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Interaction of light waves of arbitrary polarisation
on a photorefractive grating in a cubic gyrotropic crystal
in an external alternating electric field

R.V. Litvinov

Abstract. The symmetric two-wave interaction is considered,
for small modulation indices of an interference light pattern,
on a transmission photorefractive grating with stationary
amplitude produced in a crystal of symmetry group 23 in an
external alternating electric field. For an arbitrary off-duty
ratio of the external field or arbitrary elliptic polarisation of
incident light waves, the space-charge field is shown to
contain both shifted and unshifted components, while the
polarisation state and intensity of a weak light wave change
upon the external field switching. The space-charge-field
amplitude and the weak-wave intensity gain are analysed as
functions of the interaction wavelength, the off-duty ratio of
the external field, and the photorefractive-grating spacing for
the longitudinal and transverse interaction geometry at a
wavelength of 633 nm in a Bi;2TiO» crystal.

Keywords: photorefractive grating, gyrotropic crystal, alternating
electric field.

1. Introduction

Theoretical and experimental studies of the two-wave
interaction in cubic photorefractive crystals extend our
insight into a qualitative picture of the interaction of light
waves on photorefractive nonlinearity [1—13].

The authors of paper [13] considered the dependence of
the energy-exchange coefficient for the two-wave interaction
in a Bi;2TiO,g crystal in an external constant electric field
E, = Eyz" (where z° is the unit vector) on the sign of E, for
the circular polarisation of light waves. For the same
polarisation of light waves, the weak-wave gains for positive
and negative values of an external square-wave field prove
to be different [3]. The experiments [3] were performed for
the external-field period 7 satisfying the condition
1. < T <14, where 7, and 74 are the recombination and
dielectric relaxation times, respectively. In this case, the time
modulation of the space-charge field E, = E .z’ in the
stationary regime is negligible [14—17]. However, when
the sign of E, changes, the polarisation state of a light
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field in a crystal also changes due to a change in the sign of
perturbations of the dielectric constant induced through a
linear electrooptical effect. Such a change in the polarisation
state of light waves in a crystal in the case of arbitrary
elliptic polarisation of the incident waves results in a piece-
constant periodic time dependence of the interaction
efficiency and then light-intensity distribution over the
interaction length. The two-wave interaction was analysed
in papers [3—7] by neglecting the effect of the time depen-
dence of the modulation index of the interference pattern on
the field E.

The aim of this paper is to analyse the symmetric two-
wave interaction on a transmission photorefractive grating
formed in a cubic gyrotropic crystal for an arbitrary
polarisation of incident light waves and an arbitrary off-
duty ratio of an external alternating electric field, taking into
account the influence of the periodic time modulation of the
interference pattern on the space-charge field.

2. The model

Consider the interaction of two plane monochromatic light
waves in cubic gyrotropic photorefractive crystals of
symmetry group 23, with an alternating electric field
applied to the side faces of the crystals (Fig. 1a). Under
the action of an interference pattern described by the
expression I = Ij(1 +mcos Kz), a space-charge field is
produced in the crystal, which induces, due to a linear
electrooptical effect, the perturbation of the dielectric
constant of the crystal Aé = n*iz"E. =n'*ryE.g [18],
where n is the refractive index, and 7 is the electrooptical
tensor, which has nonzero components ry; = rs, = rg3 for
crystals under study. The components of the introduced
tensor ¢ are determined by the relations g; =0,
g =81 =123, g3 = &1 =23, &3 =gn=1{, where z;
are the components of the vector z° in a crystallophysic
coordinate system. In a linear approximation in the
modulation index m, the spatial distribution of the field
E,. = (E|/2)exp (iKz) + c.c. [17] repeats the interference-
pattern distribution, which is shifted in the general case. A
similar perturbation Aé = n*ry Eog is induced by the exter-
nal electric field.

