Quantum Electronics 32(8) 707—710 (2002)

©2002 Kvantovaya Elektronika and Turpion Ltd

PACS numbers: 42.50.Dv; 42.50.Fx
DOI: 10.1070/ QE2002v032n08 ABEH002276

Amplification of squeezed light in the regime
of triggered optical superradiance

A.A. Kalachev, V.V. Samartsev

Abstract.  The possibility of amplification of pulses of
squeezed light in the regime of triggered optical superradiance
is analysed. The kinetic equations are obtained which describe
the dynamics of cooperative development of the population
inversion and dispersion of the quadrature components of
polarisation of optical centres interacting with the triggering-
pulse field in the squeezed vacuum state. The dependence of
the squeezing degree of the superradiance field on the
squeezing degrees of the triggering-pulse field and polar-
isation of an amplifying medium is determined. It is shown
that in the case of a sufficiently strong squeezing of the
medium, the intensity of the squeezed quadrature component
of the superradiance signal is lower than that of an incoherent
spontaneous background. Therefore, the superradiance field
can be characterised not only by a classical squeezing (when
the dispersions of quadratures are not identical) but also by a
quantum squeezing (when the dispersion of one quadrature is
smaller than its vacuum value).
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1. Introduction

Nonclassical states of light have attracted much recent
attention. Among them, the squeezed states play an
important role (see reviews [l1—4]), i.e., the states in
which dispersions of canonically conjugated field variables
differ from each other. The use of squeezed light
characterised by the quantum squeezing, when the dis-
persion of one quadrature proves to be smaller than its
vacuum value, reduces the noise level in interference
measurements below a usual vacuum limit, enhances the
transmission of optical communication channels, and also
allows one to solve a number of other interesting problems
related to the noise suppression in optical systems. The
problem of amplification is usually solved in a linear
regime. In this case, the intensity of light being amplified
should be noticeably lower than the saturating intensity,
and a small fraction of the energy stored in the active
medium is used for increasing the wave intensity. To obtain

A.A. Kalachev, V.V. Samartsev E.K. Zavoiskii Physicotechnical Insti-
tute, Kazanskii Scientific Center, Russian Academy of Sciences, Sibirskii
trakt 10/7, 420029 Kazan’, Russia;

e-mail: samartsev@Xkfti.knc.ru; kalachev@kfti.knc.ru

Received 20 June 2002
Kvantovaya Elektronika 32 (8) 707—710 (2002)
Translated by M.N. Sapozhnikov

a field in the squeezed quantum state at the output of such
a linear amplifier, a phase-sensitive amplification is required
[5]; otherwise, the gain cannot exceed two.

In this paper, we analyse the possibility of amplifying
squeezed light in the optical superradiance regime, i.e., in
the regime of collective spontaneous emission of photons of
a system of initially excited particles [6]. In the super-
radiance regime, a system of N inverted atoms can
spontaneously transfer to the ground state during the
time, which is inversely proportional to the number of
atoms, by irradiating a light pulse whose intensity is
proportional to N2. An important feature of superradiance
is that almost all the energy stored in a medium is emitted in
a coherent light pulse. In this respect, this phenomenon
substantially differs from other cooperative phenomena
such as photon echo and free induction decay in which
only a small fraction of the stored energy is emitted
coherently.

Spontaneous emission of a single atom in the field of a
squeezed vacuum was first considered by Gardiner [7], who
showed that the decay rates of the in-phase and quadrature
components of polarisation of the atom are proportional to
the dispersions of the corresponding quadratures of
squeezed light. The features of cooperative spontaneous
emission in the squeezed-light field were studied in papers
[8, 9] for a system of two atoms and in papers [10, 11] for a
system of many atoms. In particular, it was shown in paper
[11] that in the presence of a squeezed vacuum, the statistics
of the delay times of a superradiance signal depends on the
signal phase and the degree of initial signal squeezing. It is
important to note that, first, in all these papers the systems
with dimensions smaller than the wavelength of exciting
light were analysed, and, second, it was assumed that atoms
interact only with the modes of a squeezed vacuum (ideal
interaction). The non-ideal interaction was considered only
for one atom [12, 13].

In this paper, we considered the multimode super-
radiance of an extended polyatomic system under the
conditions when only some working modes prove to be
squeezed. In this case, the amplification of a weak light field
in a squeezed state corresponds to the triggered super-
radiance regime [14—17], when a weak triggering pulse
acting during a short time interval or the entire super-
radiance process initiates a collective transition of atoms to
the ground state. The medium emits a triggered super-
radiance pulse, whose direction is determined by the
direction of the triggering pulse, i.e., the energy of the
medium is emitted collectively only in the modes corre-
sponding to the triggering pulse. It is assumed usually that
the triggering-pulse field is in a coherent state. In this case,
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the triggering pulse produces a macroscopic polarisation
wave in the medium, which results in a substantial short-
ening of the delay time of the superradiance pulse. In this
paper, we consider the case when the triggering-pulse field is
in a squeezed vacuum state. In this case, the delay time of a
superradiance field is virtually independent of the triggering-
pulse intensity, but the direction of emission and the degree
of superradiance squeezing are determined by the parame-
ters of the field being amplified.

