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Phase dynamics of radiation in chaotic lasing regimes

of a solid-state ring laser

L.A. Kotomtseva, N.V. Kravtsov, E.G. Lariontsev, S.N. Chekina

Abstract. The radiation phase dynamics of a solid-state ring
laser with a periodic pump modulation operating in a dynamic
chaotic regime is studied theoretically and experimentally. It
is found that, in the regime of synchronised dynamic chaos,
the optical phases of counterpropagating waves change by n
in intervals between two adjacent chaotic radiation pulses. It
is shown that spontaneous radiation has a significant effect on
the chaotic dynamics of the counterpropagating wave
intensities, but its effect on the phase dynamics in a solid-
state ring laser is negligible.
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1. Introduction

Studies of the dynamic chaos in lasers, which have been
underway for almost three decades, not only help to better
understand the general properties of the chaotic dynamics
in a wide class of nonlinear systems but also are of
significant applied importance. Much attention is currently
paid to investigating the processes of dynamic chaos syn-
chronisation in coupled [1-4] and ring [5—7] solid-state
lasers. The regimes of identical synchronised chaos [1, 2, 5],
generalised synchronisation [6], and phase synchronisation
[7—10] were investigated. The results of these studies are
currently used in systems for optical data transmission [11].

Studying the possibilities of utilising chaotic lasing
regimes for enhancing the sensitivity in the recording of
optical nonreciprocities using ring lasers is of substantial
interest. In this case, it is desirable to use the information
not only on the intensity dynamics of counterpropagating
waves but also on their optical phases.

Investigations of the phase dynamics of chaotic laser
radiation is of fundamental interest for the analysis of
general problems of phase synchronisation of chaotic
oscillations [12—14]. Note that, at present, theoretical
studies in this field do not unambiguously predict the
features of phase dynamics for particular nonlinear systems.
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The phase dynamics in chaotic lasing regimes of ring
chip lasers was analysed in papers [7, 15]. On the basis of the
results of a numerical simulation of the lasing regimes of a
solid-state ring laser (SRL), it was predicted [7] that a regime
of synchronised chaos, in which regular jumps of optical
phases occur during the intervals between adjacent chaotic
lasing spikes, can exist in such a laser. Experimental jumps
of the difference in the optical phases of counterpropagating
waves in a ring chip laser were observed for the first time in
paper [15].

The aim of this work is a more detailed theoretical and
experimental study of the regime of synchronised chaos
accompanied by regular jumps in the phase difference of
counterpropagating waves.

2. Recording of the phase dynamics
in the regime of dynamic chaos

The evolution of optical phases of nonstationary laser
radiation can be recorded by optical heterodyning using an
external reference signal. This technique was used to study
the phase dynamics in a '>’NH; gas ring laser pumped by a
CO, laser [16].

The phase dynamics of ring lasers can also be investi-
gated using an interference technique, which was suc-
cessively implemented in paper [15]. In this case, the infor-
mation on the phase dynamics is contained in a signal of
photomixing of the counterpropagating waves E; and E,:

Eyn = E +E,. M

Since, in a general case, the polarisations of these waves are
not identical, it is expedient to select identical (e.g., linear)
polarisation components in each wave. The intensity of the
photomixing signal of the counterpropagating waves in this
case can be represented in the form

I =1 + L +2(I1)cos g, 2)

where [, are the intensities of the selected components of
the counterpropagating waves with the same polarisation
and ¢ is the difference in the optical phases of the inter-
fering waves.

Note that the use of photomixing of the counterpro-
pagating waves of a ring laser in phase dynamics studies is
more preferable compared to the use of an external
heterodyne, because the correlation of technical fluctuations
of the counterpropagating waves intensities and phases
observed in a ring laser ensures a higher stability of the
photomixing signal. It is this technique that was used in this
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work to measure jumps in the difference of optical phases of
counterpropagating waves in regimes of synchronised chaos
in a SRL.

