Quantum Electronics 32(8) 727—737 (2002)

©2002 Kvantovaya Elektronika and Turpion Ltd

FIBRE OPTICS. OPTICAL FIBRES

PACS numbers: 07.79.Fc; 41.81.Qb; 42.81.Dp
DOI:10.1070/QE2002v032n08 ABEH 002280

Structure of light waves in a waveguide
tapered to subwavelength transverse size

T.I. Kuznetsova, V.S. Lebedev

Abstract. The penetration of an H wave through a waveguide
whose radius varies continuously from about the wavelength
size to subwavelength dimensions (of the order of 1/10
wavelength) is calculated. The method for the field analysis is
developed and the range of its applicability is studied by
considering some numerical examples. The dependence of the
transmission coefficient of a tapered waveguide on the radia-
tion wavelength and on the profile steepness of the waveguide
is studied. It is shown that a sharper decrease in the
waveguide radius provides higher values of the field trans-
mission coefficients.

Keywords: near-field optics, tapered waveguide, waveguide trans-
mission coefficient.

1. Introduction

The propagation of light through systems with a sub-
wavelength aperture has been studied in recent years in a
number of papers. The practical interest in this problem is
associated with the development of ultrahigh-resolution
optical microscopy, based on field localisation in the region
of subwavelength dimensions. In the classical theoretical
works on this subject [1-3], diffraction from a circular
aperture was studied in detail. In the first works on the
near-field scanning optical microscopy, the ‘quasi-point’
source of light was a hole in an opaque screen [4]. Extended
structures, like micropipettes [5, 6], were also investigated.
Tapered fibres [7, 8] turned out to be quite efficient, and it
was found that it is expedient to deposit a layer of metal on
the side surface of a micropipette or a fibre. Some theo-
retical works have also been devoted to this subject (see, for
example, Refs [9—12] and references therein).

Bearing in mind the experimental studies using fibres
with metal coatings, we will consider a dielectric waveguide
with ideally reflecting metal walls. We will focus our atten-
tion on the variation of the waveguide diameter along its
optical axis and its effect on the field structure. In analogy
with the properties of cylindrical waveguides (see, for
example, Ref. [13]), it can be naturally assumed that a
tapered waveguide may exhibit the so-called cutoff, when

T.I. Kuznetsova, V.S. Lebedev P.N. Lebedev Physics Institute, Russian
Academy of Sciences, Leninskii prosp. 53, 119991 Moscow, Russia

Received 9 January 2002; revision received 31 May 2002
Kvantovaya Elektronika 32 (8) 727—737 (2002)
Translated by Ram Wadhwa

the field channeling is terminated with decreasing the
waveguide diameter, and a strong damping of the field is
observed along the longitudinal coordinate.

It should be interesting to estimate this damping
quantitatively. Such an estimate was performed earlier in
Ref. [14], where the local damping factor was used to
calculate the amplitude of the transmitted wave. The dam-
ping factor was introduced in accordance with the same
rules as in a circular cylindrical waveguide; however, this
factor was a function of the longitudinal coordinate in a
tapered waveguide. The total attenuation was calculated by
integrating the damping factor. In such an approach, the
longitudinal variations in the waveguide parameters are
considered in a too simplified form. The matter is that
additional waves appearing in a tapered waveguide consi-
derably alter the structure of the total field and hence cannot
be neglected beforehand.

Here, it is appropriate to consider the analogy with the
propagation of a light wave through an aperture in a reflec-
ting screen [1]. It was found in Ref. [1] that the appearance
of a reflected wave in front of the screen is a significant
factor affecting the field leakage through a small aperture.
This factor strongly changes the transmission coefficient
compared to the value that would be obtained in calcu-
lations based on the Huygens principle.

In this work, we develop the theory of a tapered wave-
guide by taking into account the forward as well as the
backward wave. The transformation of the initial field into
higher-order waves is also estimated. The method is des-
cribed as applied to tapered waveguides having a circular
cross section. The method developed by us is similar to the
so-called cross-section method developed in Refs [15, 16],
but takes into account the specific features of the fibres used
in a near-field optical microscope, such as small radii, con-
siderable departures from the cylindrical profile, a sharp
decrease in the radius at the fibre output up to values much
smaller than the wavelength, and a strong reflection at the
walls.

2. Formulation of the problem
and basic equations

Let us present the initial equations and boundary con-
ditions for the field in a circular tapered waveguide (Fig. 1).
Let z be the coordinate along the waveguide axis; p is the
distance from the waveguide axis; ¢ is the polar angle; and
a is the inner radius of the waveguide that depends on the
longitudinal coordinate. The medium in the waveguide is
homogeneous and has the permittivity ¢ = const. The walls



728

T.I. Kuznetsova, V.S. Lebedev

of the waveguide are assumed to be ideally reflecting. We
confine our analysis to fields whose components do not
depend on the angle ¢. The time dependence of the com-
ponents is chosen in the form exp(—iwt), and this time
factor can be omitted in the subsequent expressions for the
fields. The system of Maxwell’s equations for magnetic type
waves is reduced to the equation
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in which the nonzero field components are related by the
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The main feature of the problem formulated here is that the
waveguide boundary is not a cylindrical surface, i.e., a(z) #
const.
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Figure 1. A hypergeometric tapered waveguide with input and output
radii ¢;, = a_,, = 0.5 pm, @y, = a(z = 0) = 0.05 pm, and the waveguide
parameter / = 0.2 um.

