
Abstract. The self-diffraction of light appearing upon optical
poling of bulk glass samples is studied. During poling, a
refractive-index grating is accumulated in the medium, on
which one of the beams or both beams diffract eféciently. A
theoretical expression is obtained for the amplitude of
diffracted radiation. The results of the experimental study
of this phenomenon in oxide glasses are in agreement with the
theory, which explains the formation of a spatially periodic
electric éeld in the medium by the coherent photogalvanic
effect. The self-diffraction of light can be eféciently used for
studying the physical properties of purely optical poling of
media.

Keywords: glass, optical poling, self-diffraction, coherent photogal-
vanic effect.

1. Introduction

Illumination of glass by mutually coherent two-frequency
laser radiation of the érst and second harmonics results in
the accumulation of the reversible long-lived static polar-
isation in the glass. This effect is assigned to the formation
of a spatially periodic electric éeld in the medium under the
action of multifrequency coherent light, leading to a change
in the polarisation of the medium [1]. As a result of this
effect, which is called purely optical poling (OP) [2], the
glass loses its symmetry and acquires the properties of a
uniaxial crystal. In the region of interaction of light beams,
the modulation of the refractive index appears (the Dn
anisotropic grating) [3], which is responsible for birefrin-
gence, and the second-order polarisability (the w �2� grating)
[1] responsible for the appearance of three-wave interac-
tions [4, 5], which were earlier forbidden by the glass
symmetry.

Optical poling was often studied by investigating the
SHG on an induced w �2� grating [5, 6]. This phenomenon
can be also studied from diffraction of light by the inho-
mogeneity of the refractive index induced in glass. The
sensitivity of the latter method is higher because the SHG

intensity is proportional to the square of a static éeld,
whereas the intensity of diffracted radiation is proportional
to the fourth power of this éeld. The érst observations of
light scattering from the Dn grating induced in glass are
reported in papers [3, 7].

In this paper, we studied the self-diffraction of light from
accumulated refractive-index gratings in bulk glasses. We
obtained the theoretical expression for the amplitude of
diffracted radiation and studied the properties of this
radiation. The self-diffraction of light was experimentally
investigated in some oxide glasses. The model of this
phenomenon presented in the paper can be used for stu-
dying the physical picture of the OP of media.

2. Theory of self-diffraction
of light upon OP of glasses

Consider the self-diffraction of the fundamental-harmonic
radiation upon the OP of glass by crossed Gaussian beams.
In a classical variant, the OP of a sample is performed by
the two-frequency mutually coherent radiation of the érst
(E1 � e1E1(r) exp�i�k1rÿ ot� c1)�) and second (E2 �
e2E2(r) exp�i�k2rÿ 2ot� c2)�) harmonics of a laser. It is
assumed that in this case, the coherent photogalvanic (CP)
current

j�r� � �s1e1�e1e2� � s2e2�E 2
1 �r�E2�r� cos�Dkr� Dc�, (1)

appears in the region of the interaction of light beams
[1, 8, 9], where Dk � 2k1 ÿ k2; Dc � 2c1 ÿ c2; and s1, s2
are the CP constants; and s1 � 2s2 for isotropic media of
the most general symmetry class 11m [9].

The separation of charges by the CP current results in
the formation of an `imbedded' electrostatic éeld in the
medium. In the general case, the spatial distribution of the
éeld is complicated because the envelope of the current
grating (1) has a shape determined by the intersection of the
Gaussian beams, and the CP current contains components
that are parallel ( jk) and perpendicular (j?) to the grating
planes. However, the current j? causes the accumulation of
charges directly on the grating planes, unlike the current jk,
which causes the accumulation of charges at the boundary
of the overlap region of the interacting beams. Therefore,
under the condition 1=(Dka)5 1 (where a is the size of the
overlap region), the current j? makes the main contribution
to the formation of the periodic grating, and the éeld
produced in the medium can be approximated by the
expression
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E � eq
j?
s
, (2)

where eq is the unit vector perpendicular to the grating
planes and s is the conductivity. Expression (2) is valid in
most cases of the OP of samples because the relation
1=(Dka)5 1 is violated only when radiation is rather tightly
focused into a spot of diameter of the order of several
micrometres for small angles between the interacting beams
(for example, in the case of OP in single-mode glass ébres
[2, 5]).

