
Abstract. It is shown that, according to the quantum theory
of light, the spatial period of an interference pattern formed
by light incident on a medium and reêected from it is
determined both by the wavelength of light and the number of
coherent photons in a scattered mode. The scattered signal is
assumed arbitrarily weak.
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Selective reêection of resonance radiation from the interface
between two media has revealed many surprises and has
been permanently studied for many years. In 1909, R.
Wood found experimentally that diffuse scattering upon
reêection of resonance radiation from mercury vapour
changed to specular scattering with increasing pressure of
the mercury vapour [1]. This phenomenon was studied for
the next half century [2 ë 4]. In 1966, Koester found
experimentally the ampliécation of resonance radiation
upon reêection from an inverted medium [5]. This
phenomenon is still being studied [6, 7].

This paper is devoted to a theoretical study of inter-
ference effects appearing upon selective reêection of
resonance radiation from an unexcited medium. A standard
quantum electrodynamics predicts the features of the
interference pattern that are not described by the semi-
classical theory of reêection, which deals with a
nonquantized electromagnetic éeld. The case in point is a
difference between the interference patterns appearing in a
traditionally linear region of the interaction of light with
matter. We call attention to the fact that mutually inde-
pendent photons in the incident êux and photons that are
mutually correlated in this êux produce different interfe-
rence patterns after reêection. This difference is related to
fourth-order interference processes [8 ë 10], which are
detected by the coincident output signals from two photo-
detectors located at different spatial points. In our case, the
interference pattern is tested in a standard way by moving a
single photodetector from one spatial point to another. We
focus attention not on the quantum properties of light in

vacuum but on the mechanism of formation of the inter-
ference pattern produced upon reêection a two-photon éeld
from a resonantly scattering medium. While the authors of
papers [8 ë 10] studied the interference properties of two-
photon éelds, we are interested in their diffraction proper-
ties.

Let the scattered light be in a Fock state, and the
functions ji form a complete system of the wave functions
of a medium occupying the volume O. We assume also that
the medium is in the state j0 before the interaction with
light. After switching on the interaction, the total wave
function of the system consisting of the medium and
electromagnetic éeld be expanded into the series

C � f0j0 �
X
i6�0

fiji;

where the expansion coefécients fi depend on the electro-
magnetic-éeld arguments.

Let a photodetector detecting the electromagnetic-éeld
intensity be located at the point r. The output signal from
the photodetector irradiated by a photon is proportional to
the probability of excitation of an atom in it, and therefore
it is characterised by the operator, which is proportional to
the density operator n̂ nn 0 for photons of the electromagnetic
éeld:

Jn̂ nn 0 �r� � J
X

k1;l1;k2;l2

e l1k1n
â�k1l1
�2k1�1=2

exp�ÿik1r�

� e l2k2n 0
âk2l2
�2k2�1=2

exp�ik2r�: (1)

Here, J is a coefécient that characterises the photodetector
sensitivity; âkl(â

�
kl) are the annihilation (creation) operators

for a photon in the state (k; l); k is the photon wave vector;
and l is the index of linear polarisation of the photon. The
electromagnetic éeld is assumed transverse (l � 1; 2). The
unit vectors e lk are such that kne

l
kn � 0 for l � 1; 2 and

kne
l
kn � k for l � 3 (where n denotes summation). By

moving the photodetector from one point to another, we
can study the spatial distribution of the interference
pattern. The average value of the operator (1) in the
state C, taking into account the mutual orthogonality of
the functions ji, can written in the form

hn̂ nn 0 �r�i � Sprcn̂
nn 0 �r� � Sprnn̂

nn 0 �r�; (2)
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where the summation in the right-hand side is performed
over all the arguments of the electromagnetic éeld and

rc � f0 f
�
0 ; rn �

X
i6�0

fi f
�
i .

The density matrix rc describes inelastic scattering of
photons, when the atoms in a scattering medium remain in
the initial quantum state j0. We will call such scattering a
coherent scattering. Upon coherent scattering, the photon
energy does not change, while the change in the photon
momentum occurs at the interface between two media. One
should bear in mind that the atoms are not free but are
localised within the volume O, which is manifested in their
wave functions [11]. The matrix rn describes the scattering
processes in which the atoms in a medium change their
initial state. We will call such scattering an incoherent
scattering. This scattering produces, in particular, the
diffuse scattering of light and also involves inelastic scatter-
ing of one of the photons upon absorption of another
photon by the medium.

