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Trapped phonons in ultrathin metal films: the interpretation
of recent femtosecond experiments

A.O. Melikyan, H.R. Minassian

Abstract. The results of recent experimental and theoretical
studies of the nonequilibrium dynamics of electrons and
phonons excited by femtosecond laser pulses in ultrathin
metal films are discussed. Experimental data obtained by the
femtosecond pump - probe wave (FPPW) method are ana-
lysed using a two-temperature model and non-thermal models.
A Kkey role of the size quantisation of a phonon spectrum in
the dynamics of phonons and electron—phonon interaction is
substantiated. The application of the FPPW method in
superconductivity studies is also discussed.

Keywords: femtosecond pulse, ultrathin film, size quantisation,
electron—phonon interaction.

1. Introduction

At present the technology of preparation of ultrathin films
has reached its theoretical limit, providing the fabrication of
one atom thick films. The physical properties of such films
strongly differ from those of bulky samples, and it seems
that all the differences can be explained only in the future.
The experimental studies of ultrafast processes in films,
which are of most interest, became possible due to the
development of the methods for generating femtosecond
laser pulses of a given duration in different spectral regions.

Interest in ultrathin metal films and extensive studies of
their properties are caused by the application of these films
as contacts in fast electronic and optoelectronic devices.
Obviously, the response time of such devices is determined
by the relaxation time of the electron subsystem. It was
shown already in the first experiments with femtosecond
pulses that the relaxation time depends on the film thickness,
increasing in thin films and thereby deteriorating the
response time. The study of the mechanism of this effect
is of much current interest both for the theory and
applications.

The definition of a film should be specified. Whether or
not a particular sample can be called a film is determined by
its properties being studied. If, for example, we are
interested in the conductivity of a metal sample, this is
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determined by the dependence of the sample resistance on its
thickness due to diffusion scattering of carriers from the
surface roughness, whose contribution in thin films becomes
comparable with those from usual resistance mechanisms. In
this case, an important parameter is the electron mean free
path determined by scattering of electrons by impurities and
lattice vibrations.

We discuss in this review the studies of processes
proceeding in thin metal films irradiated by femtosecond
laser pulses. One should bear in mind that, as a rule, very
thin films are prepared by the deposition of atoms on a
substrate, which can substantially affect the development of
processes under study. As expected, when the film thickness
exceeds the electron mean free path, hot electrons relax as in
a bulky sample. A criterion for determining whether or not a
sample can be treated as a film with respect to purely
phonon processes, such as thermal expansion and sound
propagation, depends on the substrate properties and is
discussed in Section 5.

The question about the role of a size quantisation of the
electron spectrum in a film is solved as follows. There exist
two characteristics lengths: the mean free path /g, and the de
Broglie wavelength Ag. If [y, < /g, irrespective of the film
thickness, the size quantisation effects are insignificant
because of a strong broadening of the energy levels. If
the opposite inequality /, > g is satisfied, a coherent state
of an electron is conserved over the de Broglie wavelength
and more, and, when the film thickness is comparable with
Ap, the size quantisation comes to play. For example, in
typical semiconductors with the effective mass of carriers in
the conduction band, which is approximately ten times
smaller than the mass of a free electron, the de Broglie
wavelength of electrons at room temperature is ~ 10—
100 nm; therefore, the electron size quantisation effects
become essential when the film thickness is comparable
with this value.

The de Broglie wavelength of electrons in metals is of the
order of 0.1 nm. Nevertheless, we will show below that the
size quantisation affects the electron —phonon interaction in
metal films of thickness 10 nm, but now due to quantisation
of the phonon spectrum. However, when the film thickness
is such that the distance between the electronic levels of the
size quantisation exceeds the Debye frequency of the metal
and emission of phonons by electrons is strongly hindered,
the role of size quantisation of electrons becomes very
important.

Unlike, metal films, the size quantisation of the phonon
spectrum and its effect on the electron —phonon interaction
in semiconductor films have been well studied.
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2. Review of experiments

The ultrafast dynamics of nonequilibrium electrons in
metals have been recently studied in many papers [1—10].
The most advanced experimental method for investigating
these processes is based on the irradiation of a sample by
two femtosecond laser pulses separated by a time delay.
The first pulse serves as a pump pulse, while the second
pulse probes variations induced by the pump pulse in the
sample. This method is called the femtosecond pump-—
probe wave (FPPW) method. It involves the measurement
of the reflection coefficient R of a probe pulse as a function
of the delay time between the pump and probe pulses.

