
Abstract. The symmetric two-wave interaction is considered,
for small modulation indices of an interference light pattern,
on a transmission photorefractive grating with stationary
amplitude produced in a crystal of symmetry group 23 in an
external alternating electric éeld. For an arbitrary off-duty
ratio of the external éeld or arbitrary elliptic polarisation of
incident light waves, the space-charge éeld is shown to
contain both shifted and unshifted components, while the
polarisation state and intensity of a weak light wave change
upon the external éeld switching. The space-charge-éeld
amplitude and the weak-wave intensity gain are analysed as
functions of the interaction wavelength, the off-duty ratio of
the external éeld, and the photorefractive-grating spacing for
the longitudinal and transverse interaction geometry at a
wavelength of 633 nm in a Bi12TiO20 crystal.

Keywords: photorefractive grating, gyrotropic crystal, alternating
electric éeld.

1. Introduction

Theoretical and experimental studies of the two-wave
interaction in cubic photorefractive crystals extend our
insight into a qualitative picture of the interaction of light
waves on photorefractive nonlinearity [1 ë 13].

The authors of paper [13] considered the dependence of
the energy-exchange coefécient for the two-wave interaction
in a Bi12TiO20 crystal in an external constant electric éeld
E0 � E0z

0 (where z 0 is the unit vector) on the sign of E0 for
the circular polarisation of light waves. For the same
polarisation of light waves, the weak-wave gains for positive
and negative values of an external square-wave éeld prove
to be different [3]. The experiments [3] were performed for
the external-éeld period T satisfying the condition
tr 5T5 td, where tr and td are the recombination and
dielectric relaxation times, respectively. In this case, the time
modulation of the space-charge éeld Esc � Escz

0 in the
stationary regime is negligible [14 ë 17]. However, when
the sign of E0 changes, the polarisation state of a light

éeld in a crystal also changes due to a change in the sign of
perturbations of the dielectric constant induced through a
linear electrooptical effect. Such a change in the polarisation
state of light waves in a crystal in the case of arbitrary
elliptic polarisation of the incident waves results in a piece-
constant periodic time dependence of the interaction
eféciency and then light-intensity distribution over the
interaction length. The two-wave interaction was analysed
in papers [3 ë 7] by neglecting the effect of the time depen-
dence of the modulation index of the interference pattern on
the éeld Esc.

The aim of this paper is to analyse the symmetric two-
wave interaction on a transmission photorefractive grating
formed in a cubic gyrotropic crystal for an arbitrary
polarisation of incident light waves and an arbitrary off-
duty ratio of an external alternating electric éeld, taking into
account the inêuence of the periodic time modulation of the
interference pattern on the space-charge éeld.

2. The model

Consider the interaction of two plane monochromatic light
waves in cubic gyrotropic photorefractive crystals of
symmetry group 23, with an alternating electric éeld
applied to the side faces of the crystals (Fig. 1a). Under
the action of an interference pattern described by the
expression I � I0(1�m cosKz), a space-charge éeld is
produced in the crystal, which induces, due to a linear
electrooptical effect, the perturbation of the dielectric
constant of the crystal Dê � n 4r̂z 0Esc � n 4r41Escĝ [18],
where n is the refractive index, and r̂ is the electrooptical
tensor, which has nonzero components r41 � r52 � r63 for
crystals under study. The components of the introduced
tensor ĝ are determined by the relations gii � 0,
g12 � g21 � z 03 , g13 � g31 � z 02 , g23 � g32 � z 01 , where z 0i
are the components of the vector z 0 in a crystallophysic
coordinate system. In a linear approximation in the
modulation index m, the spatial distribution of the éeld
Esc � (E1=2) exp (iKz)� c. c. [17] repeats the interference-
pattern distribution, which is shifted in the general case. A
similar perturbation Dê � n 4r41E0ĝ is induced by the exter-
nal electric éeld.