The light field in the crystal can be written as a
superposition of the eigenwaves of the medium [4, 6, 7,
10, 13, 19]. The scalar amplitudes S;, and R;, of these
waves are changed due to the interaction on the refractive
grating with the vector K = Kz°. The vector diagram of the
two-wave interaction is shown in Fig. 1b. For a small
modulation index
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Figure 1. Scheme (a) and the vector diagram (b) of a symmetric two-
wave interaction on the transmission photorefractive grating in a cubic
gyrotropic crystal in an external alternating electric field changing in time
as shown in the inset.
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the amplitudes R;, can be considered specified R;, =
Ryp20. Then, I = |R10|2 + \R20|2. In the approximation of
slowly varying amplitudes S; and S,, the equation for
determining their spatial dependences can be obtained from
the wave equation in the form

ds o .

dxl =1 2/141 Ei[g11Rio + g12 exp(iAnkx) Ry), 2
ds, .mn’r N .

T;ZIT‘HEI[gIZ exp(—iAnkx) R,y + g2 Ra), (3)

where k = 2mt// is the wave number. The birefringence An,
and convolutions g;; = e[ ge;, g» = e;8e, and g\, = e{ ge,,
of the tensor g with the polarisation vectors e; and e, of the
eigenwaves of the crystal are determined by expressions
presented in papers [4, 6, 7, 13, 19]. The tensor convolu-
tions g;; and g,, describe the influence of intramode

processes on the interaction efficiency upon vector syn-
chronism kg =kp; — K wu kg = kg, — K, respectively
(Fig. 1b), while the convolution g, describes this influence
for synchronism kg = kg, — K+ Ak and kg = kg — K—
Ak.

When the period T of the external electric field is
comparable with the time 74y or 7 > 74, the amplitude E;
of the space-charge field in the stationary regime exhibits a
periodic time dependence [14—17]. If T <14, the time
modulation of E; is negligible. The amplitude E, weakly
depends on T in the range 1, € T < 74 and can be obtained
in the form [14, 17]

Ey+1E, Ey+ Eq —1E
El = — mEqW —_
/l+ d_lEO E#+Ed_1E0
(mF)
- , 4
(I'y)

where Eq = 2nkyT'/(Ae); E, = A/QQnur,); Eq = AeN, /(2ne);
A =2n/K; N, is the acceptor concentration; u is the
electron mobility; &, kg, e and T’ are the static dielectric
constant of the medium, the Boltzmann constant, the
elementary charge, and the absolute temperature, respec-
tively. The angle brackets denote averaging over the period
T [10].

In the above approximations, equations (1)—(4) describe
a symmetric two-wave interaction on a transmission photo-
refractive grating in a cubic gyrotropic crystal for an
arbitrary orientation of the sample faces, an arbitrary
polarisation of the incident wave, and an arbitrary period
of the field Ey(7).

3. Space-charge field in an external alternating
electric field for an arbitrary polarisation
of a pump wave

Taking relation (1) into account and using equations (2)
and (3), we can express the derivative from the modulation
index of the interference pattern with respect to the
interaction length x in terms of the space-charge-field
amplitude

dm .’ d

a:lTEla[reff(x)x}’ ©)

where the effective electrooptical coefficient

Ninter [1 — &Xp (lAi’lkX)]
Ankx }] - ©®

Fegr(X) = rgp |:771n - ZIm{

is introduced, which is defined by the parameters n;, =
(11| Riol* + g2 Rog[)/ Iy and 1ipier = g12Rig R/ Iy descri-
bing the contributions from intramode and intermode
processes, respectively. By solving equations (4) and (5), we
obtain Ej in the form

(F1)

Ey(x) = —my WGXP

_ iTCn3 <reff(x)F1 >x (7)
M) ’
where my is the modulation index at the boundary x = 0.