We will construct the solution of the Helmholtz equation
(1) for magnetic type waves, using the expansion in the
complete system of functions at each cross section. To
various values of longitudinal coordinate, their own eigen-
functions will correspond. We will work with functions
Ji(q,p), where J; is the first-order Bessel function of the first
kind, and ¢, is a transverse wave number defined by the
relations

qn(Z):a(Z)7 Jl(én)ZO (HZI,Z,...), 4

the roots &, being labelled in ascending order. Because of
the dependence a(z), the eigenfunctions prove to be depen-
dent on z as on a parameter. They form a complete
orthonormal system in each cross section z and satisfy the

boundary condition (3). The expedience of using such a
system of functions was indicated in Refs [15, 16] (see also
Ref. [17], Section 9.2).

We present the solution of Eqn (1) in the form
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Note that the field in the expansion (5), is not divided into
direct and opposite waves (in contrast to the approach used
in Refs [11, 15, 16]). This means that each coefficient 4, in
Eqn (5) contains both the direct and opposite waves.
Hereafter, we will call the coefficients A4, the mode
amplitudes (n = 1, 2, ...). The amplitudes A4, introduced
in this way can take positive or negative values. These
amplitudes depend on the longitudinal coordinate z. This
section as well as the next two are devoted to finding the
dependence A4,(z).

Let us expand the derivative 09, /0z in functions ®,,:
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By substituting Eqns (4), (5) and (7) into Eqn (1) and
equating the coefficients of each eigenfunction to zero in the
resulting equation, we obtain
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The expression for the coefficients ¢, [see Eqn (6)] has the
form
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Here, Jy(z) is the zero-order Bessel function of the first
kind. Because all the coefficients ¢,,, have identical depen-
dences on the coordinate z [see Eqns (9)], it seems most
natural to introduce new wave amplitudes Z,(z)=
const X a(z)A,(z) for further analysis. Be setting the
constant equal to 1/a_,,, we obtain

(10)

and the functions Z, and A, coincide at the input (z —
—00).
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By using Eqn (10), we can represent the system (8) in the
form
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The transformations carried out in this section do not
contain any approximations, and the system of equations
(11), (12) is completely equivalent to the initial equation (1).
Note that the coupling coefficients of waves with different
indices are of the order ofa_lda/dz, while the self-action of
a wave caused by the irregularities of the waveguide profile
is proportional to (a’lda/dz)Q. This was achieved due to
the transformation (10). The transition from amplitudes 4,
to new independent variables defined by relation (10) is also
useful in that it clearly exhibits an increase in the electro-
magnetic energy density due to a decrease in the waveguide
cross section.

3. Adiabatic approximation

The solution of the system of equations (11), (12) can be
obtained using the perturbation theory in the parameter
a’l(da/dz)c(\/éw)’l. The smallness of this parameter
means that the characteristic longitudinal size of variation
in the waveguide radius is much larger than the light
wavelength. We assume that the derivative da/dz can be
arbitrarily small, i.e., the waveguide profile varies adia-
batically slowly. We construct the solution first in the zero-
order approximation by neglecting all the terms containing
a~'(da/dz) in Eqns (11), (12).

Assuming that the right-hand side of Eqn (11) is zero
and omitting the last term in the left-hand side, we obtain

2
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This system of equations shows that in the zero-order
approximation, all the waves with different subscripts p are
independent, as would be the case for a regular waveguide.
However, two distinctions from the regular waveguide can
already be perceived. The first of these is the dependence of
g, on z, which leads to the interaction and coupling bet-
ween two waves propagating in the directions =+ z, as well as
to a variation in the amplitudes of these waves with
changing z. The second distinction from a regular wave-
guide is that the amplitude of a wave with the subscript p is
not the function Z,, but the function 4, [see Eqn (10)],
which is inversely proportional to the radius of the wave-
guide. Thus, even the zero-order approximation takes into
account the important characteristics of a tapered wave-
guide.

Let us choose the dependence of the waveguide radius on
the longitudinal coordinate z in the form

1 + exp(—z/1) 172 14

(1/a)® + (1/a_)* exp(—z/1)

where / is a parameter characterising the region of tapering
of the waveguide. This formula describes a gradually
tapered fibre, whose radius varies from «;, = a_,, at the
input (i.e., for z — —o0) to a,, for z — +o0o. Consider also
the point z = 0, because the region —oco < z < 0 correctly
approximates a long fibre with a sharpened output end. The
radius of the waveguide for z =0 is assumed to be the
output radius a,, determined by the expression

a(z) =

out = a(O) =dx |: (15)

b 1/2
1+ (aw/awf} '

For a significant difference between radii a_., and a,, the
output radius of the fibre is defined by the relation
Aous =V 2a.,. Note that it follows from (14) that the wave-
guide radius changes significantly along the longitudinal
coordinate within the length ~ 5/

We will call such a waveguide a hypergeometric wave-
guide, because the field in it is described by hypergeometric
functions. Fig. 1 shows the surface of such a waveguide,
described by expression (14), with the following parameters:
ain = 0.5 pm, ay, = 0.05 pm, /= 0.2 um. The dependence
(14) chosen by us is relevant because it provides an
appropriate shape of a tapered waveguide, and allow us
to obtain a solution of the basic equation (13) in an explicit
form. Further, we introduce the notation

() o)
"= wvea_y )’ T \oveay )

Here, ¢, ~3.832 is the smallest nonzero root of the equation
J1(&) = 0, which defines the transverse wave number ¢; of
the fundamental wave. We will perform most calculations
in this work for radiation with a wavelength A = 2nc/w =
500 nm, assuming that /¢ = 1.5. Then, taking into account
the above values of @, and a., we obtain the relations
m<1and M > 1.