The light éeld in the crystal can be written as a
superposition of the eigenwaves of the medium [4, 6, 7,
10, 13, 19]. The scalar amplitudes S1;2 and R1;2 of these
waves are changed due to the interaction on the refractive
grating with the vector K � Kz 0. The vector diagram of the
two-wave interaction is shown in Fig. 1b. For a small
modulation index
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m � 2�S1R
�
1 � S2R

�
2 �

I0
5 1, (1)

the amplitudes R1;2 can be considered speciéed R1;2 �
R10;20. Then, I0 � jR10j2 � jR20j2. In the approximation of
slowly varying amplitudes S1 and S2, the equation for
determining their spatial dependences can be obtained from
the wave equation in the form

dS1

dx
� i

pn 3r41
2l

E1� g11R10 � g12 exp�iDnkx�R20�, (2)

dS2

dx
� i

pn 3r41
2l

E1� g �12 exp�ÿiDnkx�R10 � g22R20�, (3)

where k � 2p=l is the wave number. The birefringence Dn,
and convolutions g11 � e �1 ĝe1, g22 � e �2 ĝe2 and g12 � e �1 ĝe2,
of the tensor ĝ with the polarisation vectors e1 and e2 of the
eigenwaves of the crystal are determined by expressions
presented in papers [4, 6, 7, 13, 19]. The tensor convolu-
tions g11 and g22 describe the inêuence of intramode

processes on the interaction eféciency upon vector syn-
chronism kS1 � kR1 ÿ K Ë kS2 � kR2 ÿ K, respectively
(Fig. 1b), while the convolution g12 describes this inêuence
for synchronism kS1 � kR2 ÿ K� Dk and kS2 � kR1 ÿ Kÿ
Dk.

When the period T of the external electric éeld is
comparable with the time td or T > td, the amplitude E1

of the space-charge éeld in the stationary regime exhibits a
periodic time dependence [14 ë 17]. If T5 td, the time
modulation of E1 is negligible. The amplitude E1 weakly
depends on T in the range tr 5T5 td and can be obtained
in the form [14, 17]

E1 � ÿ
�
mEq

E0 � iEd

Em � Ed ÿ iE0

���
Eq � Ed ÿ iE0

Em � Ed ÿ iE0

�

� ÿhmF1i
hG1i

, (4)

where Ed � 2pkBT
0=(Le); Em � L=(2pmtr); Eq � LeNa=(2pe);

L � 2p=K; Na is the acceptor concentration; m is the
electron mobility; e, kB, e and T 0 are the static dielectric
constant of the medium, the Boltzmann constant, the
elementary charge, and the absolute temperature, respec-
tively. The angle brackets denote averaging over the period
T [10].

In the above approximations, equations (1) ë (4) describe
a symmetric two-wave interaction on a transmission photo-
refractive grating in a cubic gyrotropic crystal for an
arbitrary orientation of the sample faces, an arbitrary
polarisation of the incident wave, and an arbitrary period
of the éeld E0(t).

3. Space-charge éeld in an external alternating
electric éeld for an arbitrary polarisation
of a pump wave

Taking relation (1) into account and using equations (2)
and (3), we can express the derivative from the modulation
index of the interference pattern with respect to the
interaction length x in terms of the space-charge-éeld
amplitude

dm

dx
� i

pn 3

l
E1

d

dx
�reff�x�x�, (5)

where the effective electrooptical coefécient

reff�x� � r41

�
Zin ÿ 2Im

�
Zinter�1ÿ exp�iDnkx��

Dnkx

��
, (6)

is introduced, which is deéned by the parameters Zin �
(g11jR10j2 � g22jR20j2)=I0 and Zinter � g12R

�
10R20=I0 descri-

bing the contributions from intramode and intermode
processes, respectively. By solving equations (4) and (5), we
obtain E1 in the form

E1�x� � ÿm0

hF1i
hG1i

exp

�
ÿ ipn 3hreff�x�F1ix

lhG1i
�
, (7)

where m0 is the modulation index at the boundary x � 0.
It follows from (7) that the distribution of the amplitude

E1 over x is determined by the value of hreff(x)F1i=hG1i,
which depends on the amplitude Em and the time depen-
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Figure 1. Scheme (a) and the vector diagram (b) of a symmetric two-
wave interaction on the transmission photorefractive grating in a cubic
gyrotropic crystal in an external alternating electric éeld changing in time
as shown in the inset.
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dence f (t) of the éeld E0 � Em f (t). The time dependence
f (t), which is optimal for the ampliécation of E1 with
increasing x, can be determined from the solution of the
extremal problem for the functional Im�hreff(x)F1i=hG1i�,
which does not depend explicitly on df=dt and t in the
approximations used. The analysis of this problem shows
that the ampliécation of E1 in an alternating external éeld
with the amplitude Em (Fig. 1), for example, in the square-
wave éeld E0 � Emsign�sin (2pt=T )�, is greater than that in a
continuous periodic éeld with the same amplitude, for exa-
mple, in the sinusoidal éeld E0 � Em sin (2pt=T ) [14 ë 17].
For an alternating external éeld, the amplitude E1 can be
represented in the form