The éeld induced in the medium changes the optical
properties of the latter. Note that here we deal only with the
reversible variations in the optical properties of the medium,
which are caused by the spatial redistribution of the charge
density, and do not consider the questions related to the
rearrangement of the glass structure. The modulation of the
refractive index appearing upon poling of the medium is

Dn̂ � dn̂F�r� cos�qr� 2Dc�, (3)

where q � 2Dk is the wave vector of the refractive-index
grating; F (r) is the grating envelope; and the form of the
tensor dn̂ depends on the symmetry of the medium used. In
glasses (isotropic media), the components of the tensor dn̂
have the form [10]

dnij �
2pw �3�

n
E 2
0 dij �

4pw �3�

n
di kdjlE0kE0l , (4)

where n is the refractive index of the glass and E0 is the éeld
amplitude. One can see that the glass acquires anisotropy,
which is typical of a uniaxial crystal with the optical axis
directed along the photoinduced electric éeld. Two Dn
gratings are formed from which diffraction of light occurs:
the ordinary grating Dno and the extraordinary grating Dne
with the reciprocal grating vector q � 2Dk. If the Dn grating
is oriented at the Bragg angle to the incident radiation, the
light is scattered in the direction determined by the condi-
tion of synchronism (Bragg condition), and the diffraction
eféciency increases by many orders of magnitude. It is
obvious that the conditions can be selected at which the
érst- and second-harmonic light beams involved in the
grating formation will experience efécient diffraction (self-
diffraction). Note that the polarisation dependence exists,
and the extraordinary beam diffracts more eféciently than
the ordinary beam.

Consider the self-diffraction of the fundamental radia-
tion from the refractive-index grating (3). Let us choose the
following interaction geometry (Fig. 1). We assume that the
grating is produced by two crossing Gaussian beams of the
fundamental o and second-harmonic 2o radiation. The inci-
dent beams are located on the x, y plane, the beam o
propagating along y axis while the beam 2o propagating at
an angle of a to the érst beam. The origin of coordinates
(x, y, z) � (0, 0, 0) is located at the point of intersection of
beam-waist centres, and w1 and w2 are the radii of the
beams in the waist [2(w2)

2 � (w1)
2]. Because the interaction

region is small, we can neglect the divergence of radiation
over the grating size, and, assuming that the angle a of
intersection of the beams is small, we set cos a � 1.

Let us introduce the vectors k? � fkx, kzg and r? �
fx, zg directed perpendicular to the propagation of light. As
a result, the grating envelope (3) can be approximated by the
expression

F�r� � exp

�
ÿ 2

w 2
1

ÿ
2r 2? � 2xy sin a� y 2 sin2 a

��
. (5)

We assume that the fundamental radiation

Ein�r� � A

�
ÿ r 2?
2w 2

1

�
exp�ik1y� (6)

propagating along the y axis is incident on grating (3) and
diffracts from it.

In the given éeld approximation, the wave éeld describ-
ing diffraction in the frequency representation has the form

k 2
1E� DE � ÿ 2

ÿ
Dn̂� � Dn̂ÿ

�
k 2
1

n1
Ein , (7)

where Dn̂� � dn̂F (r) exp�� i(qr� 2Dc)�. One can see from
(7) that two waves can exist in the system: E � E �d � E ÿd ,
where E �d and E ÿd are the diffracted waves with the wave
vectors k� � k1 � q and kÿ � k1 ÿ q; and E �d (q) �
E ÿd (ÿ q).

Let us derive the expression for E �d (we omit the sign `+'
below). The expression for the wave E ÿd can be obtained by
the replacement q! ÿq in the énal expression for E �d . We
seek the solution of equation (7) by the Fourier transform
method. As a result, the expression for the amplitude of the
scattered éeld has the form

Ed�r� �
k 2
1

4p3n1

� �1
ÿ1

Dn̂�r 0�Ein�r 0�
k 2
y � k 2

? ÿ k 2
1

exp�iky�yÿ y 0��

� exp�ik?�r? ÿ r?
0 ��dkydk?dr 0. (8)

Because q=k1 5 1, upon scattering the fundamental radia-
tion weakly deviates from its initial direction of pro-
pagation (i.e., k2?5 k21). Taking this into account, we
perform integration over the region of the complex variable
ky. Because the waves with k? � q? make the main
contribution to the scattered éeld, we perform the change
of variables s? � k? ÿ q? and pass to the integration over
ds?. Because the value of s? is small, the higher-order terms
in s? in exponentials of the integrand can be neglected.

