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Whispering-gallery waves in optical fibres

V.A. Sychugov, V.P. Torchigin, M.Yu. Tsvetkov

Abstract. The process of excitation of whispering-gallery
waves (WGWs) in optical fibres (microcavities) with the help
of a bitapered fibre is analysed. It is shown that useful
information on the WGW modes can be obtained from the
spectrograms recorded by scanning the exciting-radiation
frequency. Based on the geometrical-optic approximation, the
longitudinal sizes of the WGW modes are estimated and it is
shown that the ultimate diameter of the fibre exists for optical
fibres (microcavities) where a mode can be still excited with
the help of a bitapered fibre.
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1. Introduction

Interest in the electromagnetic whispering-gallery waves
(WGWs) has quickened in recent years. This is explained by
several reasons, of which the main one is the development
of the technology of high-quality optical fibres of different
diameters for various applications. This technology pro-
vided the fabrication of spherical microcavities with a
quality ~ 10° made of ultra-pure silica, which allows the
use of quartz microspheres (of diameter ~ 300 um) in
narrow-band lasers [1], wavelength-division multiplexers [2],
sensor devices [3], and some other fields. The author of
paper [4] proposed to use WGWs excited in tapered quartz
rods for the shift of the frequency of light with the help of a
sound wave propagating along the rod axis, the frequency
shift being substantially greater than that commonly
achieved using the Bragg diffraction [5]. The experimental
realisation of such an acousto-optic cell requires the
understanding of all the details of the interaction process.

We have shown [6] that the acousto-optic interaction is
essentially a waveguide process. We determined all the
conditions at which a wavelength can be changed, and
proposed, in particular, to use a tapered quarts rod of a
small diameter as an acousto-optic cell. This poses the
problem of excitation of WGWSs in rods of different
diameters.

At present, there exist two methods for exciting WGWs:
a prism method and a fibre method in which a piece of a
fibre with diameter gradually decreasing from 125 to 2 um is
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used. The latter method is quite attractive for experiments
on the acousto-optic interaction. For this reason, the aim of
this paper is to study in detail excitation and propagation of
WGWs in a quartz rod—coupling device system.

2. Analysis of excitation of WGWs
in the geometrical-optic approximation

It is known that the field of a wave propagating in an
optical fibre of small diameter (less than 7—10 pm) emerges
outside, which allows one to couple with the WGW field in
a quartz rod. A WGW is characterised by the propagation
constant f = n*k, where n* is the effective refractive index
and k =2n/.. An optical wave in a tapered fibre is also
characterised by the constant f5, which is described by the
expression [7]:

B? = k*n* — (2.405)%/p?, (1)

where n is the refractive index of the fibre and p is the
radius of the tapered fibre in the excitation region.

When =/, a WGW is excited in the rod, whose
different modes can be maintained in optical fibres. First
of all, these modes are characterised by the radial field
distribution. An example of such a distribution for WGWs
in a rod [8] is shown in Fig. 1. The WGW mode with one
maximum of the field near the interface is the fundamental
mode. Modes with two, three, and more maxima are called
the higher order modes. The higher the mode order m, the
smaller its propagation constant f.

Fig. 2 shows the scheme of excitation of WGW modes
with the help of a tapered fibre. Usually, a tunable narrow-
band radiation source is placed at the fibre input and a
detector at the fibre output. Sometimes, a broadband
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Figure 1. Radial distributions of the field of the WGW modes of the first,
second, and third orders in a standard silica fibre of diameter
2r = 125 pm immersed in ethanol [8] (/ is an integer, m is the mode
order).
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Figure 2. Scheme of excitation of the WGW modes in a cylindrical
quartz rod (microcavity) with the help of a tapered part of a fibre
(bitapered fibre).

radiation source is placed at the fibre input and a spectrum
analyser at the fibre output. To excite WGW modes of
different orders, it is necessary to obtain the equality
b= [_fp by moving along the tapered fibre.