E1�x� � ÿim0Eeff

1ÿ iwdF
1� iwdG

� exp

�
pn 3Eeffx

l
rS�x��1ÿ iwdF� � rD�x��wÿ idF�

1� iwdG

�
, (8)

where w � (T�ÿ Tÿ)=T; Eeff �Eq�Ed(Em� Ed)� E 2
m�=�(Em�

Ed)(Eq � Ed)� E 2
m�; dF � EmEm=�Ed(Em � Ed)� E 2

m�; dG �
Em(Eq ÿ Em)=�(Em � Ed)(Eq � Ed)� E 2

m�; rS(x) � �r�eff(x)�
rÿeff(x)�=2; rD(x) � �r�eff(x)ÿ rÿeff(x)�=2; and r�eff(x) is the coefé-
cient reff for E0 � �Em.

It follows from (8) that, when the period T of the éeld E0

is constant, the local (proportional to ReE1) and nonlocal
(proportional to ImE1) components of a photorefractive
grating are determined both by the relation between the
durations of the intervals of positive (T�) and negative (Tÿ)
values of the éeld E0 (by the parameter w) and the
coefécients r�eff(x) and rÿeff(x), which depend on the polari-
sation state of the pump wave. By using the expressions for
the intrinsic refractive indices and tensor convolutions g11,
g22 and g12 presented in papers [4, 6, 7, 13, 19] and the
expressions relating the scalar amplitudes of the eigenwaves
of the medium with the polarisation parameters of the
incident waves (which can be obtained from boundary
conditions for the light éeld at the point x � 0), we can
show that for a linearly polarised pump wave, the coefécient
reff does not change with changing the sign of the éeld E0. In
this case, this coefécient can be conveniently expressed in
terms of the angle y between the polarisation vector of the
pump wave and the y axis:

r lineff �x� � r41

�
HS � rxsinc2�Dnkx=2��HME cos 2y

�HD sin 2y� �
��

2dn
Dn

�2
�H 2

D �H 2
ME�

�
�

2r
Dnk

�2
sinc�Dnkx�

�
�HME sin 2yÿHD cos 2y�

�
, (9)

where sinc x � (sin x)=x; HS � (HMM �HEE)=2; HD �
(HMM ÿHEE)=2; HMM � z 0ĝz 0; HEE � y 0ĝy 0; HME �
z 0ĝy 0; dn � n 3r41E0=2; and r is the rotatory power. Note
that the value of Dn, unlike dn, does not depend on time in
an alternating éeld E0. In the cases of right or left elliptic
polarisation of pump waves, the coefécients r�eff and rÿeff on
the input face of the crystal are related by the expressions

r�righteff �x� � rÿ left
eff �x�, r� left

eff �x� � rÿ right
eff �x�. (10)

In the case of circular polarisation, the coefécient reff can be
represented in the form

r circeff �x� � r41

�
HS � �1ÿ sinc�Dnkx��

� 4dnr
Dn 2k

ÿ
H 2

ME �H 2
D

��
. (11)

One can see from (8), taking (10) into account, that for
an elliptically polarised pump wave (rD 6� 0), the spatial
displacement of the éeld Esc with respect to the initial
interference pattern with the modulation index m0 is not
equal to the value L/4, which is typical for the photo-
refractive response of a crystal in an external square-wave
(w � 0) éeld E0 [2 ë 7, 9, 10, 12, 14 ë 17, 19]. As follows from
(5), the distribution of the modulation index m of the
interference pattern over x for E0 � Em differs from that
for E0 � ÿEm. This means that for x 6� 0, the interference
pattern is sharply displaced with respect to the éeld Esc after
changing the sign of the éeld E0.