It was shown in a number of recent experiments that
excitation of electrons in ultrathin metal films by femto-
second laser pulses leads to the nonequilibrium dynamics of
electrons and their non-thermal transport [1 —11]. These two
processes cause a change in the reflection coefficient of the
film due to a change in the concentration of charges in a
surface layer of thickness equal to the depth of penetration
of light to the metal (this layer is called sometimes a skin
layer). Two pump pulses separated by a time delay can be
also used, which can provide a more detailed information on
the dynamics of hot electrons [12]. When both pulses are
incident on the same surface of a metal film (copropagating
pulses), the reflection coefficient of the probe pulse gives
information only on the relaxation times of hot electrons. If
the pulses are incident on the opposite surfaces of the film
(counterpropagating pulses), we can obtain an additional
information on the electron transport.

Beginning from the first FPPW experiments performed
in the mid-1980s, the dependence of the reflection coefficient
of the probe pulse on the film thickness was observed.
Below, we present the results of experiments with copro-
pagating ([5], Fig. 1; [11], Fig. 2) and counterpropagating
pulses ([10], Fig. 3), which demonstrate this dependence for
films of thickness smaller than 100 nm. The results obtained
with copropagating pulses clearly show that the reflection
coefficient R relaxes nonexponentially (linearly) at delay
times smaller than 7 ps in 10-nm thick films and less than
1 ps in 50-nm thick films.

New experimental data on the dynamics of thermal
expansion, which were obtained by the modified FPPW
method, are presented in paper [13]. The authors of this
paper investigated vibrations in an ultrathin nickel film
excited by femtosecond pulses. They showed that the
propagation velocity of a thermal-expansion pulse decreased
with decreasing film thickness. The vibrational modes and
thermal expansion of the ultrathin nickel film on a copper
substrate could be detected due to the surface sensitivity of
the SHG in a centrally symmetric medium. In these experi-
ments, 800-nm, 150-fs pulses were incident on the nickel film
and excited the d electrons, which was accompanied by
excitation of vibrational modes in the film, resulting in its
thermal expansion.

The mechanism of the detection of these processes can
be described as follows. The dispersion of the d electrons in
nickel decreases due to thermal expansion of the film caused
by pumping, which is equivalent to an increase in the density
of states. This in turn results in the amplification of the SHG
signal caused by the probe pulse, which follows the pump
pulse with a certain delay. The subsequent measurement of
the intensity of the SHG signal as a function of the delay
time gives information on the vibrations and thermal
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Figure 1. Dependences of the relative change in the reflection coefficient
—AR/R on the delay time 7 between the pump and probe pulses incident
on the same surface of the film. The relaxation time of R decreases with
increasing film thickness L up to 100 nm; above 100 nm, the change is
very small.

expansion of the film. The ratio of the pump and probe
pulse intensities was 20: 1, so that the probe pulse did not
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Figure 2. Dependences of the relative change in the reflection coefficient
—AR/R on the delay time ¢ between the pump and probe pulses incident
on the same surface of the film for the s and p polarisations, a pulse
duration of 100 fs, a wavelength of 500 nm, and different thicknesses L
of the film; between 10 and 100 nm, the film thickness was changed by a
step of 10 nm, then 200, 300, and 500-nm thick films were measured.




758

A.O. Melikyan, H.R. Minassian

L, 06
& E I t (= ]
xperimen
—AR/R E 0.4 :Thgory
=
2 02
s
= 0 o

0

100 200 300 400
Film thickness/nm

L=25nm

100 nm
200 nm
300 nm
400 nm

t/ps

Figure 3. Dependences of the relative change in the reflection coefficient
—AR/R of a single crystal gold film on the delay time ¢ between the pump
and probe pulses incident on the opposite surfaces of the film. For
negative times, all the curves coincide (they are displaced relative to each
other for clarity). The scale of the curve for the 400-nm thick film is
different. The inset shows the dependence of the time for which a change
in R on the opposite side of the film reaches 15 % of its maximum value
on the film thickness (calculations were performed assuming that the
diffusion motion of electrons).

excite any additional vibrations. It was shown [13] that the
intensity of the SHG signal caused by the probe pulse
oscillates as a function of the delay time; however, no
oscillations were observed in films of thickness exceeding six
atomic layers. This is explained by a strong dissipation of
the vibrational energy. Another peculiarity is a decrease in
the sound speed with decreasing film thickness (Fig. 4).
These properties suggest that, to explain the dependence
of the relaxation time of electrons and the sound speed on
the film thickness, it is necessary to analyse carefully the
experimental data available and to obtain new data.