It follows from (7) that the distribution of the amplitude
E; over x is determined by the value of (ren(x)F))/(I'1),
which depends on the amplitude E,, and the time depen-
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dence f(¢) of the field E, = E, f(¢). The time dependence
f(1), which is optimal for the amplification of E; with
increasing x, can be determined from the solution of the
extremal problem for the functional Im[{r.(x)F;)/{I'1)],
which does not depend explicitly on df/ds and 7 in the
approximations used. The analysis of this problem shows
that the amplification of E; in an alternating external field
with the amplitude E,, (Fig. 1), for example, in the square-
wave field Ey = E,sign[sin (2nz/T)], is greater than that in a
continuous periodic field with the same amplitude, for exa-
mple, in the sinusoidal field Ey = E,, sin(2nt/T) [14—17].
For an alternating external field, the amplitude E; can be
represented in the form

. 1 —iyo
Ei(x) = _lmOEeffTiX(sF
r
1’ Egx 15(x)(1 — i705) + ra(x)(x — i65)
i 1 +iydp

X exp

. ©®

where y = (T" = T7)/T; Eoy = Ej[Eq(E,+ Eq)+ Ep)/[(E, +
EQN(Eq + Eq) + Eq: 0p = EnE,/|Ea(E, + Eq) + E: op =
En(Eq — E)/(E, + E)(Eq + Eq) + Eql:  re(x) = [rg(0)+
rar(0]/2: ra(x) = [rai(x) — re()]/2: and rég(x) is the coeffi-
cient ryy for Ey = £E,,.

It follows from (8) that, when the period T of the field E,
is constant, the local (proportional to ReE;) and nonlocal
(proportional to ImE;) components of a photorefractive
grating are determined both by the relation between the
durations of the intervals of positive (7") and negative (77)
values of the field E, (by the parameter y) and the
coefficients rq(x) and rgy(x), which depend on the polari-
sation state of the pump wave. By using the expressions for
the intrinsic refractive indices and tensor convolutions gi;,
g» and g, presented in papers [4, 6, 7, 13, 19] and the
expressions relating the scalar amplitudes of the eigenwaves
of the medium with the polarisation parameters of the
incident waves (which can be obtained from boundary
conditions for the light field at the point x = 0), we can
show that for a linearly polarised pump wave, the coefficient
e does not change with changing the sign of the field E,. In
this case, this coefficient can be conveniently expressed in
terms of the angle 0 between the polarisation vector of the
pump wave and the y axis:

ri(x) = ry {HE + pxsinc® (Ankx /2)(Hyg cos 20

20n

2
+ Hy sin 20) + KA—> (Hjx + Hyg)
n

2
n (%) sinc(Ankx)} (Hyg sin 20 — Hy cos 20)}, 9)

where sincé = (sin¢)/&  Hy = (Hym + Hep)/2; Hpy =
(Huy — Hep)/2;  Hyv = zogzo; Hgg :y0§y05 Hyg =
208y dn = n3r41E0/2; and p is the rotatory power. Note
that the value of An, unlike 6n, does not depend on time in
an alternating field E,. In the cases of right or left elliptic
polarisation of pump waves, the coefficients r.; and rey on
the input face of the crystal are related by the expressions

raf e (x) reht () = 1" (). (10)

= rar" (%),

In the case of circular polarisation, the coefficient r ¢ can be
represented in the form

re (xX) = ray {HZ + [1 — sinc(Ankx)]

o 43np
An’k

(H§4E+H§)}. (1

One can see from (8), taking (10) into account, that for
an elliptically polarised pump wave (rp # 0), the spatial
displacement of the field E, with respect to the initial
interference pattern with the modulation index m is not
equal to the value A/4, which is typical for the photo-
refractive response of a crystal in an external square-wave
(x=0) field E, [2-7, 9, 10, 12, 14—17, 19]. As follows from
(5), the distribution of the modulation index m of the
interference pattern over x for Ey, = E, differs from that
for Ey = —E,,. This means that for x # 0, the interference
pattern is sharply displaced with respect to the field E,. after
changing the sign of the field E,.