A typical signal at the fibre output is shown in Fig. 3 [9].
Note that Fig. 3 gives interesting information on the WGW
modes excited in the rod. First of all, a mode is excited when
the wavelength of the source satisfies the condition

2nrn*
==
where / is an integer and r is the radius of a cylindrical rode.
Condition (2) means that the phase shift ® = 2nrfi of the
WGW after the round trip in the microcavity should be
multiple of 2m, i.e., 2nrf = 2rnrkn” = 2nl. The number / can
be expressed in terms of the distance A4 between azimuthal
WGW modes in the rod to obtain
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Thus, we can determine n* for the WGW mode from
Fig. 3. Assuming that this mode is established in a cylin-
drical rod after an integer number of total internal
reflections of light, we can represent n* in the form
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Figure 3. Spectral dependence of the radiation intensity transmitted
through a bitapered fibre in contact with a microcavity.

where 6 is the angle of incidence of the WGW on the
cylinder surface. The number of reflections of the WGW
from the cylinder surface is

180°
N= 900 _ 00' (5)

By using this (geometrical-optic) approach and knowing N
and the radius r of a cylindrical rode, we can determine the
penetration depth /i of the mode under the rod surface:
2
I
h~—. 6
N2 (6)

The value of n* also can be found from N:

2
n":n(l—#). 0

Expressions (5)—(7) are valid for large N, i.e., for large radii r.

The trajectory of a WGW in a cylindrical dielectric rod
in the geometrical-optic approximation represents a broken
line, the number of its breaks being equal to the number N
of reflections of the wave from the cylinder surface per total
loop of the trajectory. How is the number N of these
reflections of a mode of some order determined? It is
obvious, first of all, that N satisfies the relation N < /=
2nrn/2. For a quartz rod of diameter 125 pm and 1=
1.55 um, we obtain N < 366. A mode with such a number of
reflections would have a small localisation depth near the
cylinder surface. For this reason, it could not be excited
because of strong scattering of light from this surface. The
scattering losses can be reduced by increasing the locali-
sation depth of the mode; however, in this case, volume
absorption losses will increase, if they are present, or volume
scattering losses, which are always present. In addition, as &
increases, the radiative losses of light in the mode also
increase because the angle of incidence of light on the
cylinder surface approaches its critical value.

The losses considered above are intrinsic losses of a
mode of a dielectric resonator such as a microsphere or a
cylindrical rod. These losses are usually characterised by the
parameter & = A4/ A, where A is the amplitude of a WGW
and AA is the amplitude decrease per loop of the WGW
trajectory. Excitation of the mode is also accompanied by
losses, without which, however, modes cannot exist. A
device for excitation of modes — a prism or a tapered
fibre, which are coupled with a microcavity by tunnelling,
are characterised by the coupling parameter y, which
determines the WGW leakage from the cavity to the
coupling prism or tapered fibre and, vice versa, the transfer
of the wave from the coupling device to the cavity. The
optimal value of the coupling parameter y, at which the
WGW amplitude in the microcavity is maximum, is
achieved when the equality y =« [10] and the phase-
matching condition f = f§ are satisfied.

A WGW mode excited in the cavity is in essence a mode
of the cavity with a coupling device. The quality of this
mode are characterised by the spectral width 84 (or dv) of
the resonance. If the coupling parameter y is increased, the
resonance width also increases and the amplitude of the
excited mode decreases. When y is decreased (for example,
by increasing the gap between the prism and microcavity),
the resonance width 64 decreases and the WGW amplitude
sharply decreases.



740

V.A. Sychugov, V.P. Torchigin, M.Yu. Tsvetkov

The coupling parameter y can be always reduced, but it
can be increased only up to a certain limit. This limit
restricts the magnitude o of losses in the mode which can be
still excited using this coupling device. In some papers, the
WGW modes were excited by pumping an active medium,
which is a part of the cavity. In this case, the spectrum of
modes depends on the position of the active medium in the
cavity and on the pumping method. Such excitation was
analysed in detail in paper [8]. Therefore, we can say that the
spectrum of modes excited in the cavity is determined by
their Q factor Q = A/84 (or losses &) and the excitation
method.

Note also that the presence of radiative losses of the
WGW modes, which are determined by the change in the
refractive index on the curvilinear interface between the
media, allows the excitation of a WGW mode by an external
light beam directed along the tangent to the cylindrical
surface of a dielectric rod [11]. The excited modes were
detected in this paper by recording spectrograms of scat-
tered light. It follows from the spectrograms and relations
(2)—(7) that WGW modes with N =8,n" ~ 1.345 and
h ~ 5 um were excited in standard quartz fibres of diameter
125 pm.