Expression (2) is remarkable in two respects. First, the
average density of photons of some polarisation (n � n0) at
the point r can be written as a sum of two terms, each of
them being positive. We will consider the photon density,
which is determined by the coherent (hn̂ nnic) and incoherent
(hn̂ nnin) scattering channels. Second, the total photon
density equals the sum of hn̂ nnic and hn̂ nnin. This means
that coherent and incoherent channels do not interfere with
each other. Note that the disappearance of the interference
is caused érst of all not by the properties of light, as in the
semiclassical theory, but by the orthogonality of the wave
functions of the atoms in the medium in the initial (j0) and
énal (ji) states [12].

It is clear now that, if a photodetector consists of many
atoms rather than of one, its output signal is again a sum of
the positive contributions of the coherent and incoherent
scattering channels.

Let us calculate the intensity of the interference pattern
produced by incident radiation and radiation reêected from
the medium. According to the above analysis, the interfe-
rence pattern is produced only due to coherent scattering
(which is important), when the wave function j0 of the
medium does not change.

We assume that gas consisting of nonrelativistic atoms,
which have one valence electron and the resonance-tran-
sition frequency omm, occupies the half-space z > 0. The
quasi-resonance (jk0 ÿ ommj5 k0) radiation with the wave
vector k0 and the polarisation index l0 is incident at some
angle on the interface between two media. The radiation is
assumed transverse (l � 1; 2) and linearly polarised. The
Schr�odinger equation describing the system consisting of
atoms and the electromagnetic éeld has the form (�h � c � 1)

i
qC
qt
� ĤC; (3)

where

Ĥ � Ĥ0 � Ĥint; Ĥ0 � Ĥa � Ĥph; Ĥa �
X
i;p

ei�p�b̂�ipb̂ip;

Ĥph�
X
k;l

kâ�klâkl; Ĥint � ÿ
e

m

�
ĉ��r;R�p̂Â�r�ĉ�r;R�drdR;

ĉ�r;R� �
X
i;p

ci�rÿ R�Fp�R�b̂i;p; p̂ � ÿiH;

Â�r� �
X
k;l

e lk

�2kV�1=2
ÿ
â�kle

ikr�âkleÿikr
�
;

V � LxLyLz is the normalising volume; ci are the wave
functions describing the inner state of the atoms in the
medium with the energy ei. The wave functions Fp(R)
determine the translational motion of the atoms localised
within the volume O occupied by gas. Outside this volume,
Fp(R) � 0. The operators b̂�i;p (b̂i;p) describe the creation
(annihilation) of atoms in the state (i; p). In the absence of
the temperature degeneration of the gas, they can be treated
as Bose ëEinstein operators.

Let us calculate an interference pattern in the region
z < 0. For this purpose, we rewrite equation (3) in the
integral form

C � C0 � i
e

m

� t

t0

exp�ÿiĤ0�tÿ t 0��ĉ�p̂ÂĉdrdRC�t 0�dt 0; (4)

where the function C0 describes the initial state of the
system before switching on the interaction between the
electromagnetic éeld and atoms in the medium, and
t0 ! ÿ1.

We will seek the solution of equation (4) in the form of
an iteration series by omitting the terms proportional to the
odd powers of the charge e, which are responsible for
incoherent scattering. The sum of the remaining series is
equivalent to the solution of the integral equation

C � C0 ÿ
�

e

m

�2 � t

ÿ1
dt 0
�
exp�ÿiĤ0�tÿ t 0��ĉ�p̂Âĉdr 0dR 0

�
� t 0

ÿ1
exp�ÿiĤ0�t 0 ÿ t 00��ĉ�p̂Âĉdr 00dR 00C�t 00�dt 00: (5)

Because the atoms of the medium remain in the initial
state after coherent scattering, only the products

ĉ�ĉĉ�ĉ � b̂�mpb̂mp 0 b̂
�
mp 0 b̂mp

are nonzero among all the products of the operators ĉ and
ĉ�. The indices m and m refer to the Zeeman sublevels of
the excited and ground state of an atom. The variables in
equation (5) can be separated, i.e.,

C � wj0;

if we take into account that they were certainly separated
before switching on the interaction:

C0 � w0j0 �
�
0
; j0 �

Y
m;p

cmpb̂
�
mpj0ieÿiem�p�t:

Here, the coefécients cmp characterise the distribution of
atoms over the states (m; p), and em(p) are the energies of
these states. The wave function w depends of the arguments
of the electromagnetic éeld. If the initial mode (k0; l0) of
the Fock state contains N0 photons, then

w0�t� �
�â�k0l0�

N0�������
N0!

p j0ieÿik0N0t:
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We obtain from equation (5) the equation

w � w0 �
�
D0
r �tÿ t 0�p̂r�t 0 ÿ t 00�w�t 00�dt 00dt 0; (6)

for the wave function w, where

D0
r (t� � ÿiW�t� exp�ÿiĤ0t�; p̂r�t� �

�1
ÿ1

eÿiEtp̂r�E�
dE

2p
;

p̂r�E� �
X

k1 ;l1;k2;l2

â�k1l1C
�k1l1k2l2�
r �Eÿ Ĥph�âk2l2 ;

C �k1l1k2l2�r �E� �
X
p1;p2

P l1�
mm �k1�P l2

mm�k2�
2V�k1k2�1=2

N m�p1��

�
F �p1�R1�Fp2 �R1�F �p2 �R2�Fp1 �R2� exp�ÿi�k1R1 ÿ k2R2��

Eÿ em�p2� � em�p1� � i0
dR1dR2;

(7)

W(t) is the Heaviside function; and

N m�p� � hb̂�mpb̂mpi0;

P l
mm�k� �

X
n

e lknP
n
mm�k�; P n

mm�k� �
e

m

�
c�mp̂ne

ikrcmdr:

In the two-level approximation, only those terms are
taken into account that make an appreciable contribution
upon the quasi-resonance interaction of photons with gas
atoms. The appearance of the term i0 in the dominator in
expression (7) is related to the causality principle. So far we
assumed that the energy levels of the atoms are real
quantities, in accordance with the adopted model. However,
actually the gas atoms interact with each other and with
foreign particles in the gas (reservoir), resulting in the
collision broadening g of the energy levels of the atoms.

We assume that the collision width is greater than the
radiative width gr. The inclusion of the collision widths of
the energy levels results in the replacement of the term i0 by
ig=2 in expression (7). It is important to note that the signs
in front of i0 and ig=2 should coincide because otherwise the
causality principle will be violated. Below, we will always
take the term ig=2 into account explicitly. Expressions (6)
and (7), taking into account the term ig=2, can be rigorously
obtained in the more developed but rather cumbersome
theory [13].

Let us specify the integrals over R1 and R2. Expression
(7) describes reemission of photons during two successive
virtual processes: an atom located at the point R2 érst
absorbs a scattered photon in the (k2; l2) state and then the
same atom at the point R1 emits a new photon to the state
(k1; l1). We can assume that the centre of gravity of the
atom during the scattering event is located at the point
(R1 � R2)=2. Because this centre of gravity cannot be
located outside the volume O occupied by gas, the structural
coefécient C �k1l1k2l2�r (E) will not change if we introduce the
function

W
�
R1 � R2

2

�
�
X
q

W�q� exp
�
iq
R1 � R2

2

�
; (8)

to the integrand in expression (7), where

W�q� �
�
O
eÿiqRW�R� dR

V
;

(9)

W�R� � 1; R2O,
0; R2n O.

�
The function Fp(R) can be approximated by exponen-

tials 1=
����
V
p

exp (ipR); describing a free translational motion
of the atoms. Such an approximation (the Wigner approx-
imation) assumes that the atoms are localised within the
volume O where they are quasi-free. The quantity p acquires
now the meaning of the momentum of the centre of gravity
of an atom. The integrals over R1 and R2 can be explicitly
calculated and expressed in terms of the Kronecker symbols:�

F�p1�R1�Fp2�R1� exp
�
ÿ i

�
k1 �

q

2

�
R1

�
dR1

� d
�
p2 ÿ k1 �

q

2
; p1

�
;

�
F�p2�R2�Fp1�R2� exp

�
i

�
k2 �

q

2

�
R2

�
dR2

� d
�
p1 � k2 �

q

2
; p2

�
:

If the atoms occupy a plane ë parallel layer of thickness l
located in the plane xy, then, according to (8) and (9), we
have

W�q� � d�qx�d�qy�Wl�qz�; Wl�qz� �
� l

0

exp�ÿiqzz�
dz

Lz

:

Taking this into account, the structural coefécient can be
written in the form

C
�k1l1k2l2�
r �E� �

X
m;m;p

P l1�
mm �k1�P l2

mm�k2�
2V�k1k2�1=2

Nm�p�

� d�k1x; k2x�d�k1y; k2y�Wl�k1z ÿ k2z�
Eÿ omm ÿ p�k1 � k2�=2� ig=2

:

Here, the nonrelativistic approximation is used, and ei�p� �
ei � p2=2M;, where M is the atom mass. If a gas layer
occupies a half-space, then l!1.

