develop-
ment of lasers of a new type.

WGM lasers. 1t seems that the first cw WGM laser was
described in paper [45]. A sphere made of a Nd:YAG
crystal was used both as the laser resonator and its active
medium. A dye laser was used for pumping. The author of
paper [45] obtained single-frequency lasing at 1064 nm.

The fabrication of a similar laser was reported in paper
[46]. The spherical laser made of an Er: Yb phosphate glass
was pumped through an optical fibre. The laser radiation at
1500 nm was outcoupled through the same fibre. The
authors of paper [46] pointed out that the optical fibre
provided not only efficient pumping and outcoupling of
laser radiation but also facilitated the development of single-
mode lasing.

These studies were further developed in experiments with
a spherical laser made of quartz doped with neodymium
atoms [47]. The authors of paper [47] fabricated a low-
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threshold laser requiring near the lasing threshold only
200 nW of the pump power. The active medium of such a
laser at liquid helium temperature can consist of only several
neodymium atoms.

The logical development of these investigations is papers
[48—-50] in which the possibility of creating a WGM laser
using one quantum dot as the active medium was sub-
stantiated. Such lasers represent objects with extremely
manifested quantum properties, which make them interest-
ing for studying the fundamental properties of radiation. It
is for this reason that one-atom lasers attract the attention
of theorists [51—53].

At present, Bose condensates of atoms captured by traps
attract great attention of researchers (see, for example, [54]
and references therein). The emission properties of Bose
condensates can be studied by using various WGM schemes.
An example of such a scheme is presented in Fig. 11.

Figure 11. Possible scheme of a WGM laser with an active medium of
trapped atoms: ( /) cell with trapped cold atoms; ( 2) focusing lenses; (3)
TIR prisms; (4) prism for excitation of WGMSs; (5) silica microsphere.
The light wave can propagate both clockwise and counterclockwise; a
nonreciprocal element can be inserted, if necessary.

The authors of paper [55] described semiconductor lasers
with resonators made of microdisks. The use of a microdisk
is not unexpected because the WGM with a large index
occupies a small angular aperture, and parts of a sphere
outside this aperture can be removed to form a disk. The
main attention in analysis of microdisk lasers was paid to
their applications in optoelectronic systems for data proc-
essing [56—58].

The dynamics of WGM lasers was theoretically studied
in papers [59-61].

Of interest are the experimental [62, 63] and theoretical
[64, 65] papers in which lasers with liquid drops as the active
medium were studied. The references in this field are cited in
[61]. Note especially paper [63] where a three-colour WGM
laser based on drops of dye solutions was described.

Nonlinear optical phenomena. The prospects of using
WGMs for the observation of nonlinear optical phenomena
were discussed in papers [24, 65]. The experimental studies
of stimulated Raman scattering in drops are described in
papers [66, 67]. The authors of paper [67] observed the
suppression of direct lasing caused by stimulated Raman
scattering. In paper [68], two-photon absorption in micro-
sphere was studied. It seems that interest in nonlinear optics
in microspheres will increase with time.

A bistable element. The possibility of using WGMs in
optically bistable elements was considered in paper [24]. A
small effective volume of WGMs allows the reduction of
power required for a bistable element. The properties of a
bistable optical element based on WGMs in a semiconduc-
tor microsphere were analysed in paper [69].

Stabilisation of diode lasers. 1t is known that semi-
conductor diode lasers have many attractive properties,
which provided their wide applications. Nevertheless,
they have their own disadvantages. The emission spectrum
of even single-mode semiconductor laser is comparatively
broad and its lasing frequency is not sufficiently stable for
performing  high-precision  frequency  measurements.
Although the stabilisation of the lasing frequency and
narrowing of the emission spectrum of diode lasers with
the help of a standard linear resonator was successful [70,
71], a miniature semiconductor laser was transformed in this
case to a rather bulky device. The use of WGMs for this
purpose makes it possible to fabricate a miniature diode
laser emitting highly monochromatic radiation with high
frequency stability [72].

A sensitive miniature spectroscope. A high Q-factor of
WGMs makes it possible to develop a highly sensitive
spectroscope based on a dielectric microsphere coupled
with a laser for remote sensing of traces of various gases
in atmosphere [73].