2. Basic formulas

Consider a system of N two-level atoms interacting with the
electromagnetic field of broadband squeezed light. We will
calculate superradiance signals assuming that the linear
dimensions of a resonance medium are substantially larger
than the wavelength A of the exciting light. In this case, we
can neglect the dipole—dipole interaction between the
atoms. We also assume, as usual, that the propagation
time of photons through the medium is substantially
shorter than the self-induced correlation time, so that
equations for the density matrix of the atomic system can
be written in the Born—Markov approximations. Finally,
we will assume that the self-induced correlation time in the
medium is substantially shorter than the inhomogeneous
lifetime of optical transitions, so that the inhomogeneous
broadening can be neglected.

The state of the medium can be conveniently described
with the help of the collective operators

Ry = szn Ry = ij e, = Zb.iefiqr’a (1
J J J

where by; = (12;)(2;] — |1;)(1;])/2 is the operator of the half-
difference of populationg{ of the ground |1) and excited |2)
states of the jth atom; b; = [2;)(1;| and b; = [1;)(2] are the

rising and lowering operators respectively. The wave
vectors ¢ satisfy the orthogonality condition
2
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i.e., the angles between the wave vectors of polarisation
modes are larger than the diffraction angle of emission for
each mode.

The basic kinetic equation for the reduced density
operator p,(¢) of the atomic subsystem in the Born—Markov
approximation has the form
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where p;(0) = |0)(0| is the field-density operator at the
initial instant of time;
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is the interaction Hamiltonian; @, and u are the frequency
and dipole moment of the atomic optical transition,
respectively; w and ¢, are the frequency and unit polari-
sation vector of a photon for the mqde ks, respectively (s is
the polarisation index); a;, and ags are the creation and
annihilation operators of a photon in the mode ks,
respectively; ¥ is the field quantisation volume; and ¢, is
the dielectric constant. The field of a broadband squeezed
vacuum is characterised by the following properties:
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where 2k, = 2wy /c is the wave vector of the pump field of a
squeezed light source; n is the number of squeezed modes;
m is the squeezing parameter (m = |m|exp (ip), |m| <
[7(n + 1)] 2 "¢ is the pump-field phase). Taking these
relations 1nt0 account, equation (3) can be written in the
form
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is the rate of spontaneous transition in the atom; and
k' = 2k, — k. In Eqn (5), the terms describing the fre-
quency shift are omitted, which is a good approximation in
the case of an exact resonance.

Let a resonance medium be a cylinder of length L and
radius R, whose proportions are determined by the Fresnel
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number F = nR*/AL. If F > 1, then the diffraction emission
angle of axial modes a4 ~ A/R is substantially smaller than
the geometrical emission angle o, ~ (1/ L)l/ 2 of the medium,
so that superradiance is multimode Let us assume that
squeezed light propagates within a small solid angle o > oy
along one of the axial polarisation modes of the cylindrical
medium. In addition, we assume that the vector u is real.

Then,
_ 13
T = B =~ ﬁ

a3 Pl —cos” (k)] = . (6)
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We will also assume for simplicity that the vector u is
perpendicular to the symmetry axis of the cylinder. By using
Eqn (5) and taking into account (6), we obtain the kinetic
equations for average values of dynamical variables
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is the operator corresponding to the intensity of the

coherent emission component along the vector g;
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are the geometrical parameters characterising the diver-
gence of the squeezed light and medium emission beams
along the vector ¢. The values of n, and m, differ from zero
(and equal to n and m, respectively) only when g
corresponds to a squeezed mode. Eqn (7) was derlve%i by
using a standard unchanging of correlators (by;b;

(b3j)(bybjn)s (bybyyr) = (by)(byr) (G # ' #7", J”?él)
Let us introduce the mode correlation function
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and pass to new variables
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which determine the dispersion of the in-phase and
quadrature components of the emission field. Then, the
system of Eqns (7) can be written in the form
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where 75 = 1/2+ po(n + |m); and 9, = 1/2 4 n, =+ |m|,.
It is convenient to introduce two quantities
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which characterise the degree of squeezing (the ratio of
dispersions of quadrature components) of the field and
medium, respectively. One can see from the second
equation of system (10) that the growth rates of the
quadrature components (Xqiq/) substantially differ from
each other for large values of Dy and D,,. Therefore, the
degree of squeezing of the triggered superradiance signal
depends on the degrees of squeezing of the triggering pulse

and the amplifying medium.