If gas atoms are distributed over the Zeeman sublevels of
the ground state uniformly, it is possible to perform
summation over m and m. In the dipole approximation,
we obtain [14]

X
m;m

P l1�
mm �k1�P l2

mm�k2� �
p�2jm � 1�

omm
gre

l1
k1 e

l2
k2 ;

where jm is the quantum number of an excited state of an
atom. For simplicity, we assume that the Doppler broad-
ening is negligible. Then, we have

C
�k1l1k2l2�
r �E� � p�2jm � 1�

2o2
mm

gre
l1
k1 e

l2
k2 nm
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� d�k1x; k2x�d�k1y; k2y�Wl�k1z ÿ k2z�
Eÿ omm � ig=2

; (10)

where nm � Nm=V. We assume that the scattered radiation
contains one photon:

w0�E� � â�k0l0 j0i2pd�Eÿ k0�:

According to (6), the wave function describing the
incident and reêected light in the lowest-order perturbation
theory has the form

w � �1� D0
r p̂r�w0:

This means that the interference pattern produced by the
incident and reêected light is described at any instant of
time by the expression

hJn̂l0l0�r�i � hJn̂l0l0�r�D0
r p̂ri0 +c. c.

� J
X
kz

exp�ÿi�k0 ÿ k1�r�
2�k0k1�1=2

�
d�Eÿ k0�
Eÿ k1 � i0

�C �k1l0k0l0�r �E�dE+c. c.

The sum over k1 can be calculated by using the asymptotic
equality

X
kz

eikzz

k0 ÿ k� i0
f �kz� ÿ!

Lz!1
Lz

2p

�1
ÿ1

eikzz f �kz�dkz
kÿ �k 2

z � k 2
0x � k 2

0y�1=2 � i0

ÿ!
z!ÿ1

ÿ i
Lzk0
k0z

f �ÿk0z�eÿik0zz:

Here, f (kz) is a function that has no singularity at the point
k � ÿk0z.

The énal expression for the intensity of the interference
pattern has the form

hJn̂l0l0�r�i � ÿi JLz

2k0z
eÿ2ik0zzC �Kl0k0l0�r �k0�+c. c.,

K � fk0x; k0y;ÿk0zg: (11)

Expression (11) can be rewritten using the standard
refractive index of a medium:

Kl0�k0� � 1� Lz

k0
C �k0l0k0l0�r �k0�: (12)

It follows from (11) and (12) that

hJn̂l0l0�r�i��
z!ÿ1 � ÿ

Jk0
4k0z

eÿ2ik0zz

� �Kl0�k0� ÿ 1�+c. c. (13)

Expression (13) can be obtained from the semiclassical
emission theory. We have presented in detail its electro-
dynamic derivation because other expressions will be
derived below in the same way.

The dependence of the intensity of the interference
pattern on coordinates is described, according to (13), by
the function cos (2k0zz) for jk0 ÿ ommj4 g and by the
function sin (2k0zz) for jk0 ÿ ommj5 g. It follows from
(10) ë (13) that the interference pattern at the point
k0 � omm is determined by the dimensionless parameter

B � nm L
3 gr
g
< 1; (14)

where L � 2p=k. Inequality (14) represents the condition of
applicability of the perturbation theory and expression (13).
The parameter B was considered for the érst time in paper
[15], where it was obtained based on phenomenological
reasoning.

Consider now an incident mode containing two photons
in the (k0; l0) state, i.e.,

w0�E� �
�â�k0l0�

2����
2!
p j0i2pd�Eÿ 2k0�:

In this case, two situations are possible. In the érst case, a
medium reêects one photon, which corresponds to the érst
iteration of equation (6). Another photon is still propagat-
ing in the initial direction. In the second case, two photons
are reêected from the medium, and, therefore, equation (6)
should be iterated twice.

