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Periodic autowave structures in a wide-aperture laser

with inertial phase nonlinearity

A.P. Zaikin, A.A. Kurguzkin, N.E. Molevich

Abstract. The formation of a periodic structure of the optical
field of a wide-aperture laser with inertial Kerr phase
nonlinearity is considered. The conditions for the appearance
of one-dimensional periodic wave structures propagating
along the aperture are found and their properties are studied.

Keywords: wide-aperture laser, phase nonlinearity, Andronov—
Hopf bifurcation.

The one-dimensional transverse structure of the optical field
of a wide-aperture laser with an inertial saturating filter was
studied in papers [1, 2]. It was shown that, under certain
conditions, the additional amplitude nonlinearity of such a
laser caused by the presence of the intracavity saturating
filter results in the violation of stability of stationary lasing
(the appearance of the Andronov—Hopf bifurcation) and in
the appearance of quasi-periodic autowaves propagating
across the aperture. It was shown in papers [3—5] that the
autowave profile of the optical field can also appear due to
the phase nonlinearity of an active medium caused by the
laser frequency detuning. In this paper, we studied the
transverse space —time one-dimensional structure of a wide-
aperture laser with inertial Kerr phase nonlinearity. Such
nonlinearity is typical for semiconductor and solid-state
lasers and can also be observed in gas lasers with an
intracavity phase filter. We found the conditions for the
appearance of an autowave profile, which is similar to that
described in papers [3—5].

1. Linear analysis of stability

The initial system of equations describing the dynamics of a
laser with inertial Kerr phase nonlinearity in the homoge-
neous field approximation has the form
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Here, the dimensionless time ¢ and the transverse coor-
dinate x are related with dimensional quantities 74 and x4
by expressions ¢ = 74/T; and x = xd(2k/Tic)1/2, where k is
the wave number; ¢ is the speed of light; T7; is the
population relaxation time for levels of an active medium;
E=Ey/E; I=14/I, are the dimensionless amplitude and
intensity of the laser field, respectively; E, and I are the
saturation amplitude and intensity, respectively; N = g/g;;
N, = g./g:; & g, and g, are the gain, the unsaturated gain,
and the threshold gain averaged over the cavity length,
respectively; v = ¢Tig, is the coefficient determining the
ratio of the population relaxation time to the photon
lifetime in the cavity; @ is the phase incursion of the optical
field per unit length normalised to the threshold gain g; o is
the dimensionless coefficient of phase nonlinearity (of any
sign); T,y is the ratio of the relaxation time of the phase
incursion to the population relaxation time 7;; and 4, =
(0 — Weay)/cgy is the dimensionless detuning of the laser
frequency @ from a mode of an empty cavity with
frequency g,y -

Equation (1) for a slowly varying amplitude E can be
obtained by averaging a quasi-optical equation in the
longitudinal direction z assuming that the field weakly
changes during the round-trip transit time 7= L/c¢ for
radiation in the cavity, where L is the round-trip transit
length of the cavity [6]. Equation (2) describes a state of the
active medium in the two-level approximation.

The system of equations (1)—(3) has two homogeneous
equilibrium states. The first state corresponds to the absence
of lasing (E =0, N= N,, @ =0). The second equilibrium
state (E=E, N=N,=1, & =&, =oal, A, = —ol,) cor-
responds to stationary lasing with the intensity 7, = |EC\2 =
N, — 1.

To study the stability of stationary lasing, we will seek
solutions of system (1)—(3) in the form E = E.(1+e),
N = N1 +n), &= &1 + ¢), where e, n, and ¢ are small
perturbations of the corresponding stationary quantities
proportional to exp (¢ —igx). By substituting these solu-
tions into the initial system, we obtain the dispersion
equation

bad* + b33 + by2  + biA+ by =0, 4)
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where

by = q*(1 + 1) — 2¢*val (1 + L.);

by = tong* (1 + 1) + ¢* = 2¢%val. + vI;
by =tong” + (1 + 1) + tpvI;

by =1+ 1,,(1 + I);

by = tpp.

Figs 1 and 2 show the solutions of equation (4) obtained
for the parameters of the medium N, =9.5 and v=_8.4
coinciding with those used in papers [4, 5]. The root 43 in
Fig. 1 is a real quantity, while the roots A; and A, are
complex quantities (only real parts of these roots are
shown). In the case of inertialless phase nonlinearity
(tph = 0), stationary lasing is unstable only for « >0,
qg<q = (voclc)l/2 (g is the dimensionless wave number),
when the real root of (4) is positive. This is the known
instability of the transverse structure of the field in a
medium where the refractive index increases with increasing
intensity (self-focusing), resulting in the disintegration of a
laser beam into separate filaments [7—10].
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Figure 1. Real parts of the roots of a characteristic equation for z,;, =0,
o« =0.05 (a) and 1, = 0, & = —0.05 (b).
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Figure 2. Real parts of the roots of a characteristic equation for

Ton = 0.1 and o« = —0.05.