Quantum electrodynamics. A high Q-factor and a small
effective volume of WGMs provide their application in
nondestructive quantum measurements and ensure the
observations of subtle quantum effects of the interaction
of single atoms with the field at the energy density
equivalent to a few photons [74—78].

Total external reflection waves. When radiation is
incident on a curved metal surface at a sufficiently large
angle (grazing incidence), a wave can appear, which is
almost completely similar to a WGM, but which should
be called a total external reflection wave (Fig. 12). Such
waves prove to be rather useful for deflecting soft X-rays by
large angles. The matter is that it is almost impossible to
deflect X-rays by reflecting them from a flat surface of a
homogeneous material because of a low dielectric constant
of almost all materials in the X-ray region. This problem is
comprehensively considered in papers [79, 80].

Figure 12. WGM near the surface of a concave mirror. The arrows show
the directions of the entrance and exit of the wave; O is the centre of
curvature of the mirror; o is the glancing angle; PP* and OQ’ are the
tangentials to the mirror surface.

Other types of spherical modes. As follows from section
2, the theory of spherical modes describes both WGMs and
other types of spherical modes. However, in this review the
main attention was devoted to modes with large indices and,
hence, with low radiative losses. Nevertheless, low-index
modes play an important role in the theory of scattering of
light by small particles [81]. The emission properties of
atoms or molecules located near small particles can be
drastically changed. This and other interesting problems,
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which are closely related to the theory of spherical modes,
are considered in papers [82, 83].

The examples presented above do not exhaust all the
possibilities of applications of WGMs. We can expect new
and ingenious proposals for applications of WGMs.

Appendix 1. Vector spherical functions

It is known that Maxwell’s equations in an arbitrary
coordinate system can be reduced to the solution of the
equation for the vector function F

rotrot F — k*F = 0, (AL.1)
where F is the electric or magnetic field. In the case of
spherical fields, any vector function, which is the solution of
Eqn (Al.1), can be represented as a series in the

fundamental vector functions of three types [4], which
are presented in Tables Al.1-A1.3.

Table Al.1.
Ort mys, (03 k)
e, 0
mo . (k)2 Z, (kr) .
e 0 P, (cos0) Texp(ilmq))
d (k)2 Z, (k) .
e, il@Pn (cos0) Texp(ilmw)
Table A1.2.
Ort n; (o k)
1/2 .
e, n(n+ 1)P," (cos 0) Mexp(iim(p)
(ker)
d m i d N1/2 .
¢ a0 [Py (cos 0)] Krd(kr) [(kr)'"* Z,(kr)] exp(Lime)
. m m 1 d 1/2 .
e, ilﬁP” (cos0) Jor d(kr) [(kr)'"* Z,(kr)] exp(&ime)
Table A1.3.
Ort L (9:K)
d [Z,(kr) .
. P} (cos0) —— | = +
€ 5 (cos )d(kr) |:(kr)l/2:| exp(£ime)
d o Zk)
ey T [Pn (cos 0)] (kr)3/2 exp(Eime)
Z,(kr .
e, 1mP,, (cos ) (kr)’”z exp(time)

In these tables, e,, ey, e, are the unit vectors directed
along the axes of the coordinate system fixed at the sphere
surface (see Fig. Al.l1); and Z,(kr) is the solution of the
Bessel equation. This can be either the Bessel function J,(kr)
or the Hankel function H"?(kr) of the first or second kind.
The index ¢ is introduced to indicate what of these functions
is meant as Z,(kr). The values of ¢ = 1,2, and 3 correspond
to the Bessel function J,(kr), the Hankel function H"(kr) of
the first kind, and the Hankel function Hfz)(kr) of the
second kind, respectively. The indices m, n are clear without
additional comments. The symbols ‘£’ correspond to signs
“+’ in the azimuthal factor e*"” in the potential (21). This
potential serves as a base function for constructing spherical
vectors mL (o k), n (o; k) and I (o k) [4].

Figure 13. Coordinate system with the unit vectors e,, ¢, e,, coupled
with the sphere surface.

Let us comment the notation used. In a book of Stratton
[4], spherical vectors are written using the functions

o \'/2
2= (1) 20,
whereas Vainshtein [10] uses another notation, namely,
1/2
nz
20 =(5) 26

Each of the authors has his own arguments in favour of the
notation used by him. However, a comparison of formulas
taken from the books cited above and from other sources
leads to confusion. For this reason, no new notation for
radial functions has been introduced in this review, and
vector spherical functions are written using a standard
notation of functions representing the solutions of the
Bessel equation.