Fig. 2 shows the distributions of the local (Re E;) and
nonlocal (Im E;) components of the field amplitude £, with
a spatial period A4 = 3.4 um over the interaction length x in
a Bi;3TiOy crystal in an external square-wave electric field
(7 = 0) with the amplitude E,, = 10 kV cm~'. We used in
calculations the parameters that are typical for a light wave
at 633 nm: N, =102 m™>, ur, =107 Vsm™2, ¢ =416
pFm™, n=258, ryy=-5pm V' and p=6°mm".
The distributions in Figs 2a, b correspond to the longi-
tudinal interaction geometry, when light waves propagate in
the (110) crystal plane, and the positive direction of the
coordinate axis z coincides with that of the [001] crystal axis.
The distributions in Figs 2c, d correspond to the transverse
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Figure 2. Distributions of the space-charge-field amplitude over the
interaction length for the longitudinal (a, b) and transverse (c, d)
geometry of the two-wave interaction in a Bi;2TiOy crystal in an
external square-wave electric field for linear (a, ¢) and circular (b, d)
polarisations of the incident pump wave.
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interaction geometry, when light waves propagate in the
(001) plane and the direction of the coordinate axis z
coincides with that of the [110] axis. The curves in Figs
2a, c correspond to the incident pump wave that is linearly
polarised along the y axis, while the curves in Figs 2b, d
correspond to the right circular polarisation of the pump
wave.

Because in the case of a linearly polarised pump wave,
the coefficient r ¢ does not exhibit any jumps upon changing
the sign of the field E,, the photorefractive grating contains
only a nonlocal component, which is proportional to Im E|
(Figs 2a, ¢). For a circularly polarised pump wave and
x #0, the coefficients rfy(x) and rgp(x) are different,
resulting in the formation of a local component, which is
proportional to Re E, (Figs 2b, d).

In the case of a longitudinal geometry (Hyy = Hug =
0, Hgg = —1), the increase in the component Im E; with
increasing x from zero to d =1 for a linearly polarised
pump wave exceeds that for a circular polarisation by a
factor of 5.7 (Figs 2a, b). This is explained by the fact that,
under conditions considered, the polarisation ellipses of the
eigenwaves, which are described by the vectors e;” = e; and
e;” = e; , are noticeably elongated (the axial ratio is 6 ~ 0.2)
along axes y and z, and the tensor convolutions are
g =gn~-004, gb= gn~ —096 and g5~ —0.2.
For this reason, the pump wave with the polarisation vector
close to the vector e,” = e; is optimal for amplification of
E;. The contribution from intramode processes, which cause
the exponential growth of E(x), is greater for the pump
wave that is linearly polarised along the y axis (n;,, ~ —0.92)
than that for a circularly polarised pump wave (y7;; ~ —0.32,
Ny ~ —0.68). The intermode processes under these con-
ditions weakly affect E; (|#fiye,] <0.1 in both cases).

For the transverse geometry (Hyy = Hgg =0, Hyg =
1) and linear polarisation of the pump wave, the distribution
of the component ImE; over x is formed only due to
intermode processes (e = —0.11, n;, = 0). In this case, the
dependence  ImE;(x) is  periodic, with  period
A, =2n/(Ank) = 0.63 cm (Fig. 2¢). For a circularly polar-
ised pump wave, the distribution of E; over x is formed due
to intramode (n,, = —n, ~#0.21) and intermode
(Miher = —Minter = —0.1) processes. In this case, the compo-
nent ReFE; increases with increasing x, whereas the
component Im E; decreases. (Fig. 2d).

It follows from expression (8) that the local component
can be formed not only due to the elliptic polarisation of the
pump wave but also due to a different duration (y # 0) of
the intervals of positive and negative values of the field E,.
Fig. 3 shows the dependence of the local and nonlocal
components of the amplitude of the field Ey, produced in the
cross section x = 1 cm of a Bi;2TiOyg crystal on the para-
meter y. The remaining conditions of the calculations of cur-
ves in Figs 3a—d are the same as for curves in Figs 2a—d,
respectively.

For a linearly polarised pump wave (Figs 3a, c), the local
component is an asymmetric function of y, while the
nonlocal component is a symmetric function of y. The
component Im E; reaches its maximum for y = 0 (a square-
wave external field). The modulus |Re E;| has a maximum at
lx] =0.25 for a longitudinal geometry (Fig. 3a) and at
lx] — 1 for a transverse geometry (Fig. 3c). In the case
of the right circular polarisation of the pump wave (Figs 3b,
¢), the dependences of Rel; and Im E; on y do not have
symmetry properties, and their maxima and minima are
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Figure 3. Dependences of the space-charge-field amplitude at a distance
x=1cm from the input face of a Bi;»TiOy crystal in an external
alternating electric field on the parameter y for the longitudinal (a, b)
and transverse (c, d) geometry of the two-wave interaction for linear
(a, ¢) and circular (b, d) polarisations of the incident pump wave.

achieved for values of the parameter y that differ from those
in the case of a linearly polarised pump wave.