By omitting calculations, we present the énal expression
for the amplitude of the diffracted wave on the right away
from the inhomogeneity region

Ed �
Dp exp

�ÿ d1
ÿ
qy � q 2

x=2k1
�2�

� f1 f2�1=2
�ÿ
1�D 2

1

�ÿ
1�D 2

2

��1=4 exp�ik1g��

z

L
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Figure 1. Formation of the Dn grating and self-diffraction of light.
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� exp

�
ÿ z 2

4 f1
ÿ
1�D 2

1

�ÿ t 2

4 f2
ÿ
1�D 2

2

� �

� exp

�
ÿ t�gÿ tqx=k1�� f3=f2� � f 23 k

2
1

4 f2�1�D 2
2 �

�
(9)

� exp

�
iz 2D1

4 f1
ÿ
1�D 2

1

�� it 2D2ÿ
1�D 2

2

� �

� exp

�
ÿ ik1

�
t f3=�2 f2� � �gÿ tqx=k1� f 23 =

ÿ
8 f 22

�
1�D 2

2

��

� exp

�
ÿ i arctan

��ÿ
1�D 2

1

�ÿ
1�D 2

2

��1=2 �D1D2 ÿ 1

D1 �D2

��
,

where

D � �dn̂A�ik1w
3
1 exp�i2Dc�

2�90p�1=2n1 sin a
; d1 �

9w 2
1

40 sin2 a
; d2 �

4

9
sin a;

D1 �
y

2k1 f1
; D2 �

y

2k1 f2
; f1 �

w 2
1

18
� d1
k1

�
qy �

q 2
x

2k1

�
;

(10)

f2 � f1 � d1

�
d2 �

qx
k1

�2
; f3 �

2d1
k1

�
d2 �

qx
k1

��
qy �

q 2
x

2k1

�
;

t � x

�
1ÿ qx 2

2k 2
1

�
ÿ y

qx
k1

; g � y

�
1ÿ q 2

x

2k 2
1

ÿ q 4
x

8k 4
1

�
� x

qx
k1

.

Note that the self-diffraction of the second-harmonic
radiation involved in the grating formation can be described
similarly. In this case, we obtain the expression for the
amplitude of the diffracted second-harmonic radiation,
which is similar to expression (9), with the corresponding
replacements.

Let us analyse expression (9). One can see from (9) that
the wave amplitude is maximal when

qy � ÿ
q 2
x

2k1
. (11)

In this case, f3 � 0, the wave propagates in the direction g
and has characteristic Gaussian shapes in the directions z
and t. The angle b at which the wave deêects from the
initial direction of propagation y upon scattering can be
determined from the expression sin b � qx=k1 � q=k1 beca-
use kd � k1 and q5 k1 (see Fig. 1). As a result, when the
condition (11) is satiséed, we obtain the usual Bragg
scattering from a phase diffraction grating, which is well
known in acoustooptics [11] and is described by the
expression

sin y � q

2k1
, (12)

where y � b=2 is the Bragg angle.
Because q depends on a, the condition (11) can be

satiséed only for a certain angle between the crossed beams.
The exact optimal angles between the crossing beams can be
obtained by considering the interaction geometry. In this
case, there are two possibilities. When Z � n1=n2 < 1 (i.e.,
for the normal dispersion of the waves in the medium), the

Bragg self-diffraction of the fundamental radiation is
observed at the optimal angle between the beams am �
arccos�(3Z2 � 2)=5Z�, while for the second-harmonic radia-
tion, it is observed for am � arccos Z. Of more interest is the
case 1 < Z < 2 (anomalous dispersion). The self-diffraction
of fundamental and second-harmonic light beams for these
values of Z occurs simultaneously at the same optimal angle
am � arccos�(Z2 � 2)=3Z� between the beams forming the
grating. Note that the angle between the crossing beams
should be set suféciently precisely in the experiment because
the wave amplitude [�exp (ÿ 60k 2

1� w 2
1 sin

2 da)] sharply
decreases upon deviations from the optimal angle (am � da).

The diffracted wave diverges and has different curva-
tures of the phase front along the directions z and t. The
quantities D1 and D2 play the role of characteristic dimen-
sionless diffraction lengths. Figure 2 shows the evolution of
the beam radii wt � �2 f2(1�D 2

2 )�1=2 and wz � �2 f1(1�
D 2

1 )�1=2 during the propagation of diffracted radiation along
the directions t and z, respectively, for the values of w1 �
130 mm, am � 3:58, and l1 � 1:08 mm chosen by us in the
experiment. Because the vector q lies in the plane (t; g),
diffraction in this plane occurs over the entire length of the
grating (see Fig. 1), and the effective width of the beam
becomes the largest one (it exceeds the width of the incident
beam by a factor of 2.4). In the plane (z, g), diffraction
occurs from the grating aperture. The grating aperture is
determined by the convolution of the transverse distribu-
tions of the fundamental and second-harmonic beams, so
that the width of the diffracted beam in this plane is
minimal. The diffracted wave strongly diverges along the
direction z. The beam, which was initially narrow along z,
becomes symmetric at the point y � y0 � 12 cm and has the
same width along the directions t and z, whereas for y � 20
cm, the beam becomes rather strongly broadened along z.