The inertia of the phase nonlinearity only reduces the
instability increment, while the instability region for ¢
remains invariable.

Another type of instability is observed in a medium with
the coefficient a < 0 (defocusing nonlinearity). In this case,
for t,, # 0, there exists a region of the wave vectors g > ¢
(gy 1s the bifurcation value depending on the parameters of a
laser) for which two real roots 43 and A4 of (4) are negative,
while the real part R of the complex conjugate roots
A12 = R £1Q is positive (Fig. 2). This corresponds to the
Andronov—Hopf instability with respect to plane waves
with frequency Q propagating across the aperture at the
velocity W = Q/q [3, 11, 12]. The dependence of the maxi-
mum increment Ry, on « and t,, for v =8.4 and N, = 9.5
is shown in Fig. 3. The analysis of this dependence shows
that for each value of the phase nonlinearity o, the incre-
ment first increases from zero to its maximum value with
increasing inertia of the phase filter, the maximum value
being greater for a greater phase nonlinearity o. As the
inertia of the phase filter is further increased, the increment
gradually decreases. The gain R, decreases with decreas-
ing inertia v of the active medium and with decreasing the
unsaturated gain N..
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Figure 3. Dependence of the increment Ry, on the inertia 7, of the
phase filter and the coefficient of phase nonlinearity o.
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2. Structure of the laser field in a Fabry — Perot
resonator

The analysis of stability of stationary lasing performed
above neglected the finite aperture of a real laser and
diffraction from mirror edges. We also did not consider the
nonlinear perturbation dynamics described by the system of
equations (1)—(3). We considered the effect of these factors
on the transverse structure of the optical field by using the
model of a laser system proposed in papers [2, 13]. The
phase nonlinearity was simulated by introducing an intra-
cavity phase filter. The active medium and phase filter were
taken into account by introducing infinitely thin filters (3)
and (4) placed near a semiconductor mirror (/) (Fig. 4).
We assumed that mirror (2) is totally reflecting and
infinite. The edges of the first mirror were smoothed, so that
the profile of the reflection coefficient in regions —a < x4 <
—a+2b and a— 2b < x4 < a depended on the transverse
coordinate:

(xq) :%"[1 —sin<n$>},

where X = a — b; 2a is the width of mirror (7); 2b is the
width of the smoothed band; and r, is the reflection
coefficient of mirror (/) outside the smoothed band.
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Figure 4. Scheme of a laser used in calculations.

We used the integrated form of the equation for the field:

ikL) (¢ ik(xy — x1)°
) = SEER [ pwjemp | KO0
+%} dx,, 5)

where E(x;) is the initial field in plane (5) (Fig. 4); E(x,) is
the field in plane (5) after the round trip in the cavity; L is
the round-trip length in the cavity; and / is the wavelength
of light. We calculated a change in the field after the round
trip in the cavity from expression (5) and then calculated
the effect of the active-medium layers and a phase filter on
the field. In this way, we found a change in the field after
the round trip in the cavity. Then, we integrated kinetic
equation (2) and relaxation equation (3). This iteration
procedure gave the states of the medium and field at the
time instants multiple to the round-trip transit time in the
cavity.

The transverse structure of the field was calculated by
varying the parameters o, t,,, Nc, and v and the Fresnel
number Ny = 24> /L. The loss coefficient depended on the
reflection coefficient r, and was not varied in calculations
(G; = Lg, = 0.21). Figs 5—-9 show the space—time patterns
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Figure 5. Structure of the optical field for 7, = 0.1, « = —0.0045, N =
300, v=28.4, and N, =9.5.
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Figure 6. Structure of the optical field for 7, = 0.1, « = —0.023, Np =
300, v=28.4, and N, =9.5.
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Figure 7. Structure of the optical field for 7, = 0.1, « = —0.056, Ny =
300, v=28.4, and N, =9.5.
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Figure 8. Structure of the optical field for 7, =0.1, o= —0.011,
Ng =150, v=284, and N, =9.5 (a) and for 7, =0.1, o = —0.011,
Ng =300, v=28.4, and N, = 9.5 (b).
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Figure 9. Structure of the optical field for 7,, =0.1, «=0.034,
Ng =300, v=8.4,and N, =9.5.

of the optical field along the x axis in the case of stationary
lasing (z3/7 = 500, the dimensionless time is shown on the
right in figures).