3. Available models

The first attempt to interpret experimental data was based
on the two-temperature model (TTM) [14]. It was assumed
that excited electrons could be described by the so-called
hot Fermi distribution with a temperature different from
the lattice temperature. This assumption is valid if a hot
Fermi distribution is formed much faster than the electron
gas has time to transfer a noticeable amount of its energy to
the lattice. The electron gas is thermalised due to electron—
electron scattering and inelastic processes of the Auger
recombination type. Although the TTM can describe
quantitatively some features of the electron relaxation,
the conditions of its applicability are not completely
satisfied in FPPW experiments [8—13, 15], and more
general methods were proposed based on the Fermi liquid
theory [16]. In particular, the authors of paper [15]
neglected, within the framework of this theory, the reverse
influence of the energy transfer from electrons to a lattice
on the kinetics of the electron—electron interaction. They
obtained good agreement between the calculated acoustic
response of a thin (62.4, 73.2, and 93.3 nm thick) alumi-
nium film excited by femtosecond laser pulses and
experimental data. Because the film thickness was com-
parable with the electron free path, the acoustic pulse

appeared due to energy transfer from electrons to a lattice,
followed by thermal expansion. Note, however, that the
acoustic response cannot provide complete information on
the kinetics of interacting electrons and phonons.

To explain a rather long relaxation ‘tail’ observed in
paper [8], a phenomenological term describing reverse
energy transfer from a lattice to electrons was introduced
into kinetic equations of the Fermi liquid theory [10].
However, as noted in paper [17], a similar term is present
in TTM equations as well.

Two-temperature model. According to this model, the
rate of energy transfer from electrons to a lattice is described
by the expression [14]
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where T, and T}, are the electron and lattice temperatures,
respectively; Tp is the Debye temperature; and B is a
temperature-independent coefficient. As shown in [14], at
high temperatures (7}, T, > Tp), the rate U takes the form

U:g(Te_Tlat)a 2

which is commonly used, where g is a constant of the
electron—phonon interaction. It can be easily shown,
however, that the next term of the expansion in powers
of the ratios Tp /Ty, and Tp/ T, is small even when T}, and
T. are approximately equal to T, so that expression (2) is
valid within a rather broad range. By using (2), we can
obtain macroscopic energy balance equations

dT. d’T,
Ce(Te) dr - d22 _g(Te - Tlat)"—Pa (3)
dTy,
Cua—g," = &(Te = T, )

where C, and Cj,; are the heat capacities of the electron gas
and lattice, respectively; K is the heat conduction; and P is
the absorbed power density. By solving these equations and
comparing the results with the experimental data, we can
estimate the relaxation times of hot electrons and some
other important parameters of the process. In particular, as
shown in [11], when the reflection coefficient is directly
proportional to the absolute temperature, equations (3) and
(4) confirm a linear law of relaxation of R for film of
thickness less than 100 nm during a few picoseconds after
the pump pulse propagation (Fig. 2). Indeed, at the very
beginning of energy transfer, but after propagation of the
pump pulse, whose duration was 150 fs, the inequality
T. » Tj, is valid. In the case of thin films, we can also
neglect the diffusion term. In addition, because at tempera-
tures low compared to the degradation temperature the
electron heat capacity can be written as C.(T.) = AT,
where A4 is a constant, which is known for each metal, and
the lattice heat capacity is constant at temperatures above
the Debye temperature, we obtain from equation (3) that
T(t) = Tomax — (g/A)t. The slope of the straight line gives
the electron—phonon interaction constant g. For example,
g= (21-26)x 10" Wem™' K™ for 10—100-nm thick
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gold films at wavelengths 540—546 nm [13]. This value is
close, within accuracy of £10 %, to the values obtained by
other methods [6—9].

Non-thermal models. As shown in paper [7], a quasi-
equilibrium temperature is established in the electron
subsystem upon femtosecond excitation for the time exceed-
ing at least 0.6 ps. We suppose that in this case the
conditions of applicability of the TTM are not satisfied
and the TTM cannot describe the very beginning of the
process of energy transfer between electrons and the lattice,
which proceeds during the first picosecond after excitation.
This stimulated the development of non-thermal models
based on the kinetics of electron—electron and electron—
phonon interactions, similarly to the Fermi liquid theory.