Fig. 2 shows the distributions of the local (ReE1) and
nonlocal (ImE1) components of the éeld amplitude Esc with
a spatial period L � 3:4 mm over the interaction length x in
a Bi12TiO20 crystal in an external square-wave electric éeld
( w � 0) with the amplitude Em � 10 kV cmÿ1. We used in
calculations the parameters that are typical for a light wave
at 633 nm: Na � 10ÿ22 mÿ3, mtr � 10ÿ12 V s mÿ2, e � 416
pF mÿ1, n � 2:58, r41 � ÿ5 pm Vÿ1, and r � 6 8 mmÿ1.
The distributions in Figs 2a, b correspond to the longi-
tudinal interaction geometry, when light waves propagate in
the (�110) crystal plane, and the positive direction of the
coordinate axis z coincides with that of the [001] crystal axis.
The distributions in Figs 2c, d correspond to the transverse
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Figure 2. Distributions of the space-charge-éeld amplitude over the
interaction length for the longitudinal (a, b) and transverse (c, d)
geometry of the two-wave interaction in a Bi12TiO20 crystal in an
external square-wave electric éeld for linear (a, c) and circular (b, d)
polarisations of the incident pump wave.
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interaction geometry, when light waves propagate in the
(001) plane and the direction of the coordinate axis z
coincides with that of the [�110] axis. The curves in Figs
2a, c correspond to the incident pump wave that is linearly
polarised along the y axis, while the curves in Figs 2b, d
correspond to the right circular polarisation of the pump
wave.

Because in the case of a linearly polarised pump wave,
the coefécient reff does not exhibit any jumps upon changing
the sign of the éeld E0, the photorefractive grating contains
only a nonlocal component, which is proportional to ImE1

(Figs 2a, c). For a circularly polarised pump wave and
x 6� 0, the coefécients r�eff(x) and rÿeff(x) are different,
resulting in the formation of a local component, which is
proportional to ReE1 (Figs 2b, d).

In the case of a longitudinal geometry (HMM � HME �
0, HEE � ÿ1), the increase in the component ImE1 with
increasing x from zero to d � 1 for a linearly polarised
pump wave exceeds that for a circular polarisation by a
factor of 5.7 (Figs 2a, b). This is explained by the fact that,
under conditions considered, the polarisation ellipses of the
eigenwaves, which are described by the vectors e�2 � eÿ1 and
e�1 � eÿ2 , are noticeably elongated (the axial ratio is d � 0:2)
along axes y and z, and the tensor convolutions are
g�11 � gÿ22 � ÿ0:04, g�22 � gÿ11 � ÿ0:96 and g�12 � ÿ0:2.
For this reason, the pump wave with the polarisation vector
close to the vector e�2 � eÿ1 is optimal for ampliécation of
E1. The contribution from intramode processes, which cause
the exponential growth of E1(x), is greater for the pump
wave that is linearly polarised along the y axis (Zin � ÿ0:92)
than that for a circularly polarised pump wave (Z�in � ÿ0:32,
Zÿin � ÿ0:68). The intermode processes under these con-
ditions weakly affect E1 (jZinter|<0.1 in both cases).

For the transverse geometry (HMM � HEE � 0, HME �
1) and linear polarisation of the pump wave, the distribution
of the component ImE1 over x is formed only due to
intermode processes (Zinter � ÿ0:11, Zin � 0). In this case, the
dependence ImE1(x) is periodic, with period
Lx � 2p=(Dnk) � 0:63 cm (Fig. 2c). For a circularly polar-
ised pump wave, the distribution of E1 over x is formed due
to intramode (Z�in � ÿZÿin � 0:21) and intermode
(Z�inter � ÿZÿinter � ÿ0:1) processes. In this case, the compo-
nent ReE1 increases with increasing x, whereas the
component ImE1 decreases. (Fig. 2d).

It follows from expression (8) that the local component
can be formed not only due to the elliptic polarisation of the
pump wave but also due to a different duration ( w 6� 0) of
the intervals of positive and negative values of the éeld E0.
Fig. 3 shows the dependence of the local and nonlocal
components of the amplitude of the éeld Esc produced in the
cross section x � 1 cm of a Bi12TiO20 crystal on the para-
meter w. The remaining conditions of the calculations of cur-
ves in Figs 3a ë d are the same as for curves in Figs 2a ë d,
respectively.

For a linearly polarised pump wave (Figs 3a, c), the local
component is an asymmetric function of w, while the
nonlocal component is a symmetric function of w. The
component ImE1 reaches its maximum for w � 0 (a square-
wave external éeld). The modulus |ReE1| has a maximum at
jwj � 0:25 for a longitudinal geometry (Fig. 3a) and at
jwj ! 1 for a transverse geometry (Fig. 3c). In the case
of the right circular polarisation of the pump wave (Figs 3b,
c), the dependences of Re I1 and ImE1 on w do not have
symmetry properties, and their maxima and minima are

achieved for values of the parameter w that differ from those
in the case of a linearly polarised pump wave.