3. Experimental

Experiments were carried out with a monoblock
Nd*" : YAG SRL pumped by a semiconductor laser. A
schematic of the setup is shown in Fig. 1. The chip laser
represented a crystalline monolithic block with a spherical
entrance surface and three faces of total internal reflection.
The geometrical perimeter of the resonator was 2.6 cm, and
the angle of resonator nonflatness was 80°. The SRL was
pumped by a 250-mW semiconductor laser. The pump
power was modulated at a frequency f,, < 200 kHz with a
modulation depth / varied between 0 % and 100 %. In the
absence of the pump modulation, the laser operated in the
first-order self-modulation mode at a self-modulation fre-
quency f.n, = 230 kHz; the frequency of relaxation oscil-
lations was f, = 65 kHz for a pump power exceeding the
pump threshold level by 12 %.
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Figure 1. Schematic of the setup: (/) laser monolithic block; (2) pump
diode laser; (3) unit for the modulation of pump radiation; (4) focusing
lenses; (5) beamsplitters; (6) IKS-6 filter; (7) polarisers; (8) LFD
photodetectors; (9) ACK 31-51 electronic oscilloscope.

Different lasing regimes (periodic, quasi-periodic, and
dynamic chaotic regimes) were observed in the SRL depend-
ing on the pump frequency and modulation depth. In the
case of a dynamic chaos, both synchronised (when counter-
propagating waves have identical temporal characteristics)
and nonsynchronised lasing regimes can be excited. From
the viewpoint of a study of the general properties of the
phase dynamics of nonlinear systems, the regime of syn-
chronised chaos is of greatest interest [5, 7, 15]. The expe-
riments performed have revealed that this regime exists
within a limited range of the pump-power modulation depth
Npin < h < hyay, and the bounds of this range depend on the
pump modulation frequency. Note that the region of
existence of synchronised chaos has a maximum width
for f,, =29 kHz.

Consider the main experimental results obtained in the
regime of synchronised dynamic chaos at a pump modu-
lation frequency f;,, = 29 kHz and a modulation depth & =
65 %. Oscillograms of the counterpropagating-wave radia-
tion intensity at the chip-laser output over a time interval of
1100 ps presented in Fig. 2 show that the intensities of these
waves have the same chaotic modulation in this regime.

LU

WY W

UL

I
i
(I) 2(;0 4(I)0 6(;0 8(;0 lO;)O

Time /ps

Figure 2. Oscillograms of radiation of counterpropagating waves I; and
I, in the regime of synchronised chaos at a pump modulation frequency
Jfm =29 kHz, a modulation depth & = 65%, an excess of the pump
power above the threshold 5, = 0.12 in the absence of modulation, and a
self-modulation frequency f;,, = 230 kHz.

The phase dynamics was studied using faster scans.
Fig. 3 shows typical intensity oscillograms for the counter-
propagating waves /; and /, and the photomixing signal 7,,;,
that testify to the presence of jumps in the difference of the
optical phases in the intervals between adjacent chaotic
pulses. One can see that pulses of two types are present in
the signal /,,,,. The peak intensity of pulses of the first type is
approximately four times greater than that of the interfering
waves. The intensity of pulses of the second type is very low.
This indicates that optical oscillations in counterpropagat-
ing pulses of the first type are added in phase, whereas in
pulses of the second type are added in antiphase. Note that
in-phase and antiphase pulses regularly alternate in the
course of lasing. Fig. 4 presents the projections of the phase
portraits onto the planes /;, I, and Iy, ;. In the latter case,
the phase portrait consisting of two straight lines I, = 41,
and I, ~ 0 also confirms the presence of periodical jumps
in the phase difference.