Consider the second case, when the wave function of the
electromagnetic éeld has the form

C � �1� D0
r p̂rD

0
r p̂r�C0: (15)

We will omit for the time being the term corresponding to
the érst order of the perturbation theory. The interference
pattern produced by the incident and reêected light can no
longer be described by averaging the operator (1) over the
state (15) because this average vanishes. The interference
pattern can be now detected only when two atoms of a
photodetector are simultaneously excited, which is
described by the operator (Jn̂l0l0 )2. Similarly to (13), we
obtain

h�Jn̂l0l0�r��2D0
r p̂rD

0
r p̂ri0 +c. c.

� 2

�
Jk0
4k 2

0z

eÿ2ik0zz�Kl0�k0� ÿ 1�
�2

+c. c. (16)

According to expression (16), the interference pattern for
resonance radiation is determined by the square of the
parameter B (14), i.e., its intensity is lower than that of the
interference pattern produced upon one-photon scattering.
Note that the spatial period of this interference pattern is
two times smaller than that in the case of one-photon
scattering. In other words, in two limiting cases for
jk0 ÿ ommj 4 g and jk0 ÿ ommj5 g, the interference pattern
is described by the function cos (4k0zz). The semiclassical
theory of reêection cannot give this result.

It is important to note that when the scattered mode
contains two photons, one-photon scattering is absent in the
coherent channel [16]. Because such scattering is related to
the incoherent channel, it does not affect the interference
pattern, as shown above.

Let us explain the absence of one-photon reêection of
two-photon incident radiation in the coherent channel. It
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seems that the formal application of the perturbation theory
to equation (6) allows one-photon scattering. The intensity
of this scattering should exceed that of the two-photon
scattering by a factor of Bÿ1. However, actually this does
not occur. This is explained by the fact that upon one-
photon reêection of the two-photon éeld, one of the
photons will propagate without scattering deep inside an
absorbing semi-inénite medium. However, such a process
cannot exist. A photon propagating in a medium will be
either multiply scattered and then reêected by the medium
with the 100% probability, contributing to the reêected
éeld in the high orders of the perturbation theory, or
absorbed by the medium, contributing to the incoherent
scattering channel. In any case, one-photon reêection of the
incident two-photon éeld is absent in the coherent channel
[16, 17]. It follows from the above that only Feynman
diagrams describing photons reêected to vacuum but not
photons scattered to the medium are retained in the
coherent channel.

The results obtained above can be obviously generalised.
Let us assume that the incident mode contains N0 photons
in a Fock state. In this case, the interference pattern at large
distances (z! ÿ1) from the interface between two media is
produced only by the state of the photon éeld in which all
N0 photons are coherently reêected by the medium. Here,
the interference pattern is described by the function
cos (2N0k0zz) or sin (2N0k0zz), depending on the parity of
the number N0.

We considered above the interference pattern at the
asymptotic distances z! ÿ1. In the description of the
near-éeld zone of scattering, the extinction theorems [17] are
violated, and the interference pattern is different.

Note that the difference between the interference pat-
terns produced by one-photon and two-photon êuxes can be
conérmed experimentally by studying the selective reêection
of light emitted by a black-body radiation source. The
density matrix of this radiation in the mode (k; l) can be
written in the form

r � jNklihNklj
�
1ÿ eÿk=Y

�ÿ1
exp

�
ÿ kNkl

Y

�
;

where Y is the statistical temperature and Nkl are the
occupation numbers of the mode (k; l). If k > Y, then the
most probable number of photons in the occupied mode
equals unity, and the interference pattern described by
expression (13) will be observed in the experiment. If
k < Y, then the probability of two-photon occupation of
the mode will be signiécant, and the interference pattern
described by expression (16) will be observed against the
background of the previous interference pattern. The
intensity of other interference patterns corresponding to
Nkl > 2 decreases exponentially with increasing Nkl.

For the resonance line of mercury, inequality (14) is
valid up to the concentration nm � 1017 cmÿ3. For
nm � 1018 cmÿ3, the reêection coefécient in the coherent
channel is of the order of unity [1]. The interference patterns
discussed above can be readily detected with a photo-
detector distinguishing the mechanisms of one-photon,
two-photon, and multiphoton excitations. This means
that the study of interference patterns by means of the
photocount statistics opens up wide possibilities for analysis
of scattering media and the statistical properties of the
scattered radiation itself.
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