4. Polarisation state and intensity
of a weak light wave

Relation (7) for the space-charge-éeld amplitude allows one
to integrate equations for coupled waves (1) and (2) and
represent the vector amplitude S(x) of the total light éeld of
a weak wave in the form

S�x��Sk�x�ÿim0

pn 3hF1i
2lhG1i

�
�
Rk�x�

� x

0

exp

�
ÿipn

3hreff�z�F1iz
lhG1i

�

� d�reff�z�z� � r41X�x�R?�x�
�
, (12)

where

X�x� �
� x

0

g�z� exp
�
ÿ i

pn 3hreff�z�F1iz
lhG1i

�
dz; (13)

Sk(x) � S10e1 � S20e2 exp (iDnkx) and Rk(x) � R10e1 � R20e2�
exp (iDnkx) are the vector amplitudes of the signal wave in
the absence of the interaction and of the pump wave,
respectively; R?(x) � R �20e1 ÿ R �10e2 exp (iDnkx) is the vector
orthogonal to the vector Rk(x) (Rk(x)R

�
?(x) � 0); R is the

vector amplitude of the light wave; and the function g(z) is
deéned by expression (14) in paper [13].

When the incident light waves have the same polari-
sation, the amplitude S(x) can be represented as a
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Figure 3. Dependences of the space-charge-éeld amplitude at a distance
x � 1 cm from the input face of a Bi12TiO20 crystal in an external
alternating electric éeld on the parameter w for the longitudinal (a, b)
and transverse (c, d) geometry of the two-wave interaction for linear
(a, c) and circular (b, d) polarisations of the incident pump wave.
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superposition of two components, which are proportional to
the vectors Sk(x) and S?(x) � S �20e1 ÿ S �10e2 exp (iDnkx)
[6, 7, 11, 13]. Note that the distribution of the modulation
index m � 2Sk(x)R

�
k (x)=I0 over x is formed upon the

interference of the pump wave and the signal-wave compo-
nent, which is proportional to Sk(x) and is self-consistent
with the amplitude E1 of the éeld Esc due to self-diffraction
[see (5)]. For m5 1, the contribution from the signal-wave
component [which is proportional to S?(x)] to the inter-
ference pattern is negligible [S?(x)R

�
k (x) � 0 and

IS � jS(x)j2 5 I0], so that it does not affect the éeld Esc.
This component appears due to anisotropic diffraction of
the pump wave from an inhomogeneous photorefractive
grating, with the transformation of the initial polarisation
state to the orthogonal state [17].

When the incident waves have the same linear polari-
sation in an alternating external electric éeld, the two-wave
gain G � �ln(IS=IS0)�=x of a weak signal-wave intensity IS0
(where IS0 � jSk(x)j2) can be represented in the form

G�x� � 2pn 3r lineff �x�Eeff

l
1ÿ w 2dFdG
1� w 2d 2

G
� G?�x�

� Gk�x� � G?�x�, (14)

where

G?�x� �
1

x
ln

�
1�

�
pn 3r41Eeff

l

�2
jX lin�x�j2 1� w 2d 2

G

1� w 2d 2
G

� exp�ÿGk�x�x�
�
; (15)

X lin�x� �
� x

0

exp

�
pn 3r lineff �z�Eeff

l
1ÿ iwdF
1� iwdG

z
�

�
�
4dnr
kDn 2

�H 2
D �H 2

ME��cos�Dnkz� ÿ 1�

� i2r
kDn
�HME sin 2yÿHD cos 2y� sin�Dnkz� (16)

ÿ i

�
4dn 2

Dn 2
�H 2

D �H 2
ME� �

4r 2

k 2Dn 2
cos�Dnkz�

�

��HME cos 2y�HD sin 2y�
�
dz.

The component Gk determines the contribution of the
component to the intensity IS, which is proportional to Sk,
and describes usual unidirectional energy transfer due to
which a weak light wave can be ampliéed or attenuated
[1 ë 17]. The second component G? is always positive and
determines the non-unidirectional contribution to IS from
the component proportional to S? [6 ë 8, 11, 13]. The
coefécient G? at the positive Gk is greater than that at
the negative.