The results obtained show that, in the interval between
adjacent chaotic pulses, the phase difference of optical
oscillations of counterpropagating waves in a ring chip
laser changes jumpwise by .
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Figure 3. Oscillograms of radiation of counterpropagating waves /; and
I, in the regime of synchronised chaos and the photomixing signal Z,p,, in
the case of optical-phase jumps at f,, =29 kHz, h = 65%, n, =0.12,
and f;,, = 230 kHz.
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Figure 4. Projections of phase portraits onto the planes I}, I and I, Iy,
for f, =29 kHz, h = 65 %, ny = 0.12, and f;;, = 230 kHz (experiment).

4. Phase dynamics in the regime
of synchronised chaos (numerical simulation)

A simplified SRL model, in which a number of factors
capable, in principle, of affecting the behaviour of the
optical phases of counterpropagating waves, was used in
phase dynamics studies [7]. This model, in particular,
neglected the amplitude—phase coupling of counterpropa-
gating waves and the effect of a spontaneous radiation
noise.

In this paper, we analyse the SRL phase dynamics using
a more rigorous SRL model, in which the radiation dyna-
mics is described by a system of stochastic (Langevin)
equations with noise sources determined by quantum
fluctuations (i.e., by spontaneous emission in the active
medium). Similar equations are used, for example, in studies
of quantum fluctuations of SRL radiation in the travelling-
wave mode (see, e.g., [17]).

The system of equations describing the SRL Ilasing
dynamics taking into account the amplitude—phase coup-
ling of counterpropagating waves and quantum noise
sources has the form

dEl,Z w

— E
dt 201, 12
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In these equations, E;, and I, are, respectively, the
complex amplitudes and intensities of counterpropagating
waves; o is the optical radiation frequency; N, is the
average (over the resonator length) inverse population; N,
are the amplitudes of spatial harmonics of the inverse
population induced in the active medium due to a satu-
ration of the amplification by the interfering counter-
propagating waves; Ny, is the threshold inverse population;
T=Ln/c is the round-trip time for radiation in the
resonator; n is the refractive index of the active medium;
L is the perimeter of the ring resonator; L, is the length of
the active element; o is the cross section of the laser
transition; a is the saturation parameter of the active
medium; 77 is the relaxation time of the inverse population;
n is the excess of the pump power over the threshold; O, =
0, = Q are the quality factors of the resonator for the
counterpropagating waves; m, , are the complex coefficients
of the linear coupling between the counterpropagating
waves; V' is the resonator mode volume; and Fj, are the
Langevin sources of spontaneous-emission noises, which
are assumed to be d-correlated and are defined by the
following correlation functions:

(Fia(0)F2(t— 1)) =0,

(Fya()Fia(t— 2) = 5 Ryd(o), @

(Fia(0)F5(t—1)) =0,

where
_ g Lac N- 2

Ro="yr

)

is the rate of spontaneous emission into the resonator mode
and N, ~ N, is the population of the upper laser level.

The parameter o determines the amplitude —phase coup-
ling. This coupling appears, for example, in the presence of a
complex structure of the amplification line (this takes place
in an Nd*" : YAG laser in which the amplification line
consists of two components shifted relative to each other
[18]). The presence of two components in the Nd*" : YAG
amplification line leads to a situation in which, even for the
lasing at the maximum of the summary amplification
contour, there exists a nonzero lasing-frequency detuning
with respect to the centre of the laser transition. In the case
of a laser with a homogeneously broadened amplification
line with a Lorentzian profile, the expression for o has the
form

o= , (6)

where @ — @y is the detuning of the lasing frequency
relative to the centre of the amplification line and y is the
line FWHM.

The system of Eqns (3) was used to analyse the radiation
phase dynamics in the regime of synchronised dynamic
chaos in a SRL with a periodic pump modulation. In this
case,
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N =1y + hcos(wyt), @)

where 1, is the excess of the pump power over the threshold
without modulation and w,, is the cyclic frequency of the
pump modulation.