Substitution of relations (4), (14) and (16) into Eqn (13)
leads to the expression:

(16)
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The solution of this equation is expressed in terms of
hypergeometric functions. It is presented, for example, in
Ref. [18] where the problem of reflection of a particle from
a one-dimensional potential barrier was discussed.
Consider first the lowest-order wave. In this case
(p=1), Eqn (17) has two linearly independent solutions:

U(z) = exp(zX/I)

X Fi X +iY,—X —iY;1 — 2X; —exp(—z/1)], (18)

V(z) = exp(—zX/I)
XL F [X+1Y, X —1Y; 1 4+ 2X; —exp(—z/1)]. (19)

Here, ,F| is a hypergeometric function;
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Note that as z — 400, the function U(z) increases, while
the function V' (z) decreases. As a solution of Eqn (17)
describing the amplitude of the fundamental wave (p = 1)
in the absence of any emitting or amplifying sources at +oo,
we choose a function decreasing at +oo:

@1

Let us present asymptotic expressions for function (19) for
z — +o00. For z — oo, the function V' (z) takes the form

V(z) = exp (— %(), exp (—;) <1

For z — —o0, the function V' (z) represents two travelling
waves propagating towards each other:

(22)
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Here, I'(x) is the complete gamma function. By introducing
the notation

(23)

(1 +2X)r(-i2Y)

A, = 24
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we can write instead of (23)
V(z) = Aj, exp (?) + A, exp <— ?) (25)

The moduli of the direct and reflected waves are equal
because the electromagnetic energy flux vanishes in a narrow
region of the waveguide [z — oo; see the asymptotic
expression (22)]. For z — —oo, the field has the form of
a standing wave. The field characteristics for intermediate
values of z, obtained from expressions (19) and (21), will be
discussed in the next section

4. Numerical analysis of the field characteristics

For a more accurate description of the dependence of the
field in a waveguide on the longitudinal coordinate z, we
turn to the amplitude 4,,, which is expressed in terms of the
solution obtained above and the radius a(z) (14). For the
first wave (n = 1), expression (10) has the form

(26)

Figs 2—4 show the results of calculations for this amplitude
normalised to the modulus of the amplitude A;, of the
incident wave (24), i.e., for 4;(z)/|A4;,|-

Fig. 2 shows the shape of the normalised amplitude in
the range —3.25 < z/4 < 0.25 of variation in the longi-

tudinal coordinate. The solid curve corresponds to the field
amplitude calculated in the zero approximation [see (19),
(24), (25)] from the rate of variation in the waveguide
profile. These calculations visually demonstrate the main
properties of the behaviour of field in a tapered waveguide.
They are manifested in the presence of oscillations for
negative values of z and a considerable field damping
with increasing z in the region where the radius of the
waveguide decreases sharply. The same oscillations are pre-
served further in the negative region z < —3.254, and the
damping still occurs at higher positive values of z > 0.25
nm. Calculations whose results are presented in Fig. 2 were
performed for 4= 500 nm and /= 50 nm. The results of
similar calculations of the dependence of the field amplitude
on the longitudinal coordinate z are shown by the solid
curve in Fig. 3 for a sharper variation (/ =25 nm) of the
waveguide profile. Apart from the variants shown in Figs 2
and 3, calculations were also made for /=75, 100 and
250 nm. In all these cases, the dependences of the field
amplitude on the longitudinal coordinate were similar.
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Figure 2. Dependences of the normalised amplitudes A4;/|A4;,| and
(A; + 84))|4;,| " of the electric field of a magnetic type fundamental
wave (4 = 500 nm, & = 3.832) on the longitudinal coordinate z/4 in a
waveguide with parameters a;, = 4/2, a,, = /20 and / = 7/10. The solid
curve is the field amplitude calculated in the adiabatic approximation
over the rate of variation in the waveguide profile; the dashed curve is the
calculation taking into account the perturbation 84, (30) determined by
the self-action 4, of the wave.
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Figure 3. Same as in Fig. 2, but for the waveguide parameter / = 1/20.

Fig. 4 shows the behaviour of the field of the funda-
mental magnetic type wave (2 = 500 nm, &{" = 3.832) in the
region of variation of the longitudinal coordinate where it
exhibits a sharp damping. Calculations were made for four
cases corresponding to different rates of variation in the
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waveguide radius in the longitudinal direction. The obtained
results show an exceptionally strong dependence of the field
amplitude on the parameter /. For example, the normalised
field amplitude 4,(z = 0)/|A4;,]| at the point z = 0 is equal to
1.8x107° and 6.4 x 10~ for /=2/10 and = /20,
respectively. Thus, for a smoother variation in the wave-
guide profile (larger values of /), the field attenuation is
found to be stronger. This is due to the fact that for a
smaller length of the transition region, attenuation begins
later (i.e., the critical radius is attained for larger values of
z). Therefore, a small length of the transition region (i.e.,
obtuse angles at the output) is always preferable for obtai-
ning large amplitudes of output fields.

Al/‘Ainl
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N NN
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Figure 4. Damping of magnetic type waves (1 = 500 nm, & = 3.832)
with increasing the longitudinal coordinate z in the region of a signifi-
cant decrease in the waveguide radius for a;, = /2 and a,, = 1/20. The
curves are the normalised field amplitudes A,/|4;,| calculated for
different /.