3. Basic results

Let us assume that an inverted resonance medium
({R3) = N/2, (P,) = (P,) = 0) is located in a weak field
of squeezed light (n < N). Then, a superradiance pulse is
emitted in the direction of polarisation waves with the wave
vectors ¢ = k and ¢’ = k'. By using the law of conservation
of the square of the collective Bloch vector length

(Rs)* + (P,) =

we find that the total intensity of the superradiance pulse in
the approximation Ny, > 1, N > n is described in a usual
way

+ - 7<P>+<P’>7N2 2 1= tgel
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where 14 = t.In(Ny,) is the delay time of the super-
radiance pulse with respect to the pump pulse and
T, = (2ﬁNuq)_1 is the self-induced correlation time of the
medium. The fact that the triggering pulse does not contain
the coherent component leads to two substantial differences
of the triggered superradiance regime under study from a
usual regime when the emission field of the triggering pulse
is in a coherent state.

First, now the delay time of the superradiance pulse only
weakly depends on the triggering-pulse intensity (exact
dependences of 7, and 74, on the number n of photons
are reported in [18]). Second, the mean value of the dipole
moment of the medium remains zero during the entire
superradiance process. In this sense, the triggered super-
radiance under study can be called triggered superfluores-
cence.

Consider now the relation between quadrature compo-
nents in the superradiance pulse. At the linear stage of the
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evolution, when 7 < 14, and |(R3(7)) — (R3(0))] < |(R5(2))], it
follows from the second equation that the ratio of the
growth rate (X, ;1,) of the in-phase component to that (X,
of the quadrature component is

. (N+ <Qqq’>)/4 + y;r<R3>
P = N 0 Ay (R} (13

As a result, the excited medium emits a superradiance pulse
with the dispersions of quadrature components differing
from each other by a factor of Dy. The value of D
substantially depends on whether the medium is in a
squeezed state or not. If the medium is initially completely
inverted ((R3) = N/2, (Q4y) =0 and (P,) = 0), then Dy, =
1 +2y;)/(1 +2y,)~ 2/Dy. Therefore, the degree of
squeezing of a superradiance pulse emitted by a resonance
medium is equal only to the square root of the degree of
squeezing of the incident field.

Let us assume now that a medium is initially in a
squeezed state, i.e., the dispersions of its quadrature polari-
sation components are not identical. According to [19], we
write

. N

(Qgq') = Nsin0, (R3) = —cos 0, (P,) =0, (14)
where the angle 0 is close to m/2 in the case of strong
squeezing. Then, we can write D, = c0t2(11/2), where 1 =
20 — /2, and

4 cos(n/2) +2sin(n/2) 1/2N 1/2
s = Sin(n/2) + 27, cos(n/2) (210n) "~ (Prw) - (15)

Therefore, if the degree of squeezing of a medium is of
the same order of magnitude as that of a triggering pulse,
then Dy ~ Dy, and squeezed light can be amplified in the
superradiance regime without decreasing the degree of its
squeezing. If the degree of squeezing of the medium is larger
than that of the triggering pulse, then squeezed light is not
only amplified but the degree of its squeezing also increases.
For sufficiently large values of D, (close to the value of
Np,), we can obtain (X,,) + N/4 < N/4 at the output, i.e.,
the intensity of the squeezed quadrature of the super-
radiance signal proves to be smaller than that of the
incoherent spontaneous background. Therefore, the super-
radiance signal can be characterised not only by classical
squeezing (when the dispersions of quadratures are not
identical) but also by quantum squeezing (when the dis-
persion of one quadrature is smaller than the vacuum
value).

4. Conclusions

We have shown in this paper that squeezed light pulses can
be amplified in the regime of triggered optical super-
radiance, the degree of superradiance field squeezing being
substantially dependent on the degree of squeezing of both
the triggering-pulse field and polarisation of the amplifying
medium. To amplify squeezed light in the optical super-
radiance regime without decreasing the degree of squeezing,
it is necessary to prepare an active medium in a squeezed
state. Unlike the generation of squeezed light, the
preparation of a squeezed medium is a nontrivial task
(see papers [19—-23]). In the general case, the preparation of
a squeezed state of a two-level atomic system can be

described by the Hamiltonian of the type H =i(g"R" R —
gRTR"). As shown in paper [19] for a two-atomic case, the
interaction described by such a Hamiltonian results in a
periodic squeezing of the medium. This means that the
dispersion of one of the quadrature components of
macroscopic polarisation tends to zero at certain instants
of time. It is in this state that the inverted medium
((R3) > 0) is capable of amplifying the trigger pulse without
decreasing the degree of squeezing. Although the above
Hamiltonian looks like the Hamiltonian describing para-
metric amplification, its physical realisation involves great
problems.

We assume that this Hamiltonian can describe the
situation when a system of two-level atoms interacts with
the pump field whose frequency is twice as a large as the
optical transition frequency of atoms. In this case, the
interaction should be cooperative because one photon
with a double frequency can be absorbed only by two
atoms. By switching off the pump field at the instants of a
maximum squeezing and simultaneously applying the trig-
gering pulse, we can achieve a substantial squeezing of the
triggered superradiance pulse.
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