4. Polarisation state and intensity
of a weak light wave

Relation (7) for the space-charge-field amplitude allows one
to integrate equations for coupled waves (1) and (2) and
represent the vector amplitude S(x) of the total light field of
a weak wave in the form

S(x) =8 (x) —imy n;;éf?;
* o (re (O Fy )
Q] enw [
% dlrer()0] + r4lx<x>1n<x>}, (12)
where
* 3y
X = [ e | TGO gy

S)(x) = Sipe; + Syey exp (1Ankx) and Ry(x) = Ryge; + Rayper ¥
exp (iAnkx) are the vector amplitudes of the signal wave in
the absence of the interaction and of the pump wave,
respectively; R, (x) = Ryye; — Rjye; exp (iAnkx) is the vector
orthogonal to the vector Ry(x) (Rj(x)RI(x) =0); R is the
vector amplitude of the light wave; and the function g({) is
defined by expression (14) in paper [13].

When the incident light waves have the same polari-
sation, the amplitude S(x) can be represented as a
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superposition of two components, which are proportional to
the vectors Sj(x) and S, (x)= Sye; — Sjpe; exp (iAnkx)
[6, 7, 11, 13]. Note that the distribution of the modulation
index m = 2SH(x)R|T(x)/10 over x is formed upon the
interference of the pump wave and the signal-wave compo-
nent, which is proportional to Sj(x) and is self-consistent
with the amplitude E; of the field £, due to self-diffraction
[see (5)]. For m < 1, the contribution from the signal-wave
component [which is proportional to S, (x)] to the inter-
ference pattern is negligible [S L(x)R‘T(x) =0 and
Is = |S(x)|* < I], so that it does not affect the field E.
This component appears due to anisotropic diffraction of
the pump wave from an inhomogeneous photorefractive
grating, with the transformation of the initial polarisation
state to the orthogonal state [17].

When the incident waves have the same linear polari-
sation in an alternating external electric field, the two-wave
gain I’ = [ln(IS/ISO)L/x of a weak signal-wave intensity Ig,

(where Ig) = [S)(x)|") can be represented in the form
3 lin
r(x) _ 2mn ’eff(x)chfl b §F2r+r ()
A 1+ y=oF
=TI'(x)+ I (x), (14)
where
1 w0 B\ i 2 1+ y%07
I (x)==1 1 o talrelt X, _ AT
L) =i {1 (B P L
X exp[—l“”(x)x]}; (15)
3 _lin :
i : T Te (g)Eeffl - 1X5F
le _ ff
R =
46n
x { o P (HZ + Hyg)[cos(Ank() — 1]
i2p
+— An (Hyg sin 20 — Hy cos 20) sin(Ank() (16)
45n* 4p
{A 3 (HA+HME) A 2cos(Ankg)}

X (Hyg €08 20 + H  sin 20) }dC.

The component I'j determines the contribution of the
component to the intensity /g, which is proportional to S,
and describes usual unidirectional energy transfer due to
which a weak light wave can be amplified or attenuated
[1-17]. The second component I'| is always positive and
determines the non-unidirectional contribution to Ig from
the component proportional to §, [6-8, 11, 13]. The
coefficient I', at the positive I'| is greater than that at
the negative.