5. Analysis of the applicability
of the zero-order approximation

We have obtained above the dependence of the amplitude
of the first wave on the longitudinal coordinate Z;(z) using
Eqn (17) for p = 1. Let us assume that there are no waves
with p # 1 in the zero approximation [Z,(z) = 0]. Based on
this assumption and the obtained dependences Z,(z), we
determine the correction to the solution associated with the
terms containing a’lda/dz that were omitted in (11) and
(12). Assuming that the amplitude Z; is larger than all the
corrections, we obtain from (11) and (12) inhomogeneous
equations for higher-order waves (for Z, with p # 1) and
for the correction 6Z; to the fundamental wave amplitude.
These equations are not given here because of the limited
volume of this paper and will be presented elsewhere. Note
that they can be solved with the help of the Green function.
As the fundamental pair of solutions, we choose functions
(18) and (19) for finding 6Z;, while for finding the
amplitude Z, we choose the functions

W,(z) = exp(zY, /)

X Fi[X,+ 7Y, —X,+Y,;2Y,+ 1; —exp(z/1)], (27)

V,(z) = exp(—zY,/I)

X o F) [Xp +Y,,X, - Y,;2X, + 1; —exp(—z/1)], (28)

where

2 12
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1/2
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The obvious constraints at oo are imposed on the
solutions Z,. Moreover, the correction 6Z; was also
subjected to the condition that the wave arriving from
—oo and appearing in the sum Z; + 8Z; had a modulus of
the amplitude coinciding with the modulus of the amplitude
of a wave travelling in the same direction and appearing in
Z, (this condition is equivalent to the invariance of the
incoming flux). We will present the final formulas for the
quantities 4, = Z,(a_,/a(z)) and 84, = 6Z,(a_,/a(2)).

(29)

Vel (&)
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c

5.1 Correction to the fundamental wave amplitude

For the correction 384, to the fundamental wave amplitude
(p = 1), the results of calculations can be presented in the
following form:

s, = { vt - 5 [ve [ ros@a

v | vonow] (%), (0)

where

. 1da\? =N

.f1(2)2—<55) VA :Zflka; (€Y}
IA1

_ N A KN AR A
c_{1+3< - H )
B-—r| mon@a 3

Y% . J1 65 (33)
X+ DI(-i2Y)
ﬁ_F(X—iY)F(X+ 1-iY)’

(34)

L T(2x+ Dr(-i2y)

I(—X—iNr(-X+1-iy)’

Corrections to the solution obtained in the adiabatic
approximation were calculated from expressions (30)—(34)
for a waveguide with radii ¢;, = 250 nm, a,, = 25 nm, and a
wide range of the parameter / (250, 100, 75, 50 and 25 nm).
As expected, the corrections were found to be very small for
large values of the parameter /. The dashed curve in Fig. 2
shows the results of calculation of the amplitude 4; 4+ 84,
of the magnetic type fundamental wave for / = 50 nm (1 =
500 nm, & = 3.832) obtained from expression (30), and
their comparison with the amplitude 4, (solid curve) cal-
culated in the adiabatic approximation [see (14), (19), (26)].
One can see that, when the perturbation 84, is taken into
account, the standing wave pattern is displaced slightly to
the left of the origin, while the damping of the field
amplitude begins for slightly lower values of z compared
to those obtained in calculations in the zero-order approxi-
mation. The results of calculations presented in Fig. 2 show
that for /=50 nm, the introduction of the correction 34,
(30) leads to slight variations in the wave amplitude 4,
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obtained in the zero approximation. Thus, the zero-order
(adiabatic) approximation provides a reasonably good
quantitative description of the structure of the fundamental
wave in the cases considered.

Our aim was to find the values of / for which the
correction to the adiabatic approximation becomes notice-
able. In this connection, Fig. 3 shows the results of similar
calculations of the amplitude A; +64; for /=25nm
(dashed curve). In this case, a comparison with the results
of calculations of the field amplitude in the zero-order
approximation (solid curve) shows a large shift of the
standing wave pattern towards negative values of z. More-
over, an additional peak is formed for /=25 nm in the
longitudinal coordinate region of the waveguide where the
field begins to attenuate noticeably. A similar extremum is
also observed in the first version of the calculations (/=
50 nm), but it has a very small amplitude and can hardly be
seen in Fig. 2. The value /=25 nm defines the boundary
beginning from which the adiabatic approximation gives
only a rough estimate for the field in a hypergeometric
waveguide. Note, however, that our recent calculations of a
cone (an exactly solvable problem) and their comparison
with the above results show that the adiabatic approxima-
tion provides a reasonable quantitative estimate even for
/=25 nm.

5.2 Transformation of a field into higher-order waves

Let us now discuss the transformation of a field into higher-
order waves. The expression for the amplitudes 4, (p > 2)
has the form

(a_w I T(X,+Y,)I'(X,+7Y,+1)
A”‘(Tz)){‘@ [(2Y, + 1)I(2X,)

« [WPJOO V(O 0dc+ 7, Jx Wp(C)f;(C)dC] } (35)
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(37

Expression (35) was used to calculate the dependence of the
amplitudes 4,(z) of the magnetic type second wave (p = 2,
&M =7.016) and A;(z) of the magnetic type third wave
(p=3, &"=10.710) on the longitudinal coordinate z.
These dependences are shown in Figs 5 and 6 for / = 50 and
25 nm (A = 500 nm). In both cases, the amplitudes 4, and
A5 are normalised to the modulus of the input amplitude of
the fundamental wave (p =1, & =3.832), ie., to the
quantity |A4;,].

One can see from Figs 5 and 6 that the amplitudes of the
second and third waves are much smaller than the amplitude
of the first wave. They differ significantly from zero only
over a small part of the z axis (where the waveguide is
considerably tapered), and are virtually equal to zero
outside this region. These dependences lead to the con-
clusion that the unperturbed solution for /=50 nm (wave

|42/ Ainl, 143/ Ainl
0.10 5

0.08 /\
0.06 \

[
0.02 /, )

0 =
-1.6 —-1.2

—0.8

Figure 5. Dependences of the normalised amplitudes 4, (p =2, &' =
7.016) and A3 (p = 3, &" = 10.170) on the longitudinal coordinate z/A.
The solid and dashed curves are calculated from expressions (10) and
(35), respectively, for a;, = /2, a,, = /20 and [ = 1/10.
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7/ \
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0
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Figure 6. Same as in Fig. 5, but for the waveguide parameter / = //20.