Thus, the authors of paper [15] assumed that excited
electrons are scattered by electrons located below the Fermi
level Ey, whereas collisions between excited electrons are
insignificant for thermalisation. Then, the time dependence
of the number of excitations n(E) with the energy E is
described by the expression

dn(E,1)) _ n(E,1)E’ J“LIS’ E'—En(E', 1) )
dt - To E]% E EF EF To ’
where
128
= 6
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and w,, is the plasma frequency. The first term in the right-
hand side of (5) describes the electrons leaving the state
with the energy E after their scattering from a screened
Coulomb potential of unexcited electrons. The factor
E? /Eé appears, as is shown in the Fermi liquid theory,
due to consideration of the Pauli principle. The second term
in the right-hand side of (5) describes the electrons
undergoing transitions to this state.

Expression (6) was obtained in the approximation of a
high-density electron gas. The rate of energy transfer to the
lattice is proportional to the number of excitations. By using
this theory, the authors of paper [15] studied the acoustic
response of a thin ~ 60 —90-nm thick aluminium film
excited by a femtosecond laser pulse and found good
quantitative agreement with experimental data for delay
times up to 60 ps, without any fitting parameters. However,
as mentioned above, the acoustic response does not give a
complete information on the process kinetics.

The authors of paper [10] assume that a change in the
reflection coefficient is caused by hot electrons produced in a
thin gold film by pumping. A rather long relaxation tail was
observed in films of different thicknesses. To explain
anomalous long relaxation times, the authors [10] intro-
duced a phenomenological parameter S describing reverse
energy transfer from the lattice to electrons. The evolution
of the number of excitations is described by the equation

dn(E,1)  n(E,1)E* >~ E'—En(E')
a1, E2 + 6[ dE! EZ T
0 F E F 0
_ Qn(Ea t) an(Ea l)
& e, @

where Q is the rate of energy transfer from quasi-particles
to the lattice; (E) is the average energy of quasi-particles;

Q,y is the average energy of acoustic phonons; and n,(E, )
is the number of phonons.

The quantity S plays the role of a fitting parameter. The
dispersion of values of S providing agreement with the
experimental data for films of thickness 25—400 nm was
15 %. In addition, the data obtained in paper [15] favour the
ballistic flight of electrons through the film (see inset in
Fig. 3). However, the electron transport velocity (velocity of
the ballistic flight) equal to ~ 1.06 x 10® m s™! proved to be,
according to measurements [10], lower than the velocity of
electrons on the Fermi surface equal to ~ 1.4 x 10 m s
We will show in Section 4 that the size quantisation of the
phonon spectrum favours a collisionless flight of electrons
through the film.

It is important to note that the last term in (7), which
provides the agreement with experimental data, plays the
same role as the term Tj, in equation (3) (both these terms
are positive). That is why both the TTM and the non-
thermal theory [10] almost identically describe the behaviour
of the reflection coefficient at long times. At the same time, a
main disadvantage of the kinetic approach based on the
Fermi liquid theory [equation (5)] compared to the TTM —a
neglect of energy transfer from phonons to electrons,
becomes evident.

However, all the theories considered above neglect the
influence of the size quantisation of phonons on the
dynamics of electron—phonon interaction. It is obvious
that this effect can be observed only when the uncertainty of
the electron energy upon electron—electron scattering is
smaller than the interval of the size quantisation of the
phonon spectrum. In other words, this effect becomes
dominant when the film thickness is smaller than the
electron mean free path during electron—electron scattering,
i.e., smaller than 100 nm [17].

Unlike metal films, the effects of size quantisation in
semiconductor films are well studied both theoretically and
experimentally, which was stimulated by numerous appli-
cations of these films [18]. Both electron and phonon spectra
are quantised in semiconductor films. The electron — pho-
non [19] and electron—photon [20] interactions in films
strongly differ from these interactions in bulky samples,
mainly due to specific restrictions imposed by the laws of
conservation of energy and momentum. This results in
noticeable changes in the relaxation rate of electrons,
affecting the working parameters of semiconductor elec-
tronic devices [21, 22]. From this point of view, the
consideration of the effects of size quantisation in the
theory of processes proceeding in ultrathin metal films is
very important, especially as the fabrication of 1—4 atomic
layers thick films is already possible [13, 23].