When the coefficient o was negative, the optical-field
structure changed successively, as was earlier observed in
papers [4, 5] in the case of a negative frequency detuning: a
bright spot (‘mound’) was observed at the centre of the
homogeneous stationary field (Fig. 5), as well as quasi-
sinusoidal waves propagating in both directions over the
aperture (Fig. 6) and irregular and strongly modulated
spatial structures (Fig. 7). Similar space—time patterns of
the optical field were observed for different values of N, v,
and Ng, the appearance of the autowave transverse structure
being caused by the increase in the gain R,,, of the waves
(Fig. 3).

The above change of the structures occurs for each set of

the parameters N, v, and Ng with varying o (¢ < 0) in the
following way. For |z| — 0, this is the intensity ‘mound’
located at the aperture centre (Fig. 5). Its presence does not
depend on the inertia of the phase nonlinearity. The
stationary field with a bright spot at its centre is an
eigenmode of a plane cavity with a large Fresnel number,
which is filled with an active medium [2]. An increase in |«],
i.e., in the degree of nonlinear defocusing prevents the
formation of a diffraction pattern with the intensity
‘mound’. In the case of large || and the values of 1y,
for which R, > 0.17, the field profile is strongly modu-
lated by travelling quasi-sinusoidal waves (Fig. 6). A further
increase in |o| weakly affects the amplitude of the auto-
waves, but their space—time structure becomes irregular
(Fig. 7).

As the inertia of the phase filter increases (and Ry,
decreases), the amplitude of these waves decreases. In a
cavity with a large Fresnel number, the autowave structures
can be observed at lower values of R, due to an increase in
the aperture width and, hence, in the integrated gain aR,,,,
of the autowaves (Fig. 8).

In the case of focusing phase nonlinearity (o > 0), no
periodic autowave pattern was observed. For small values of
o, a pattern with a ‘mound’ was retained. As o was
increased, bright spots appeared and disappeared in diffe-
rent regions of the aperture (Fig. 9). Such field structures
were obtained earlier in the case of a positive frequency
detuning [4]. They correspond to the appearance and
breaking of filaments in a self-focusing active medium
[8—10].

As a whole, we can conclude that the focusing phase
nonlinearity of any origin can cause the filamentation of the
transverse structure of a laser field (such studies were
performed in many papers [8—10]), while the defocusing
phase nonlinearity can produce a periodic autowave struc-
ture of the field. It is possible that a combination of these
types of nonlinearity will permit the control of the laser-field
structure, in particular, the suppression of a small-scale self-
focusing.

Let us now estimate the Kerr coefficient |n,| ~ |x|g;/ Ik
for the parameters of the laser system used in this paper.
This coefficient characterises a nonlinear addition to the real
part of the refractive index (n = ny + n,14, where ny is the
linear refractive index). For |a| = 0.05, g, =10 em™', I, =
1 kW em ™2, and k=6 x 10* cm™', we obtain |n,| ~ 107°
em? kW, ie., the value that is typical for the problems
under study [10, 14]. Examples of semiconductor materials
with n, < 0 are presented in papers [15, 16].

3. Conclusions

The main results of the study of the space—time structure
of the laser field are as follows.

(i) We have found the regions of the parameters of a
phase nonlinearity (o, 7,,) and an active medium (v, N) in
which a homogeneous stationary lasing becomes unstable
with respect to plane waves with the wave number g > ¢,.
We determined the dependence of the instability increment
on the parameters of the laser system and showed that this
type of instability can be observed only when o <0 and
‘Cph 7'é 0.

(i) We simulated numerically the distributed model of a
laser system in a Fabry—Perot resonator. The dependence
of this system on its parameters is in agreement with the



726

A.P. Zaikin, A.A. Kurguzkin, N.E. Molevich

results of a linear analysis of the system stability. As
negative values of o increase and 7, increases, quasi-
sinusoidal waves begin to propagate over the aperture. A
further increase in o (for the same values of 7,) results in
large instability increments R, and a strongly irregular
transverse structure of the optical field. As the inertia of the
phase nonlinearity increases, the increment first increases
and then decreases. The amplitude of the quasi-sinusoidal
profile changes similarly. As the Fresnel number increases,
the region of optimal parameters (for observation of a
periodic profile) is displaced to lower increments R,,,.
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