The diffraction eféciency, i.e., the integral ratio of the
total energy êux of diffracted radiation

Pd �
c

8p

�
EdE

�
d dtdz

to the energy êux of the incident radiation

Pin ÿ
c

8p

�
EinE

�
indxdz
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Figure 2. Evolution of the beam radii along directions z and t during the
propagation of diffracted radiation.
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can be determined from the expression

Zd �
Pd

Pin
� �dn̂A�

2

n 2
1A

2

���
5
p

pk 2
1w

2
1

160 sin2 a
exp

�
ÿ 2d1

�
qy �

q 2
x

2k1

�2�
. (13)

Note énally that expression (9) was obtained for the
wave E �d . The total solution contains two components:
E � E �d � E ÿd . To obtain E ÿd , as mentioned above, it is
necessary to make the change of variables q! ÿq. How-
ever, the phase matching condition cannot be satiséed for
this wave in the case of normal dispersion in the medium. As
a result, only one diffracted wave can propagate in the
medium: the wave E �d in the medium with normal dis-
persion and the wave E ÿd in the medium with anomalous
dispersion.

3. Experimental results and discussion

We have chosen for experiments the K8 and F4 oxide
glasses from an available set of optical glasses, in which the
diffraction of light was most efécient. The optical poling of
samples was performed by fundamental and second-
harmonic radiation from a 1.079-mm pulsed Nd3� : YAG
laser with a pulse energy of � 18 mJ, a pulse duration of
� 15 ns, and a pulse repetition rate of 12.5 Hz. The second-
harmonic conversion eféciency was � 10%. The focused
beams were crossed at an angle of a. The fundamental and
second-harmonic light beams were linearly polarised, and
their polarisation could be varied independently. The phase
difference between these two éelds could be also varied
continuously.

The maximum peak intensity Po of the fundamental
radiation in the focus was � 109 W cmÿ2 for the laser beam
diameter of � 260 mm. The diffracted radiation was detected
in the far-éeld zone with a photomultiplier and the data
were processed with a PC. The threshold sensitivity of the
detecting system was 1 mW pulseÿ1. The refractive-index
gratings written upon OP of glasses were stable and
persisted for 4 hours in the absence of an external action.
The process of grating recording was completely reversible,
and no structural variations were observed in the samples
under study. The kinetics of recording and relaxation of the
Dn gratings is described in detail in paper [12].

Figure 3 presents the typical angular distributions of the
intensity of fundamental radiation transmitted by a sample
subjected to OP. The angular distributions were obtained by
scanning with a slit of width � 60 mm with a step of � 10 0 in

the plane of crossing of the beams within the sector �308
relative to the direction of propagation of the incident
fundamental radiation.

Figure 3a corresponds to the coaxial propagation of the
beams. In this case, the planes of the produced grating are
perpendicular to the direction of propagation of the beams,
and the typical aperture diffraction by the inhomogeneity of
the refractive index occurs. The curves in Fig. 3b were
obtained for the angles between crossing beams equal to
a � am � 3:19 and 3.878, which correspond to the Bragg
diffraction of the fundamental radiation by produced Dn
gratings in K8 and F4 glasses, respectively. One can see that
in this case, diffraction of light occurs in the direction
determined by the Bragg condition. In the case of Bragg
diffraction, the intensity of the scattered beam was 300 times
greater than in the case of `aperture' diffraction.

The optimal angles between the crossing beams and
Bragg angles obtained experimentally for K8 and F4 glasses
were in agreement with the calculated values. According to
expression (13), the maximum diffraction eféciency Zd �
10ÿ3 achieved in our experiments corresponds to the relative
change in the refractive index dn=n1 � 10ÿ5. For oxide glass,
w �3� � 10ÿ18 cm2 Vÿ2 [13]. By substituting these values to
expression (4), we obtain the estimate of the photoinduced
electric éeld E0 �

�
n1dn (6pw

�3�)ÿ1
�1=2 � 106 V cmÿ1, which

agrees, by the order of magnitude, with the estimates made
in the studies of the photoinduced SHG upon the OP of
oxide glasses [5, 6].