4. Trapped phonons

The behaviour of electrons, phonons, excitons and other
quasi-particles in thin solid films differs from their
behaviour in bulky samples. This is explained by the fact
that, because of the boundary conditions imposed on the
wave function of a quasi-particle, its wave vector directed
perpendicular to the film surface takes discrete values,
resulting in a strong rearrangement of the frequency and
energy spectra, as well as in a peculiar dependence of the
quasi-particle energy on the film thickness. This resembles
the situation when a particle is localised in a quantum well
(quantum trapping). In the case of quasi-particles, this
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effect is called the size quantisation [19]. For example, when
the boundaries of a thin film impose the restriction on the
phonon movement (phonon trapping), the size quantisation
of their frequency spectrum leads to the dependence of the
matrix element of the electron—phonon interaction on the
film thickness and to some kinematic restrictions (also
depending on the film thickness) in the laws of conservation
of energy and momentum [17].

As shown in paper [17], the size quantisation in a metal
film can substantially reduce the probability of electron—
phonon scattering. The influence of the size quantisation
becomes obvious, for example, at very low temperatures.
The matter is that the phonon spectrum of a film has a
nonzero lower boundary

AWpax T

T2 ®)

Dmin

where «a is the interplane distance; w,,, 1s the maximum
frequency of the phonon spectrum, the value of (1/2)awn.
being coincident with the sound speed v, in a bulky sample;
and L is the film thickness. This gives the probability of the
electron—phonon scattering at low temperatures

~ Wik
exp(hwmin/kT) -1 ’

©)

where Wy, is the probability of scattering in a bulky
sample. For a 10-nm thick film, the sound speed
3x10° ms™', and temperature 10 K, the dominator in
(9) becomes very large, and we have W < Wy,.. Note that
the scattering probability Wy, depends on the film
thickness because the latter determines w,,;, in terms of
the minimum phonon frequency.

At room temperature and for the same values of other
parameters, the exponent will be much smaller than unity,
and the dependence on the film thickness will be retained;
however, another factor should be also taken into account,
namely, a finite mean free path of electrons due to electron—
electron scattering. It follows from the numerical calculation
(see Fig. 1 in [17]) that, when both these factors are taken
into account, the probability of electron—phonon scattering
noticeably decreases with decreasing film thickness. When
L > A, where A is the electron mean free path, W is well
approximated by the expression

W = Wy [l — exp(—L/4)]. (10)

One can see from (8) and (9) that the electron—phonon
coupling constant depends on the film thickness, which
should be taken into account in the theory of kinetic effects
in metal films. It is obvious that ultrathin films are most
suitable objects for the experimental confirmation of size
quantisation because they exhibit distinct discrete spectra.
Moreover, effects destroying coherence (for example, dif-
fusion) are negligible in ultrathin films. It is also important
that, in order to observe the size quantisation of a phonon
spectrum, the observation time should exceed the time L/vj
of flight of a phonon from one boundary of the film to
another. The frequency spectrum of a trapped phonon is
formed for this time. For the sound speed equal to 2 x 10
m s~ and a 10-nm thick film, this time is ~ 5 ps. It seems
that this effect was observed in paper [I11], where the

dependence of the reflection coefficient of a probe pulse
on the film thickness was observed only for delay times of
the probe pulse with respect to the pump pulse exceeding
5 ps. It is clear that the relaxation times also should be
longer than the transit time of a phonon.

5. Quantised acoustic phonons in an ultrathin
nickel film

To observe trapping of phonons in metal films, it is by no
means necessary to study the electron—phonon interaction.
This effect was recently demonstrated in FPPW experi-
ments [13] with nickel films of thickness from 40 to 1 nm on
a copper substrate when the dependence of the sound speed
on the film thickness was observed in the quantisation
direction (001) (see Fig. 27 in [11]). This phenomenon can
be interpreted as phonon trapping, as we will show below
(see also [24]).

An acoustic pulse propagates in a medium at a velocity
equal to the group velocity of phonons

0w 1 qa;

Ug :aiq = iwmaxal CoS (7),

(1m
where ¢ is the wave vector in the direction (001) and a; is
the interplane distance in the direction (001). In the case of
size quantisation, expression (11) for the group velocity
should be changed because the phonon spectrum is discrete.
Indeed, in a simplest case, when only two waves are excited
with close frequencies w; and w, and wave vectors ¢; and
¢>, the maximum of the wave packet propagates at the
velocity