It was shown in paper [9] that the diameter of a fibre and
its variations along the axis can be very precisely measured
from the spectrograms of excited modes. It was also shown
in [9] that the use of a strongly tapered fibre (y = 107%)
allows one to excite modes with different radial orders. Dips
A, B, and C in the transmission spectrum in Fig. 3
correspond to excitation of the fundamental WGW mode
in a quartz rod of diameter 20 pm, while dips D, E, and F
correspond to excitation of a higher radial order mode.

It follows from these spectrograms that for the funda-
mental mode, n} = 1.426, h; = 0.125 pm, and N = 20, while
for a high-order radial mode, n* = 1.35,h ~ 0.61 pm, and
N ~ 9. According to expression (7), for N =9, the parame-
ter n* = 1.355, and this value is quite close to that obtained
from the spectrogram in Fig. 3. According to our estimates,
the high-order mode (dips D, E, and F) is the fifth-order
radial mode (the mode order is m ~ h/h;). The spectro-
grams in Fig. 3 also exhibit distinct dips corresponding to
excitation of even higher-order radial modes (up to the
limiting order) with the number of reflections N = 6, 5, and
4. These modes have large radiative losses, which probably
makes possible to excite them with the help of a tapered
fibre (taper).

Let us now estimate the longitudinal size of a mode in a
conical rod. It is known that a beam trajectory in the ray
approximation representing a mode of the conical rod is a
spiral on the cone surface with a cusp of the beam and a
point of intersection of two counterpropagating beams
located in the region of coupling of light to the cone (Fig. 4).

The distance H from the coupling point of the beam to
its cusp is determined by the relation [6]

. 2
H:rl—sm(.n/2—(p): re ’ ®)
sin y 2siny

where ¢ is the angle of coupling of light into a conical rod.
The angle of intersection of beams a and b in the region of
the mode excitation on the cone surface is 2¢. This angle
should be equal to the divergence of light in the mode,
which is determined by the mode dimension H, i.e.,

Figure 4. Graphical illustration of the definition of the longitudinal size
of modes in a conical fibre microcavity.

A

Taking into account expressions (8) and (9), and Fig. 4,
we have

H:l 2r/.12 1/3.
2 \n?siny

The estimate of the mode size for a conical rod with
r=10pm, y =3 x 107* and 2 = 1.5 pm gives A ~ 21.2 pm.
The number w of coils in the spiral can be estimated from
the expression

WZM. (11)

2msiny

(10)

For a conical rod of diameter 20 pm, the number of coils in
the mode is w =31, the values of w and H being
independent of the mode order.

The definition of the longitudinal size of a mode
introduced above is rather conditional. It is possible to
define this size in a different way, for example, assuming
that the point of tangency of a tapered fibre and a conical
rod is the cusp of the beam representing the mode, while the
angle of leakage of light from the mode coincides with the
angle » = A/nH™. This definition yields the mode size

1/ 422 \'"?
H = —/—_
2 <n2 siny> ’

which is larger than the mode size defined earlier only by a
factor of 1.26. The WGW mode excited in a conical rod is a
leakage mode because the light energy supplied to is leaking
from the mode along the cone axis toward its apex. The Q
factor of these modes is low, but their longitudinal size can
be estimated experimentally.

The conicity of a cylindrical rod is y = 0, and it seems
that the mode size is infinite. However, this is not the case.
The WGW mode size in a cylindrical rod is determined by
the diffraction losses of light in the excited beam and by the
coupling parameter y characterising a coupling device. Let
us assume that the WGW mode has the longitudinal size ¥,
at the end of the excitation region. The divergence angle of
light in the mode is ¢ = A/nWj, so that the longitudinal size
of the mode at the end of its path L = 2nr will be W, =
2nrd/nWy + W,. The coefficient of diffraction losses A4/ A
in this case is o = (4y — A1)/Ag, where 4y and A4; are the
mode amplitudes at the beginning (L =0) and the end
(L = 2mr) of the path, respectively, i.e.,

(12)
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(13)

As mentioned above, in the case of optimal coupling,
o =y, and the longitudinal size of the mode can be exp-
ressed in terms of the coupling parameter y

SN 12 2\ 172
i 7
W,=|— 1— - .
0 <n > ( X)(X 2)

Thus, if the coupling parameter is y = 0.1, then the WGW
mode can be excited in a standard fibre of diameter 125 um
whose limiting size is W, = 42 pm; for y = 107>, we have
Wy =456 um.

