
Abstract. A theoretical model is developed that describes
self-locking of transverse modes in the cavity of an injection
laser in the presence of a parabolic inhomogeneity of the
refractive index along the pÿ n junction in the active region.
A periodic discrete spatial displacement of the radiation
pattern is obtained. The frequency and angle of scanning are
estimated. All the results are in good agreement with
experimental data obtained earlier.
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1. Introduction

In érst injection lasers with a broad contact in separate
emitting regions of width � 50 mm, a nearly harmonic scan
of a light spot over the output mirror could be observed
with the help of an electrooptical converter [1]. This effect
was reasonably attributed to self-locking of transverse
modes [2], which are formed due to the inhomogeneity of
the permittivity of the cavity [3]. Similar effects were
observed in gas lasers with spherical mirrors, for which it
was shown [2] that an in-phase addition of Hermitian ë
Gaussian polynomials with a Poisson distribution of ampli-
tudes results in the sinusoidal scanning of the laser beam.

It is known that the emission spectrum of an injection
laser with a Fabry ë Perot resonator is formed in the general
case by a family of longitudinal and adjacent transverse
modes [4]. The phase locking of longitudinal modes results
in the appearance of a periodic train of short pulses [5]. The
pulse-repetition period is inversely proportional to the
spectral mode interval, while the duration of each pulse
is inversely proportional to the spectral interval of all modes
involved in phase locking. The self-locking of longitudinal
modes in an injection laser with a cavity of length 300 ë
500 mm is hindered because of a large spectral interval
(100 ë 200 GHz) between adjacent longitudinal modes. The
passive locking of longitudinal modes can be achieved only
by using a saturable absorber with a very fast recovery of
absorption (faster than for 50 ps) [6].

In the case of transverse-mode locking, the radiation
pattern is periodically scanned in space due to periodic
variations in the phase front of a wave at the laser output.
The self-locking conditions in such a laser are substantially
simpliéed because of a narrow (of the order of 10 GHz)
transverse-mode interval [4].

The aim of this paper is to develop a theoretical model
describing the appearance of self-locking of transverse
modes in a planar semiconductor laser (Fig. 1).

2. The model

Let us determine the conditions required for transverse-
mode locking. Because mode locking is assumed periodic,
an electric éeld at the laser input can be expanded into the
Fourier series

E�r; t� �
X
m

Am�r� exp�ÿiomt�.

This series will describe a periodic process if the frequency
interval between adjacent harmonics is constant.

It is well known that the components fkx, ky, kzg
�(k 2

x )l � (k 2
y )m � (k 2

z )n � o 2
nmlc

ÿ2e� of the wave vector in
an injection laser satisfy the inequalities kz > kx 4 ky
(the x axis is perpendicular to the pÿ n junction plane).
For this reason, we have for the emission frequency
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One can see from (1) that the transverse modes can be
equidistant if only the square of an eigenvalue of the wave
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Figure 1. Scheme of the structure under study.



vector (k 2
y )m along the y axis is linear over its subscript,

which is the case, for example, when (k 2
y )m is the square of

the eigenvalue of the eigenfunction of the Hermitian equa-
tion. We arrive at this equation by solving the Helmholtz
equation for a medium with a parabolic dependence of the
permittivity on the transverse coordinate. Our choice of the
inhomogeneity type is explained by this circumstance.

If the dependence of the permittivity on the coordinate y
has the form

e�y� � e�0�
�
1ÿ y 2

s 2

�
,

where s is the inhomogeneity parameter and e�0� is the
maximum of the unperturbed permittivity, then, after sepa-
rating variables, the dependence of the éeld on the
transverse coordinate will be described by the equation

d 2Bm

dy 2
�
�ÿ
k 2
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�
m
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m

c 2
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y 2

s 2

�
Bm � 0. (2)

By changing variables according to x � y
�
(om=c)(e

�0�=s)
�1=2

,
Eqn (2) can be written in the form

d 2Bm

dx 2
�
�ÿ
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y

�
m

sc

ome�0�
ÿ x 2

�
Bm � 0. (3)

The solutions of Eqn (3) are Hermitian ëGaussian poly-
nomials

Bm�x� � Hm�x� exp
�
ÿ x 2

2

�
(4)

[where Hm(x) is the mth Hermitian polynomial] under the
condition that

k 2
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e�0�

s
�2m� 1�. (5)

It follows from (2) that in the case of a parabolic inho-
mogeneity

sm 4
�
w
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�2 k0e
1=2
0

2m� 1

(where k0 � o0=c and w is the width of an active strip), m
modes can exist in the cavity. This relation cannot be used
as even a rough threshold criterion for involving a new
mode in lasing with increasing the width of the active region
or with decreasing the parabolic inhomogeneity parameter
because it was obtained for an inactive resonator. However,
the numerical calculation shows that a superlinear, similar
to quadratic, dependence of the number of locked modes on
the parabolic inhomogeneity indeed takes place.

To analyse rigorously transverse-mode locking in an
injection laser, we propose a model based on the solution of
two equations: the diffusion equation for nonequilibrium
carriers and the equation of light propagation. The equation
of the optical part of the model is obtained from the wave
equation by separating a slow dependence of the éeld on the
longitudinal coordinate and integrating over the coordinate
perpendicular to the pÿ n junction plane. The unperturbed
permittivity depends on the transverse coordinate as e (x) �
Z2a within the active region and as e (x) � Z2p in emitter layers.