When gratings were written by light beams polarised in
the plane of their crossing and tested by light corresponding
to the extraordinary beam in the grating, the eféciency of
Bragg diffraction Zd � Pd=Pin was maximal and equal to
1:2� 10ÿ3 and 4� 10ÿ5 for K8 and F4 glasses, respectively.
When gratings were written by light beams with orthogonal
polarisations (under the condition that the CP current vec-
tor lies in the plane of crossing of the beams), the diffraction
eféciency of the extraordinary beam was approximately a
hundred times lower than the maximum diffraction efé-
ciency. The diffraction eféciency of the ordinary beam was
in both cases approximately ten times lower than that of the
extraordinary beam. Finally, if the grating was written by
light beams polarised perpendicular to the plane of their
crossing, then, independently of the polarisation of the
testing light, the diffraction eféciency was low (� 10ÿ4 of
the maximum eféciency).

This is explained by the fact that in this case the CP
current êows parallel to the grating planes, the charges are
accumulated at the periphery of the interaction region of
light beams, and no diffraction grating appears. The results
of the polarisation studies are in agreement with the model
of formation of the refractive-index grating in glass due to
the CP effect and conérm the validity of expression (1) and
the applicability of the symmetry (11m) of isotropic
centrally symmetric media for the description of glasses
under study. The fact that the coherent current in glasses is
determined by two CP constants [expression (1)] was
conérmed in the study of polarisation properties of photo-
induced SHG [14].

Experiments with the variation of the phase difference of
light beams gave the following results. A change in the phase
difference of the éelds on passing from one writing cycle to
another changes neither the intensity nor the diffraction
pattern. However, if the phase difference is modulated
during the grating writing with frequency � 1 Hz, the dif-

ÿ4 ÿ2 0 2 b
�
8 ÿ4 ÿ2 0 2 15 20 25 b

�
8

0.5

1

I (rel. units) I (rel. units)

ë K8

* ë F4
a b

Figure 3. Angular distributions of the intensity of fundamental radiation
( in the convergence plane of the beams) transmitted through a sample
subjected to OP for a � 0 (a) and a � am (b); the peak at b � 0 is the
transmitted radiation, and the side peaks are diffracted radiation.
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fraction eféciency decreases to zero. When the phase differ-
ence is changed very slowly (� 10ÿ3 Hz), the intensity of
diffracted light becomes periodically modulated. This agrees
with the conclusions that follow from expressions (1) and
(3). Indeed, the diffraction eféciency is the same for any
constant phase differences Dc because a change in Dc
results only in the phase shift of the diffraction grating in
space. If the phase shift Dc changes in time with a period
that is much smaller than the time of accumulation of a
separated charge, the diffraction grating does not appear.

Studies of the spatial distribution of the diffracted beam
showed that a wave weakly diverges in the convergence
plane of the beams and strongly diverges in the perpendic-
ular direction. Figure 4 shows the experimental relative
diffraction eféciencies xz � Zd(z0)=Z

m
d and xt � Zd(t0)=Z

m
d

as functions of the widths z0 and t0 of slits in front of the
photomultiplier along these directions [Zd(z0) and Zd(t0) are
the diffraction eféciencies for slit widths in front of the
photomultiplier along the direction z and t, respectively; Zm

d
is the diffraction eféciency in the absence of a slit in front of
the photomultiplier; the distance from the crossing centre of
the beams to the photomultiplier is y � 2:5 cm]. Figure 4
also shows the relative diffraction eféciencies calculated by
the expressions

xz �
1�

2p f1
ÿ
1�D 2

1

��1=2 � z0=2

ÿz0=2
exp

� ÿz 2
2 f1
ÿ
1�D 2

1

� �dz ,
(14)

xt �
1�

2p f2
ÿ
1�D 2

2

��1=2 � t0=2

ÿt0=2
exp

� ÿt 2
2 f2
ÿ
1�D 2

2

� �dt ,
which were obtained using expression (9). The spatial
distribution of diffracted radiation at the point y � 2:5 cm
corresponding to the experimental data is shown in Fig. 5.
One can see that the effective width of this distribution in
the direction t is larger than that in the direction z. The
character of the beam distortion and the parameters of
diffracted radiation are in agreement with the experimental
data.

4. Conclusions

We studied theoretically and experimentally the self-
diffraction of light upon the OP of glasses and obtained
the expression for the amplitude of diffracted radiation and

analysed its properties. The phase, polarisation, and
angular dependences of diffraction in K8 and F4 oxide
glasses, as well as the spatial distribution of diffracted light
well agree with the theoretical dependences obtained from
the model of OP of glasses caused by the coherent
photogalvanic effect. The diffraction of light considered
in the paper can be used for studying physical mechanisms
of purely optical poling of media.
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experiment and theory, respectively).
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Figure 5. Spatial distribution of diffracted radiation at the point y �
2 cm (a) and its cross sections along directions t and z at the beam centre
(b).
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