The coefficients I'j and I'; depend on the parameter .
The coefficient I does not change when the sign of E
changes and is a symmetric function of y, which has a
maximum at y = 0 (square-wave field E,) and a minimum at
lx| — 1. The coefficient I' | for E, = E,, [on > 0, see (16)]
differs from the coefficient I' | for Ey = —E,,, (5n < 0) y # 1.
However, the relation I' | (y) = I' [ (— y) is valid. The type of

the dependence I' "(y) is determined by the orientation of
the interaction with respect to the crystallophysic axes and
by the ratio d;/dy, which strongly depends of the grating
spacing A.
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Figure 4. Dependences of the total two-wave gain I'" and its unidirec-
tional (I')) and non-unidirectional (I")) components on the parameter y
for the longitudinal (a, b) and transverse (c, d) geometry of interaction in
a BipTiOj2 crystal of thickness d =1 cm in an external alternating
electric field for linearly polarised incident light waves and the photoref-
ractive grating spacing A = 3.4 (a, ¢) and 34 um (b, d). The solid and
dashed curves correspond to different orientations of a sample rotated by
180° around the x axis.

Fig. 4 shows the dependences of the total two-wave gain
I'" and its unidirectional (I |) and non-unidirectional (I )
components on the parameter y for the two-wave inter-
action in a Bij;TiOyg crystal of thickness x = d = 1 cm in an
external alternating field E, with the amplitude E, = 10
kV cm™!. The dependences in Figs 4a, b correspond to the
longitudinal geometry, and those in Figs 4c, d — to the
transverse geometry. The curves in Figs 4a, c are calculated
for A = 3.4 pm, and the curves in Figs 4b, d are calculated
for A =34 pm. The solid and dashed lines correspond to
different orientations of a sample obtained by its rotation
around the x axis by 180°.

In the case of the longitudinal geometry, the component
I'[ can be either smaller or greater than I’ |- The gain I' +
has a maximum at y = 0 (square-wave field E;). For A =
3.4 um (67/0r =0.77), as for A < 12.7 ym (Op/0p < 5.77),
energy transfer is unidirectional for all values of y (Fig. 4a).
For A =127 um, y — 1, and the crystal orientation at
which the z axis is directed along the [001] crystal axis, the
attenuation of the signal wave caused by unidirectional
energy transfer is compensated by its amplification due to
non-unidirectional energy transfer. For A > 12.7 um,
energy transfer becomes non-unidirectional also for the
values of y near unity, for example, for y > 0.81 for
A =34 um, when 65/ = 38.96 (Fig. 4b).

In the case of the transverse geometry, under conditions
considered, energy transfer is non-unidirectional for all
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values of y (Figs 4c, d). Because I'] > |I'y| and |I'jd| < 0.3,
the rotation of the crystal around the x axis by 180° results
in a weak change of the component I’ and the total gain
I'" (curves I'l in Fig. 4d, where |[I'jd| < 0.5, virtually
coincide). The type of the dependences I' *(y) and I'f(y)
changes similarly with increasing A. For A =3.4 pum
(Fig. 4c), the gain I'" weakly depends on y, and the
maximum value of max(I'")~3 cm™' is achieved at
y =0, while its minimum is observed at |y| — 1. For
A =34 pm (Fig. 4d), the gain I'* strongly depends on y,
and the maximum max(I'")~3 cm ! is achieved for
lx| — 0, and the minimum min (I' ") ~ 0.5 cm ™~ is observed
for y =0.

In the general case, the two-wave gain is determined
both by the nonlocal and local components of the field E,.
For |y| — 1, expressions (12)—(16) are reduced to the
expressions obtained in paper [13] for the two-wave inter-
action in a crystal in an external constant field. For the
conditions under study and A =34 um, the relation
Eq > E,, > Eg is valid, and the nonlocal component of
the field E, is small compared to the local component,

I$ /1, Is [ 1 (rel. units)

150 -

100

50

I /I, I5  Isg (rel. units)

20 -

30 A/pm

Figure 5. Dependences of the relative gain (solid curves) and attenuation
(dashed curves) of the intensity of a weak light wave on the photore-
fractive grating spacing A in a Bi;2TiOx crystal of thickness d = 1 cm in
an external square-wave electric field for circularly polarised of incident
waves and the longitudinal (a) and transverse (b) geometry of the
interaction.

whose amplitude is Re E; ~ —myE,. For this reason, a
weak light wave is amplified mainly due to the interaction
with the pump wave on the local component of the
photorefractive grating.