The coefécients Gk and G? depend on the parameter w.
The coefécient Gk does not change when the sign of E0

changes and is a symmetric function of w, which has a
maximum at w � 0 (square-wave éeld E0) and a minimum at
jwj ! 1. The coefécient G�? for E0 � Em [dn > 0, see (16)]
differs from the coefécient Gÿ? for E0 � ÿEm (dn < 0) w 6� 1.
However, the relation G�? (w) � Gÿ? (ÿ w) is valid. The type of

the dependence G�(w) is determined by the orientation of
the interaction with respect to the crystallophysic axes and
by the ratio dF=dG, which strongly depends of the grating
spacing L.

Fig. 4 shows the dependences of the total two-wave gain
G� and its unidirectional (Gk) and non-unidirectional (G�? )
components on the parameter w for the two-wave inter-
action in a Bi12TiO20 crystal of thickness x � d � 1 cm in an
external alternating éeld E0 with the amplitude Em � 10
kV cmÿ1. The dependences in Figs 4a, b correspond to the
longitudinal geometry, and those in Figs 4c, d ë to the
transverse geometry. The curves in Figs 4a, c are calculated
for L � 3:4 mm, and the curves in Figs 4b, d are calculated
for L � 34 mm. The solid and dashed lines correspond to
different orientations of a sample obtained by its rotation
around the x axis by 1808.

In the case of the longitudinal geometry, the component
G�? can be either smaller or greater than Gk. The gain G�

has a maximum at w � 0 (square-wave éeld E0). For L �
3:4 mm (dF=dG � 0:77), as for L < 12:7 mm (dF=dG < 5:77),
energy transfer is unidirectional for all values of w (Fig. 4a).
For L � 12:7 mm, w! 1, and the crystal orientation at
which the z axis is directed along the [00�1] crystal axis, the
attenuation of the signal wave caused by unidirectional
energy transfer is compensated by its ampliécation due to
non-unidirectional energy transfer. For L > 12:7 mm,
energy transfer becomes non-unidirectional also for the
values of w near unity, for example, for w > 0:81 for
L � 34 mm, when dF=dG � 38:96 (Fig. 4b).

In the case of the transverse geometry, under conditions
considered, energy transfer is non-unidirectional for all
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Figure 4. Dependences of the total two-wave gain G� and its unidirec-
tional (Gk) and non-unidirectional (G?) components on the parameter w
for the longitudinal (a, b) and transverse (c, d) geometry of interaction in
a Bi12TiO12 crystal of thickness d � 1 cm in an external alternating
electric éeld for linearly polarised incident light waves and the photoref-
ractive grating spacing L � 3:4 (a, c) and 34 mm (b, d). The solid and
dashed curves correspond to different orientations of a sample rotated by
1808 around the x axis.
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values of w (Figs 4c, d). Because G�? 4 jGkj and jGkd j < 0:3,
the rotation of the crystal around the x axis by 1808 results
in a weak change of the component G�? and the total gain
G� (curves G�? in Fig. 4d, where jGkd j < 0:5, virtually
coincide). The type of the dependences G�(w) and G�? (w)
changes similarly with increasing L. For L � 3:4 mm
(Fig. 4c), the gain G� weakly depends on w, and the
maximum value of max (G�) � 3 cmÿ1 is achieved at
w � 0, while its minimum is observed at jwj ! 1. For
L � 34 mm (Fig. 4d), the gain G� strongly depends on w,
and the maximum max (G�) � 3 cmÿ1 is achieved for
jwj ! 0, and the minimum min (G�) � 0:5 cmÿ1 is observed
for w � 0.

In the general case, the two-wave gain is determined
both by the nonlocal and local components of the éeld Esc.
For jwj ! 1, expressions (12) ë (16) are reduced to the
expressions obtained in paper [13] for the two-wave inter-
action in a crystal in an external constant éeld. For the
conditions under study and L � 34 mm, the relation
Eq 4Em 4Ed is valid, and the nonlocal component of
the éeld Esc is small compared to the local component,

whose amplitude is ReE1 � ÿm0Em. For this reason, a
weak light wave is ampliéed mainly due to the interaction
with the pump wave on the local component of the
photorefractive grating.

Comparison of Figs 4a, c and Figs 4b, d shows that the
asymmetry of curves G�(w) increases with increasing L,
which is especially pronounced for the longitudinal geo-
metry (Figs 4a, b). For w 6� 0, this indicated to the difference
between the intensity I�S for E0 � Em and the intensity IÿS
for E0 ÿ Em. For w � 0 (square-wave éeld E0), such a time
modulation of the intensity IS is absent if the incident waves
are linearly polarised. For an arbitrary elliptical, in parti-
cular, circular [3] polarisation of the incident waves,
I �S 6� I ÿS for w � 0 as well, which is caused by the depen-
dence of the coefécient reff on the sign of E0.