A;) is a good approximation to the exact solution of the
problem.

6. Transmission coefficient of the waveguide

We have considered above the properties of electromagnetic
waves in an infinite waveguide. The optical scheme for a
finite waveguide looks as follows. The radiation propagates
in vacuum at first, and falls on a metal layer containing
a narrow channel (waveguide), passes through the finite
length of the channel and then emerges in open space where
it is transformed in accordance with the wave propagation
laws. The result of this transformation is different in the
cases of the near-field and far-field zones.

In this work, we are mainly interested in the near-field
study. Therefore, we will deal with the energy field densities
rather than the energy flux when considering the waveguide
transmission coefficient. This is caused by the fact that the
dominant role in near-field devices is played by non-
propagating waves, which are not connected with the energy
flux. We introduce a number of quantities which represent
the electric field energy density integrated over the cross
section in the appropriate regions of the optical scheme (for
definiteness, we consider below the magnetic type waves).

For the initial radiation (for z = —o0), we introduce the
quantity
beam
P = 24 |ES))pdp, (38)
0

where apq,, is the radius of the input beam; qu’“) is the
intensity of the field of a single wave propagating in the



Structure of light waves in a waveguide tapered to subwavelength transverse size 733

direction of the waveguide [in contrast to the formulas
presented below, expression (38) does not contain the
reflected waves]. Further, we introduce the integrated
quantity

P(zg) =2n J

0

a(zo) 2

|Ey(p,20)["pdp. (39)
which corresponds to the input cross section z = zy (zo < 0)
of a waveguide of radius a(zy). Accordingly,

Pe=0) =2 | "1 (2 = ) pdp (40)

is the integral of the energy density in the output cross
section z = 0 of a waveguide of radius a,, = a(0). Expres-
sion (40) contains the field £, in the waveguide calculated
neglecting the effect of the interface with free space (z = 0).
In the expression

out

Pau =2 [ 7 ES (0,2 = O pdp (1)
0

the quantity Ey"(p,z = 0) is the field E,(p, z = 0) modified
after reflection from the output face of the waveguide
(z=0).

If we are also interested in the far-field zone, we should
introduce another integrated quantity

P = | 1Es(p2) 0 @)
where the integral is taken over the surface S of a hemi-
sphere whose radius tends to infinity.

The field transformation at each part of the optical

scheme is characterised by the appropriate transfer coeffi-
cients

_ P(z0) _ P(0)
o Pa o Po @)
w0 — P(O) ) 0o — Poul'

Here, T_., is the transfer coefficient from free space to the
waveguide, T, is the transmission coefficient of the wave-
guide itself, Ty, is the transformation coefficient caused by
the effect of the waveguide output face, and T, is the
transfer coefficient of the free space from the near-field to
the far-field zone.

The integrated near-field energy density P, (41) at the
waveguide output is expressed in terms of the integrated
density P_,, of the input radiation and the total transfer
coefficient 7T taking into account the three stages of trans-
formation:

Py = P_ T, T=T_wTwTyo- (44)
To find the integrated far-field energy density P, (42), the
expression for the resultant transmission coefficient 7_ o
should be supplemented by one more cofactor 7, cor-
responding to the transformation of the field in the free
space:

T oo =T oowTwTw0T000s

Py =PouiTo - (45)

Let us explain the meaning of the transformation of the

field in the free space. Suppose that the field distribution in a
certain plane has the form of a spot of radius a (a < 1), the
field vanishing for p > a. The Fourier spectrum of such a
spot occupies the region k, ~ 1/a of transverse wave
numbers. Only a small fraction of these harmonics corre-
sponds to the propagating waves. Waves with £k, <
o/c=2n/) propagate while the remaining waves are
damped with distance from the plane under consideration.
Only nondamped waves, which constitute a fraction of the
order of (a/)* of the entire spatial spectrum, contribute to
the energy flux and the far-field intensity. The contribution
to the near-field intensity comes from all field harmonics and
the damped waves play a dominant role in this case. That is
why the integrated density (and not the energy flux)
characterises the near-field intensity.

Consider now a situation when the field is inside a
waveguide with a subwavelength diameter. The transmission
coefficient T, connects the integrated energy densities in the
input and output cross sections of the waveguide. This
coefficient, being the most interesting parameter in the near-
field optics, is the main object of our investigations. One
should bear in mind that the coefficient T\, ~ 1 in the case
under study. The energy flux in the absence of reflection
from the output end is equal to zero.

If we take into account the reflection at the waveguide
boundary with free space, the field intensity at the output
end will be proportional to |1 + R\z, where R is the ampli-
tude reflection coefficient. The electromagnetic energy flux is
determined by the quantity ImR. If the reflection coefficient
R is small, it has an insignificant effect on the output field
intensity. At the same time, this coefficient (or, rather, its
imaginary part) completely determines the energy flux. This
circumstance also points towards the need to analyse the
near field in terms of the energy density rather than the
energy flux.

The problems associated with the field transformation at
the input and output cross sections will be discussed in detail
in Appendix 1 and Appendix 2.

In the following, our calculations will be directed at
studying the behaviour of the transmission coefficient 7, of
the waveguide itself. Consider a semi-infinite (—oco < z < 0)
tapered hypergeometric waveguide with parameters z, —
—00, a;, = a(zy) ~ A and a,, = a(0) < 4, and determine the
spectral dependence of the transmission coefficient 7,,. We
assume that the quantities a;,, a,,; and / are fixed, and will
vary the wavelength of the input radiation. The amplitude
A1(0) will give the field amplitude at the output z =0, i.e.,
Aoue = AI(O)

In this section, we consider the magnetic type waves, as
well as the electric type waves. Naturally, a rigorous analysis
of the electric type waves should take into account the
dependence of the amplitude on the varying radius, as well
as the dependence of the boundary condition (which
generally connects the radial and longitudinal components
of the electric field) on the varying radius. However, for a
very slow variation in the profile, we can use the eigen-
functions of a regular waveguide and introduce in them the
parametric dependence on z. In the examples considered by
us, we used namely such an approach by replacing the
eigenvalue &" = 3.832 of the wave number (used for the
magnetic type waves) by the quantity & = 2.405, which is a
root of the equation Jy(&) = 0.