Comparison of Figs 4a, ¢ and Figs 4b, d shows that the
asymmetry of curves I'*(y) increases with increasing A,
which is especially pronounced for the longitudinal geo-
metry (Figs 4a, b). For y # 0, this indicated to the difference
between the intensity I for E, = E,, and the intensity g
for Ey — E,,. For y = 0 (square-wave field E;), such a time
modulation of the intensity I is absent if the incident waves
are linearly polarised. For an arbitrary elliptical, in parti-
cular, circular [3] polarisation of the incident waves,
It # Ig for y =0 as well, which is caused by the depen-
dence of the coefficient r.; on the sign of Ej.

Fig. 5 shows the dependences of the relative gain I¢ /I,
and Ig /Ig on A, which was calculated from (12) for the
two-wave interaction in a Bij,TiOyg crystal of thikness d = 1
cm in an external square-wave field with the amplitude
E, = 10kV cm™' for the right-hand circular polarisation of
the incident waves. The solid curves in Fig. 5a (the
longitudinal geometry) correspond to the weak-wave
amplification when the positive direction of the z axis
coincides with the [001] crystal axis. The dashed curves
are plotted for the ratio 100/¢"/Ig, and correspond to the
attenuation of this wave when the positive direction of the z
axis coincides with the [001] axis.

The difference in the shape of the solid and dashed
curves, as well as the inequality I¢ /gy # Ig /I , are caused
by the contribution from non-unidirectional energy transfer
to the weak-wave intensity. For the transverse geometry and
circularly polarised incident waves (Fig. 5b), the rotation of
the crystal by 180° around the x axis does not change the
weak-wave amplification. Note that in all the cases studied,
the intensity /g is greater than IJ. A change in the intensity
gain A = (Ig — I{)/ I is most pronounced (4 = 91) for the
longitudinal geometry and the grating spacing A, = 3.4
pm, which corresponds to the maximum of the effective
space-charge-field amplitude E.;. When the signal wave is
attenuated in this geometry, the minimal value A, ~ 0.14
corresponds to the spacing A,,,,. For the transverse geom-
etry and A = Ap,,,, the value 4 =3, which virtually
corresponds to the maximum value for this case.

5. Conclusions

The stationary regime of the symmetric two-wave inter-
action in a cubic gyrotropic crystal in an external
alternating electric field has been analytically described
within the framework of adopted approximations. For
particular cases of the longitudinal and transverse geometry
of the interaction in a Bi;2TiOy crystal at a wavelength of
633 nm, the amplitude of the electric field induced in the
crystal and the weak-wave intensity gain have been
calculated.

It is shown that not only the nonlocal component of a
photorefractive grating can be formed, which is typical for a
square-wave external field, but also the local component.
The local component is produced when the incident waves
have an arbitrary elliptical polarisation and the external field
has an arbitrary off-duty ratio. When incident waves are
linearly polarised, this component is produced only when
the external field contains a nonzero constant component.
Note that the relation between the amplitudes of the local
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and nonlocal components of the photorefractive grating
changes over the interaction length.

Energy transfer between the light waves interacting in
the crystal in an external alternating field contains both the
unidirectional and non-unidirectional components, the lat-
ter appearing due to the anisotropic diffraction of an intense
wave from the inhomogeneous photorefractive grating when
the polarisation state changes to the orthogonal state. Both
components of the photorefractive grating contribute to the
non-unidirectional component. The intensity of a weak light
wave in the positive external field differs from the intensity
of this wave in the negative field if the incident waves are
elliptically or linearly polarised and the external field has a
nonzero constant component. Note that the local compo-
nent of the photorefractive grating in this case is also
nonzero.

Within the framework of adopted approximations, when
the duration of the interval of positive (negative) values of
the external field greatly exceeds the duration of the interval
of its negative (positive) values, a photorefractive response
of a crystal is similar to that for a crystal in a constant
positive (negative) electric field E,. However, in the case of
an alternating external electric field E, with period T < 74,
the total current through the crystal is determined by the
bias current rather than the conduction current, as in the
case of the constant field E,. For this reason, devices using
the refractive response of this type [17] do not require a
highly uniform illumination.
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