Note also another circumstance, which follows from
expression (14), namely, that the mode size increases with
the rod diameter.

When a taper is used to excite WGWs, the possibility of
excitation of some mode is determined by the limiting value
of the coupling parameter y, which is limited both by the
coupling-region length and (mainly) by the diameter of an
optical mode in a thin (3—5 pum in diameter) tapered fibre. If
the diameter of this mode achieves ~ 10 pm (W, = 10 um),
then the coupling parameter y should be 0.56, which is quite
a large value. As the rod diameter is increased up to 400 pum,
the value of y increases up to 0.74.

Excitation of the WGW modes in cylindrical rods of
even greater diameter (above 400 pm) with the help of a thin
tapered fibre becomes impossible. To excite the WGW
modes in such rods, one should reduce the diffraction losses
of light. These losses can be substantially reduced by locally
increasing the refractive index along the WGW beam
trajectory, i.e., by producing a circular channel waveguide
in cylindrical rods [12]. Another method for reducing
diffraction losses is the creation of a local curvature of
the surface along the cylinder generatrix, i.e., the creation of
the so-called circular ridge waveguide for the WGW. It was
shown in paper [13] that this method provides the cavity Q
factor ~ 107.

(14)

3. Experiment

We obtained the spectrograms of the WGW modes excited
in cylindrical fibres of diameter from 125 to 400 um. The
modes were excited with the help of a tapered fibre
fabricated using the following technology: a standard silica
fibre of diameter 125 um was locally heated with an electric
arc discharge up to the softening temperature and was
stretched with a special computer-controlled device. As a
result, we obtained tapered regions of fibres of length
20 mm with the narrow-part (waist) diameter of 3 pm. The
bitapered fibre fabricated in this way was fixed in a metal
(Invar) holder with a slot in the middle (i.e., under the
narrow part of the waist) for placing a silica fibre under
study perpendicular to the waist. The fibre under study was
fixed on a precision (Ax ~ 0.25 um) translation stage along
the waist.

A source of radiation coupled into a tapered fibre was a
diode-pumped erbium-doped fibre amplifier. A signal at the
output of a coupling device was detected with an Anritzu
MS96A spectrometer. Fig. 5 shows the typical spectrogram
of excitation of a cylindrical optical fibre of diameter
125 um. We determined from this spectrogram the effective
refractive index n* of the WGW mode and the number N of
reflections corresponding to it. Fig. 6 shows the calculated

dependence n*(N) and the dependence 7*(p) for a thin
tapered fibre exciting the WGW [see expression (1)].
Fig. 6 shows the range of values of n*(N) which can be
obtained from the spectrograms by exciting WGWs with the
help of a tapered fibre having a waist of a given diameter.
We compared the values of n* and N found from the
spectrograms for different fibres with the calculated depen-
dence n*(N). The values of n* and N obtained from the
spectrogram in Fig. 3 are also shown in Fig. 6. We failed to
excite WGWs in a cylindrical fibre of diameter 260 pm and
above, which we explain by large diffraction losses of light
in these fibres.
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Figure 5. Spectrogram of radiation at the output of a bitapered fibre
obtained by exciting WGWs in a standard cylindrical fibre.
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Figure 6. Dependences of the effective refractive index 7* of modes in a
bitapered fibre on its radius p and the dependence of n* for the WGW
modes in a cylindrical fibre microcavity on the number N. The crosses
are the experimental values of n*.

Therefore, based on the data from the literature and our
experimental results, we have shown that the geometrical-
optic approximation can be used for analysis of the
spectrum of whispering-gallery modes excited in cylindrical
fibres of large (200 pm) and small (20 um) diameters.
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