Fig. 7 shows the results of calculation of the trans-
mission coefficients T,, obtained by us as functions of the
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light wavelength 4. These coefficients are connected with the
ratio A,y /|4;,| of the field amplitude at the waveguide
output to the modulus of the input amplitude through the
relation T, = [@ouAou/ (ain|Ain|)]2 . All calculations were
performed for the fundamental (p =1) magnetic and electric
type waves in the zero-order approximation in the rate of
waveguide profile variation for input and output radii ¢;, =
250 nm, ay, = 35 nm, and the parameter / = 40 and 60 nm.

In all the above cases, a qualitative analogy is observed

Ty
107% =
T=+<__| /=40pm
107 = =
Tt ~_ |60nm i B
1078 = >
10-10 i T==< < :
40 nm \|
107" )
" \ 60 nm I
10~ |
\ '
10-16 ]

400 500 600 700 800 900 //nm

Figure 7. Transmission coefficient T, of a waveguide as a function of the
wavelength 4 for a;, = 250 nm, a,,, = 35 nm and for different values of /.
The solid and dashed curves are the results of calculations for the
fundamental waves (p = 1) of magnetic (¢{" = 3.832) and electric (¢ =
2.405) types for 4 < /. (corresponding to the cutoff wavelengths A" =
614.9 and A¢ = 979.8, respectively).

in the behaviour of the waveguide transmission coefficient
T, as a function of the wavelength. An increase in the
wavelength A leads to a sharp decrease in the coefficient T,
the decrease becoming exceptionally strong as the wave-
length approaches the cutoff value A, =2nvea;,/&
(beyond which the waves are no longer propagating even
at the input to the waveguide). For the radius ¢, and
permittivity ¢ of the fibre chosen by us (y/& = 1.5), the cutoff
wavelengths A" and AS for the fundamental magnetic and
electric waves are found to be 614.92 and 979.78 nm,
respectively. A comparison of the values of T, for the
magnetic type fundamental wave (for /=40 nm) for diffe-
rent wavelengths shows that T, decreases by a factor of
about 220 as the wavelength A increases from 400 to 600 nm.
A similar comparison for the electric type fundamental wave
shows that T,, decreases by a factor of about 400 as the
wavelength A increases from 400 to 900 nm.

At the same time, large quantitative differences in the
coefficients T, for different types of waves are worth noting.
For example, for 2 = 500 nm and / = 40 nm, the transmis-
sion coefficient T, for an electric type wave is about 2.6x 10*
times higher than the corresponding value for a magnetic
type wave. The results shown in Fig. 7 also clearly demon-
strate a strong dependence of the output field on the para-
meter / characterising the steepness of the waveguide profile.

7. Conclusions

The technique developed by us for wave investigations
allowed us to establish the spatial structure of the field in a
tapered waveguide. Our studies were carried out in the
region of geometrical parameters close to the experimental

values that are realised by using an optical fibre as a light
source in a near-field microscope.

For the conditions chosen by us here, the fundamental
wave excited in the waveguide remained dominant along the
length of the waveguide. Only an insignificant transfer of the
fundamental wave energy to the higher-order waves occurs.
Our calculations show a strong dependence of the field
characteristics on the length of the transition region where
the tapering of waveguide occurs. Shorter transition regions
(i.e., steeper waveguide profiles) ensure a higher trans-
mission due to a decrease in the contribution to damping
from the transition region. An increase in the steepness of
the waveguide profile also leads to another effect: the energy
transfer to higher-order waves increases, thus leading to a
violation of the applicability of the computational technique
used here.

Most calculations were performed under conditions
/> A/10 for which the transformation to higher-order
modes is insignificant. It is clear qualitatively that it is
expedient to use waveguides with a sharper variation of the
radius to ensure the best transmission. It was found in this
work that for /=~ A/10, the transmission T, of the wave-
guide attains values ~107> — 107 for electric type waves.
Going over to /=~ 1/20, we find that, according to the
estimate obtained on the basis of adiabatic approximation,
the transmission of the waveguide increases by an order of
magnitude. The validity of this estimate is confirmed by our
recent calculations for a cone where an exact solution exists.
The results of calculations for a cone are in fair agreement
with the results obtained in the adiabatic approximation for
a segment of a hypergeometric waveguide whose walls have
the appropriate slopes.

Calculations made by us in this work show that the
dependence of the transmission coefficient of a tapered
waveguide on the wavelength is quite strong. Naturally,
short waves are always preferable, and this is qualitatively in
full agreement with the properties of regular waveguides.
The same is true for the dependence of the transmission
coefficient on the transverse structure of the exciting wave:
the advantages of waves with small transverse wave num-
bers are obvious. Therefore, electric and magnetic waves
with nonzero azimuthal numbers are of considerable inte-
rest. The extension of the approach developed by us in this
work to a wider range of problems taking into account the
specific nature of these waves is of fundamental importance.
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Ministry of Industry, Science and Technology of the
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Appendix 1. Reflection of waves
at the inlet to a waveguide

Consider the incidence of a wave from free space on a
circular cylindrical waveguide of radius a. We assume that
at the input cross section z = z; (zy < 0), the waveguide is
transformed into an ideally conducting infinite plane exten-
ding from p = a to p = oo. This picture reflects the fact that
the waveguide walls are not thin and are thicker than the
inner diameter of the waveguide.