Fig. 5 shows the dependences of the relative gain I�S =IS0
and IÿS =IS0 on L, which was calculated from (12) for the
two-wave interaction in a Bi12TiO20 crystal of thikness d � 1
cm in an external square-wave éeld with the amplitude
Em � 10 kV cmÿ1 for the right-hand circular polarisation of
the incident waves. The solid curves in Fig. 5a (the
longitudinal geometry) correspond to the weak-wave
ampliécation when the positive direction of the z axis
coincides with the [001] crystal axis. The dashed curves
are plotted for the ratio 100I �S =IS0 and correspond to the
attenuation of this wave when the positive direction of the z
axis coincides with the [00�1] axis.

The difference in the shape of the solid and dashed
curves, as well as the inequality I�S =IS0 6� IS0=I

ÿ
S , are caused

by the contribution from non-unidirectional energy transfer
to the weak-wave intensity. For the transverse geometry and
circularly polarised incident waves (Fig. 5b), the rotation of
the crystal by 1808 around the x axis does not change the
weak-wave ampliécation. Note that in all the cases studied,
the intensity IÿS is greater than I�S . A change in the intensity
gain D � (IÿS ÿ I�S )=IS0 is most pronounced (D � 91) for the
longitudinal geometry and the grating spacing Lmax � 3:4
mm, which corresponds to the maximum of the effective
space-charge-éeld amplitude Eeff. When the signal wave is
attenuated in this geometry, the minimal value Lmin � 0:14
corresponds to the spacing Lmax. For the transverse geom-
etry and L � Lmax, the value D � 3, which virtually
corresponds to the maximum value for this case.

5. Conclusions

The stationary regime of the symmetric two-wave inter-
action in a cubic gyrotropic crystal in an external
alternating electric éeld has been analytically described
within the framework of adopted approximations. For
particular cases of the longitudinal and transverse geometry
of the interaction in a Bi12TiO20 crystal at a wavelength of
633 nm, the amplitude of the electric éeld induced in the
crystal and the weak-wave intensity gain have been
calculated.

It is shown that not only the nonlocal component of a
photorefractive grating can be formed, which is typical for a
square-wave external éeld, but also the local component.
The local component is produced when the incident waves
have an arbitrary elliptical polarisation and the external éeld
has an arbitrary off-duty ratio. When incident waves are
linearly polarised, this component is produced only when
the external éeld contains a nonzero constant component.
Note that the relation between the amplitudes of the local
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Figure 5. Dependences of the relative gain (solid curves) and attenuation
(dashed curves) of the intensity of a weak light wave on the photore-
fractive grating spacing L in a Bi12TiO20 crystal of thickness d � 1 cm in
an external square-wave electric éeld for circularly polarised of incident
waves and the longitudinal (a) and transverse (b) geometry of the
interaction.
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and nonlocal components of the photorefractive grating
changes over the interaction length.

Energy transfer between the light waves interacting in
the crystal in an external alternating éeld contains both the
unidirectional and non-unidirectional components, the lat-
ter appearing due to the anisotropic diffraction of an intense
wave from the inhomogeneous photorefractive grating when
the polarisation state changes to the orthogonal state. Both
components of the photorefractive grating contribute to the
non-unidirectional component. The intensity of a weak light
wave in the positive external éeld differs from the intensity
of this wave in the negative éeld if the incident waves are
elliptically or linearly polarised and the external éeld has a
nonzero constant component. Note that the local compo-
nent of the photorefractive grating in this case is also
nonzero.

Within the framework of adopted approximations, when
the duration of the interval of positive (negative) values of
the external éeld greatly exceeds the duration of the interval
of its negative (positive) values, a photorefractive response
of a crystal is similar to that for a crystal in a constant
positive (negative) electric éeld E0. However, in the case of
an alternating external electric éeld E0 with period T5 td,
the total current through the crystal is determined by the
bias current rather than the conduction current, as in the
case of the constant éeld E0. For this reason, devices using
the refractive response of this type [17] do not require a
highly uniform illumination.

Acknowledgements. The author thanks S.M. Shandarov for
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