The spherical vectors mz,, n,, and [, have the fol-
lowing properties:: rotl:, =0, ie., / describes potential
fields; the vectors m,., and n, are solenoidal (divm,,
=divm., =0) and are related by the expressions
Vxmy, =kn:, nVxng =kms,

The general form of the expansion of an arbitrary vector
field F in vector spherical functions is described by the
expression

F(r,0,0) = (a,m, + B, +5,1,),
1l
where 5 is the combined index of the vector spherical
modes. Because the spherical vector functions are mutually
orthogonal, the expansion coefficients are determined by
the expressions

(A1.2)

m 2n
J r*dr J sin 0 do J do(F,my,+Fymyg+F,m,,)
o, = 0 L = , (AL3)
Jm,,mn*rzdrj sinQdOJ do
0 0

2n
Jrzdiﬂjnosinedﬁj do(F,n,,+Fynyy+Fyn,,)
0
- o , (Al1.4)
Jn n*rzdrj sin@d@J do
0

nwn
0

ﬁi’]:
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T 2n
Jrzer sin()dOJ do(F,ly,+Fyl,g+F,l,,)
5 = 0 0 . (ALY

n b 2n
Jlnl,;‘rzdrj sinGdOJ do
0 0

The integration over the radial coordinate should be
performed within the orthogonality interval of the radial
functions. The angular integrals entering the denominators
in expressions A(1.3), (A1.4), and (A1.5), have the form (see,
for example, [4])

2n

J m,m, sin 0 d0 J do
0 0

n(n+ 1) (n+m)! Z; (kr)

=2n(1 + 8p,,) D —ml kr (A1.6)
Lﬂ n,n, sin 0.do J: do = 2n(1 + 3y,) %%
s [2’;111 £ oTE Ziilhr) } : (AL7)
Lﬂ Ll sin0do LG de = 2n(1 + 8,) (znkjl)m
x [zn’i 1 Z‘?f/ér(kr) ;:Fl] ZVZZQEM) } ) (AL8)

where 0, is the Kronecker delta.

Appendix 2. Useful formulas

Here, the formulas are presented, which are useful in the

study of WGMs and were taken from handbook [26].
The coefficients of expansion of a near-surface wave in

the spherical waves were calculated using the expression

exp(ixcos @) = EOO: i"J,,(x) exp(ime). (A2.1)
The expressions

d Z ! Z Z A2.2

ax W(x) E[ v 1(X) = Zy i (v)], (A2.2)

Z2,(x) = 3. (201 () + Zoy (). (A23)

are useful for performing some transformations.

Expression (A2.3) is a recurrent relation and makes it
possible to calculate functions with the next index, knowing
two functions with previous indices. For this reason,
expressions

2 \!/2 5\ /2
Jip(x) = (TW> sinx, J_j(x) = <E> cosx. (A2.4)

are important for calculating the Bessel functions with half-
integer indices.

2

Jfo(ocx)dx = % [Zf(ocx) —Z, 1 (ax)Z, 4 (ax)], (A2.5)

and

1 M
| 2910 =3 a0y = ST D (), (26
JO z

(where I' is the Euler gamma function) were used in
calculations involving Bessel functions. It follows from
(A2.6) that

J sin"™! 0 cos* 0.J,(z sin 0)do
0
Ompu u=2n+1,

o (A2.7)
25T+ 1)J sy (2) mpu = 2n,
z

r(n+l) VT 1y, (A2.8)
2) "
r(%) = VT, r<—§) = -2vr, (A2.9)
r()y=re)=1 (A2.10)
The famous Stirling formula
I n(21‘cn)1/2 TRELERE (A2.11)
e 12n " 2880 ) '

is used for calculating factorials of large numbers.
The adjoint Legendre polynomials for m =n are
described by a simple expression

P}(cos0) = (=1)"(2n — 1)!Isin" 0. (A2.12)

Other adjoint Legendre polynomials with large indices n
and a small difference n —m can be calculated using the
relation

P)(0) _ H, ,(y/m0) ,
pr0) = H,,0) oemoT/2). (A2.13)
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