The matching of fields in the free space and in the
waveguide depends radically on the transverse structure of
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the incident wave. To simplify the calculations, we choose
the field in a form close to the waveguide mode, namely, we
consider a Bessel beam

E, = AJ, (o«p){exp { i(z = 20) (f_j - “2>1/2}

—exp {_ i(z _ZO)<‘;’22— az)l/z} }

where A is the amplitude of the incident wave. This
expression contains both the incident and reflected waves,
and hence the field is equal to zero at the end in the plane
z = zp. The transverse component of the wave vector « is a
preset characteristic of the initial wave. We assume that the
input Bessel beam is limited at p = @peam (€., dpeam 1S the
beam radius), and set J;(%dpeam) = 0 for convenience. Thus,
Olpeam = &, Where &, is one of the zeros of the Bessel
function with n # 1. Because the input radius of the
waveguide a = a(z)) < Gpeam»> the inequality oa <1 is
satisfied.

The field of the type (Al.1) is supplemented by a
continuous set of reflected waves with other wave vectors.
However, it is convenient to write at first the expression for
the field in the waveguide:

00 2 1/2
)
E, = ZBS@S( p)exp { i(z — zp) (L—zs — qyz) }, (Al.2)
s=1
where B, are constant coefficients, and

?4(p)

(AL.1)

=J (q'sp); Ji (%‘a) =0. (A13)
The phase for fields in (A1.2) and in analogous expressions

is chosen in the form:
2 w’
. w_z ., 1/27 0, qs<c—26,
g C2 €=y - )
T 2 (0]

50 s >7‘°

(Al.4)

Taking expression (Al.2) into account and using the
field continuity relation at z =z, p < a, we can write the
expression for the total field in free space as:

E(gO) — AJ, (ap){exp {i(z —zp) (C;; - az)‘/T

w2 1/2 %
—eXp |:_i(Z_ZO)<C_2_O( ) :|} Z:: sgs P,z (AIS)
8(02) = | " 2l )
w? 1/2
X exp {—1(z—zo)<c—2—%2) }%d%, (A1.6)

where the sign of the root is chosen in accordance with
(A1.4), » is the transverse wave number in free space, and

&) = L ®,(0")],(p")p'dp". (ALT)

Taking (A1.3) into account, we can calculate the function
g,(») in an explicit form:

gs(x) -2 2 Jl (%a)JO(qxa)- (A1~8)
X" — (s
For » = ¢, this expression takes the form
2
~ a 2
gs(qs) = 7 Jo (qsa)- (A19)

The radial component of the magnetic field is equal to
i(c/w)dE, ©) /52 in free space and i(c/w)OE, /Oz in the
waveguide. To ensure the continuity of magnetic field at
the aperture, the equality

0
3£
0z

B 0,
T oz

(A1.10)

z=2z, z=z2)

should be satisfied for z =z, and p < a.
Taking (A1.2) and (A1.5) into account, equality (A1.10)
assumes the form

2 1/2
A2i(—2—oc2> Ji(op)
¢
0 o w? 1/2
>y [— i(c—z— ) }gxwl (p)ed

= th( a—q;)l/zdﬁs(p)-

By multiplying the right- and left-hand sides of (A1.11) by
®,(p) and integrating with respect to pdp, we obtain

2 12 a
[ @
2i (—2 - fx2> A JO J1(2p)®,,(p)pdp

(A1.11)

Cc

o) a o0 2 1/2
+ZBXJO¢,z(p)pdpL {—i(f—z—#) } (A1.12)

s=1

2 1/2 a
w
X &y(%)J) (#p)ndn = 1(—2 6—q; > B, JO @, (p)pdp.

Taking (A1.8) into account and passing to dimensionless
quantities x = xa and ¢, = ¢,a, we can reduce (Al.12) to
the form

2 1/2
21a(c——rxz) AG(E,,0a) ZBbS,,

2.2 1/2
:i<“’§‘ s—é,f) B,.
C

(A1.13)

where

] a
G(Epy0a) = FJ Ji(op)J1(qup)pdp;

nJo

. (Al1.14)
N, = JO ]12(%0)Pdp;
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x G(&,, x)G (&, x)xdx; (A1.15)
2én Jl (X)

G(fmx) = x2 _ ’12 J()(én) '

(A1.16)

Recall that J;(¢,) =0, and hence the function G(&,, x)
becomes equal to unity for x = ¢,.

The system of equations (A1.13) allows us to determine
the amplitudes B, of all the waves entering the waveguide.
We confine ourselves to an approximate solution for the
amplitude B, of the lowest mode. The justification for using
this approximation is the fact that the modules of non-
diagonal elements b, are much smaller than the diagonal
elements. Putting » = 1 in (A1.13) and assuming that b =0
for s # 1, we obtain the amplitude transmission coefficient
upon a transition from free space to the waveguide:

B . 2.2 1/2
D,mwzj:2l<wcf —a2a2>

2.2

x G(&,0a) {bn +i<wcf

1/27-1
e—e;%) } . (ALI17)

By calculating the coefficient b;; appearing in (A1.17), we
obtain numerical estimates for the amplitude transmission
coefficient.