By introducing the effective refractive index [7, 8], we arrive
at the equation

�2ik qcm

qz
� q 2cm

qy 2
� k 2

0GDe�y; z�cm � 0. (6)

Here, k � k0�Z; Z 2 � GZ 2
a � (1ÿ G)Z 2

p ; cm is the intracavity
electric éeld; the subscript m corresponds to two types of
waves: the forward (cf) and backward (cb), according to
which the sign at the derivative over z is chosen; and G is
the factor of optical conénement. The function De (y, z)
includes both a technologically speciéed variation in the
permittivity proéle and its variation induced by the inver-
sion burning by the éeld:

e�0� � Z 2
a ,

De�y; z� � ÿe�0� y
2

s 2
� e 0�y; z� � ie 00�y; z�,
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ÿ1
0 �1ÿ G� ap

G
.

Here, e 0 and e 00 are the real and imaginary parts of the
permittivity perturbation caused by the burning of inver-
sion by the éeld; a and b are parameters characterising the
concentration dependence of ampliécation: g(N) � aNÿ b;
R is the antiwaveguide parameter; afc are speciéc losses
caused by scattering from free carriers; and ap are losses in
passive layers.

The diffusion equation for nonequilibrium carriers has
the form

qN
qt
� j

ed
�DamDyzNÿ

N

tnr
ÿ Gg�N�

d�ho
jcf � cbj2, (7)

where j is the pump current density; Dam is the ambipolar
diffusion coefécient; e is the electron charge; d is the active-
region thickness; and tnr is the time of nonradiative recom-
bination. The éeld functions are normalised in such a way
that the integral

Wm �
� ��cm

2
��dy

over the active-region width gives the output power at the
corresponding mirror. The time dependence of the con-
centration should be taken into account because the sought
operating regime of the laser is nonstationary (Fig. 2).

3. Calculation method

As the initial condition for the solution of Eqn (6), we used
an arbitrary (Gaussian) proéle of the electric éeld at one of
the mirrors, with the amplitude that was substantially lower
than that upon lasing. The initial concentration of non-
equilibrium carriers is assumed zero.

The pump current causes with time the accumulation of
inversion in the active region, and, beginning from a certain
moment, the imaginary part of the permittivity becomes
negative. From this moment, we followed the propagation
of the electric éeld through the active region. Due to
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radiative losses and also because the active region occupies
not the entire width of the laser resonator, the output power
after érst trips of radiation in the resonator can be lower
than the initial power. However, if the pump current is
suféciently high, the decay changes to ampliécation after a
few trips. From this moment, Eqns (6) and (7) are solved
jointly. After each trip of radiation in the cavity, we
calculated the burning of inversion by the éeld and
recalculated the permittivity.

4. Results of simulation

One can see from Figs 3a, b that an emitting spot runs over
discrete positions on the output mirror. The number of
these positions is equal to the number of locked modes, and
the emitting spots as if lie on a sinusoid. All the parameters
of the problem in Figs 3a and 3b are the same except the
active-region width, which is equal to 60 and 80 mm,

respectively. A narrowing of the active region results in a
decrease in the number of transverse modes that can simul-
taneously exist in the laser.

The scan frequency of the emitting spot over the laser
facet is determined by the parabolic inhomogeneity parame-
ter of the permittivity and does not directly related to the
number of locked modes [see (5)]. Thus, one can see from
Figs 3c, d that the spectral interval between adjacent modes
is approximately the same and is � 1:1� 1011 rad sÿ1. The
scan frequency of radiation over the output mirror is equal
to the spectral mode interval. The number of locked modes
depends not only on the active-region width but also on the
pump current and the parabolic inhomogeneity parameter
(Fig. 4). If both the pump current and the width of the
active strip are large enough, then the number of locked
modes will be determined only by the parabolic inhomo-
geneity parameter.

The far-éeld radiation for three locked modes is shown
in Fig. 5. The radiation pattern is scanned with the
frequency equal to the mode interval and has the number
of éxed position equal to the number of modes involved in
locking.
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Figure 2. Time base of the spatial distribution of the electric éeld
strength at the output mirror in a laser with three locked modes.
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Figure 3. Time base of the spatial distribution of the electric éeld
strength at the output mirror and the corresponding spectral distribu-
tions of radiation from a laser with the active-region width w � 60 mm
and three locked modes (a, c) and a laser with w � 80 mm and éve locked
modes (b, d).
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Figure 4. Dependence of the number of locked modes on the active-
region width for different values of the parabolic inhomogeneity.
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Figure 5. Far-éeld radiation of a laser with three locked modes for three
instants of time.
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5. Conclusions

We have proposed the theoretical model describing the
appearance of transverse-mode locking in a semiconductor
laser. The calculation of the far-éeld radiation allows us to
énd the scan angle of a lobe of the radiation pattern in
space. Thus, the possibility appears for creating devices that
have the radiation pattern with a multistable dynamic
spatial orientation.
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