When the Langevin equations were solved numerically,
random forces F| ,(f) were specified at each integration step
using a random number generator. In order to describe the
action of d-correlated noise sources, it was convenient to
supplement Eqns (3) with two equations for the counter-
propagating-wave intensities, which directly take into
account the correlation function (4) of the noise sources:

dhi, o
dt 0

oL,

1
12+ T

[Noly, + Re(NLE,  Ef5)]

8nhw

+Re(im 2 E> 1 Ef'5) + 5 R

p

8nhw \'* ., X
+ 7 (E\2F 2+ FLE) ). (8)

The system of Eqns (3), (8) was solved numerically. The
complex amplitudes of the fields E|, and intensities /),
were determined from (3) and (8), respectively. These
parameters were used to determine the photomixing signal
intensity from the formula

]pm = Il —+ 12 + 2RC(E1E2*)

The numerical simulation was executed at chip-laser
parameters corresponding to the experimental ones: 7; =
240 ps, Ly =L=26cm, ny=0.12, f, =2n) '[(w/Q)x
(10/T1)]"/* = 65 kHz, m;,/(2m) =230 Hz, 0 <o <0.5. It
was assumed in the calculations that the coupling coeffi-
cients are real, and the pump modulation frequency is f,,, =
29 kHz.

In order to clarify the influence of spontaneous emission
on the SRL phase dynamics, the latter was simulated with
regard to spontaneous radiation and in its absence. Numeri-
cal experiments have shown that spontaneous emission has
a significant effect on the counterpropagating-wave intensity
dynamics. A typical time structure of radiation in the
absence of spontaneous emission is shown in Fig. 5. Despite
the fact that all the calculated parameters coincide with the
experimental ones (Fig. 3), the laser radiation dynamics
obtained in the numerical calculations appreciably differs
from the dynamics observed experimentally, although regu-
lar jumps of the counterpropagating-wave phase difference
take place.

If spontaneous emission was taken into consideration,
then, at the parameters mentioned above and a pump
modulation depth belonging to the range 25% < h <
100 %, the numerical experiments resulted in a regime of
synchronised chaos similar to that observed in the experi-
ment. Fig. 6 shows time dependences of the counter-
propagating-wave intensities and the photomixing signal
in the presence of spontaneous emission. We see that
optical-phase jumps by & take place in the intervals between
neighbouring chaotic radiation pulses.

The numerical calculations performed have demon-
strated that the amplitude—phase coupling has virtually
no effect on the radiation time structure and phase dynamics
for the aforementioned values of the counterpropagating-
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Figure 5. Time-dependent counterpropagating-wave and photomixing
signal intensities obtained by a numerical simulation in the absence of
spontaneous emission at f, =29 kHz, h = 65 %, n, = 0.12, and f;,, =
230 kHz.
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Figure 6. Time-dependent counterpropagating-wave and photomixing
signal intensities obtained by a numerical simulation with regard to
spontaneous emission at f, =29 kHz, h = 65 %, n, = 0.12, and f;,, =
230 kHz.

wave parameters, if the parameters o« and £ lie within the
ranges: 0 < o < 0.5 and 25% < h < 100 %.

5. Conclusions

In this work, a synchronised dynamic chaos in counter-
propagating waves and the phase dynamics of their
radiation have been studied theoretically and experimen-
tally in a nonself-sustained diode-laser-pumped chip laser.
The model of a two-directional SRL takes into account the
influence of spontaneous-emission noises on the lasing
dynamics and ensures a proper description of the time
characteristics of a ring chip laser and its phase dynamics.

The studies performed have revealed that, in the regime
of synchronised dynamic chaos arising in a SRL under a
pump power modulation, the optical phases of counter-
propagating waves change by m in the intervals between two
neighbouring pulses of chaotic radiation. It is shown that
spontaneous radiation exerts an appreciable effect on the
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chaotic dynamics of the counterpropagating-wave inten-
sities, but its effect on the SRL phase dynamics is
insignificant.
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