Taking into account the relations aa < 1 and adpeym =
£,, we can represent (A1.17) in the form

_2ién

wda a wa

D—ocw B 61']0(61) (T> (abeam)f(7>y
2 2 1/29-1

(%) = [rie-e) ]

The energy coefficient 7__,,, of transfer from free space to
the waveguide [see Eqn (43)] is related with the coefficient
D_.,, by the expression

(A1.18)

2

a Apeam B
Toow= HO Jf(qm)pdp/L Jf(ocp)pdp} ‘j

Ji(&) | B |} &
= — . Al.19
R 4| (AL
By substituting (A1.18) into (A1.19), we obtain
o\ [ a° wa
T ow =M, — 1 F|— ), (A1.20)
¢ abeam ¢

where 1, = {2¢,/[¢1Jy(¢,)]}” are constant coefficients, and
F(wa/c) = | f(wa/c)|” is a dimensionless function. Note
that formula (A1.20) contains the radius a(zy) which vir-
tually coincides with the radius a;, = a(— oo) if the input
cross section z = zy < 0 of the hypergeometric waveguide is
chosen at a fairly gently sloping (cylindrical) region. Thus,
expressions (A1.15)—(A1.20) determine the behaviour and
magnitude of the transfer coefficient 7__,, from free space
to the waveguide for different values of the parameters
a/ apeam, € and wa/c.

Appendix 2. Reflection of waves
from the output of a waveguide

Consider now the distortion of a damped wave in a
cylindrical waveguide caused by the presence of the
interface with the free space. We choose the waveguide
mode in the form

w2 \1/2
E, = 4,0,(p) exp [—z(q%—?e> } (A21)

which corresponds to an infinite waveguide (A4; is the
amplitude of the lowest mode). We assume that the wave-
guide is truncated at the cross section z=0 and is
transformed into an ideally conducting plane extending
from p = a (i.e., a = a,y,) to infinity (in the same way as it
is assumed for the input end). The field modified due to the
interface effect has the form

w? \!/2
E(Z“:Alqﬁl(p)exp{—z<q12—c—2.s> }

00 5 602 1/2

B,®, f——¢ . A2.2
2 Bp)exp {(q 3 s) } (A22)
The field in free space is represented in the form of a
Fourier —Bessel integral. Note that for z=0 and p < a, it
should coincide with the field in the waveguide, while for
z=0 and p > a, it should vanish. This field [taking into
account Eqn (1)] should have the form

EY = Aig1(p.2) + Y Bg(p.2), (A23)
s=1
gs(pa Z) = L) gs(%)‘ll (%p)
w2 1/2
X exp {iz( — - %2> ]%d%. (A2.4)
C

Note that for the problems on reflection from the input
and output ends of the waveguide, the functions g, differ
only in their dependence on z, while their dependence on p is
the same [see Eqns (A1.6) and (A2.4)]. Therefore, the func-
tions g,(») [see Eqn (A1.7)] are identical in both cases. To
ensure the continuity of the magnetic field, the equality

oE"
0z

_E)
z=0 0z

(A2.5)

should be satisfied for p < a.
Taking Eqns (A2.1)—(A2.3) into account, this equality
takes the form

2

0 1/2 0

(03]
S (0= re) (B 80a)00) = > (B +.4)
s=1 s=1

A)

rc w2 , 129
X {1(—27%) }gs(x)Jl(%p)%d%, (A2.6)

0

where d,; is the Kronecker delta. By multiplying both sides
of the above equation by @,(p) and integrating with respect
to pdp within the limits 0 < p < a, we obtain
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2 1/2 pa
(0]
(Bn - 6nlAl) (an - ? €> JO (pnz(p)'()d'()

o) 00 wz 1/2
= (B, +8,4;) Li<?_~ﬂ 2,(0)2, () nd.  (A2.7)
s=1

Taking into account expression (Al.8) for g.(x) and
passing to dimensionless variables x = xa and &, = ¢,a, we
represent (A2.7) in the form

2.2 1/2
B w’a
(Bn_anlAl)(gnz_ 2 F)

>

where b, is defined by expressions (Al.15) and (Al.16).
The system of equations (A2.8) allows us to determine the
amplitudes B, of all the waves reflected backwards in the
waveguide. For simplicity, we confine ourselves to the
approximate solution for By. As in Appendix 1, the solution
is constructed using the fact that the nondiagonal elements
by, are much smaller than the diagonal elements. Putting
n=1 in (A2.8) and assuming that b =0 for s# 1, we
obtain

s+ 051 41)byg, (A2.8)

o’a®

12
(B — Al)(flz a2 8) =—(By+4)b;;, (A29)

o’a’

B 1—pu
=—1l= , M=b11<fl——

1/2
=—=— € . (A2.10
A 1+up ) ( )
The quantity R is the amplitude coefficient of reflection
from the open end of a waveguide of radius a = a,y,. By
using the fact that the relations

2 aN-1/2
‘Rebn<§1—wa> -1 <1,
c
(A2.11)
1 wa’
Imbyy ~ = —5-
1567 ¢

are valid for wa/c < 1, we obtain

7w2a2 ~1)2
c?

w a

1 w2a? 2.2 3/2
_ERebll 2 (e — )(fl— 8> , (A2.12)

55 2 2 \1/29-
w’a w’a

Specific calculations performed by expressions (A2.11)—
(A2.13) show that for a = a,,; < 4, the real part ReR of the
reflection coefficient is small and is ~ 0.04 — O(a’, /).2),
while its imaginary part ImR is an even smaller quantity.
Thus, the transfer coefficient T,, (see Section 6) upon a
transition from the waveguide of subwavelength cross
section to the near-field zone of the free space is close to
unity to a high degree of accuracy. This means that the field
at the output of a finite waveguide can be calculated by
neglecting reflection at the exit aperture.

1
ReR = i [1 — Reb“ (é]

ImR =

(A2.13)

Note that, by using expression (A2.13), we can obtain
the expression for the coefficient 7|, of energy transfer of
free space from near field to far field:

2wt

= - A2.14
1562 ¢4 ( )

0o

Thus, for a,, /A < 1, we have obtained the coefficient 7},
which is proportional to (agy/2)*.
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