Wy — W

= ) (12)
42 — 41

Ug

The spectrum of a bulky sample is continuous, and the
ratio of finite differences in (12) transforms to a derivative,
as in (11). Let us find now the phonon spectrum under
conditions of size quantisation when a film is deposited on a
substrate. Let us denote an atomic layer adjacent to a
substrate by the subscript 1 and the displacement of the v
layer by u,. The subscript v = 0 corresponds to an immobile
atomic layer of the substrate directly adjacent to the film,
i.e., ug = 0. The displacements are described by equations

mily = —kuy + k(uy —uy), (13)
v>1,

mut = —k(2u,, — Uy — uv—l),

and the boundary condition has the form
UN+1 = UN-

Here, N is the number of atomic layers and k is the force
constant. We can calculate the phonon spectrum by
neglecting a small difference between the force constants
knioni = 37.90 kg s> and kyni_cy = 33 kg s 72 [13], which
causes a very small frequency shift. Another important
approximation is the neglect of the energy flow to the
substrate. It is known that the energy loss results in the
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appearance of the imaginary part of the frequency, which
determines the linewidth.
We see a solution of system (13) in the form

(14)

u, = usin(ve) exp(—iowt).

We find the phase shift ¢ from the second boundary
condition sin (N¢) = sin[(N + 1)¢], which gives

2n—1

- _ 1
Pn=aNTI" (15)

The frequency spectrum is found by substituting the
solution (14) to system (13) and taking into account (15):

0 2n—1§
SN T2

One can see from (11) and (16) that the dependence of the
group velocity on the film thickness for n < N is determined
by the expression

. n=1,23,..N. (16

Wy = Wmax

(17

2.2 2
T noa _ Dmax
812 > Upulk = P P

Vg (L) = Upyik (1 -

where vy, 18 the group velocity in a bulk sample. It follows
from (17) that the group velocity decreases with decreasing
film thickness.

Note that the minimum frequency in the case of four
layers, i.e., for N =4 and n = 1, calculated in [24] from (16)
well agree with the value 1.4 THz measured in [13]. Indeed,
by substituting the values of parameters vy = 4200 m s
and a; =0.17 nm from [13] into (16) and taking into
account (17) we obtain the frequency equal to ~ 1.39 THz.

On the axes in Fig. 27 from [13] (see also Fig. 4 in this
paper) the film thickness and the time of appearance of the
first maximum of the second harmonic of the probe pulse
are plotted. The experimental data for films of thickness
above 20 atomic layers (~ 4 nm) are well fitted by a straight
line, whose slope corresponds to the sound speed in a bulk
sample (4200 m s '). In films of a lower thickness, a
decrease in the sound speed is observed, which agrees
qualitatively with (17). This circumstance clearly demon-
strates that the group velocity of acoustic phonons was
indeed measured in the experiment. Therefore, the experi-
mental data should correspond to a curve described by the
equation

(18)

where 7 is the time of propagation of an acoustic phonon
from the fixed surface of the film to its free surface. Of
course, the measured value of L/t decreased with decreas-
ing film thickness.

We will interpret these data quantitatively using expres-
sions (12), (16), and (18). The best agreement with the
measured values is obtained by assuming that the fourth and
fifth phonon modes are most important (this assumption is
substantiated in Section 6), which gives

_ws—w4_% . T 4n
vy = - (2N+1)Sm(4N+2)COS(2N+1)' (19)

g o6r
t=}
Py
3]
=]
=~
é 4 L x 24
= 18
=
2+ x12
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Figure 4. Relation between the film thickness and the transit time of an
acoustic signal through the film. The solid straight line corresponds to
the sound speed in a bulky sample; the horizontal bars are experimental
data; crosses correspond to the values calculated in [24]; the figures are
the numbers of atomic layers in a sample.

Fig. 4 shows that the values calculated from (18) and (19)
well agree with the experimental values. One can see that
the crosses approach the straight line with increasing
number of atomic layers, i.e., the group velocity in
insensitive to the film thickness for n < 5.

According to the results of measurements [13], vibrations
in a film four atomic layer thick decay exponentially with
the decay time 1.6 ps, which we attribute to the energy
leakage to the substrate. This means that phonon bands
should have the width ~ 0.6 THz. This value is very close to
the value obtained from the Fourier analysis of experimental
data (inset in Fig. 24 in [13]). When the difference of
frequencies of adjacent modes becomes comparable with
this width, the film begins to behave as a bulky sample with
respect to the effect under study. Indeed, by using the values
of parameters mentioned above (w,,.x ~ 8 THz), we obtain

4
w5 — Wy = Wn [THz],

and by equating this value to the width, we find N = 20,
which agrees with the results of measurements presented in
Fig. 4.

Therefore, phonon trapping is manifested not only in the
electron—phonon interaction but also noticeably affects the
propagation of acoustic waves in ultrathin films.

6. Dynamics of thermal expansion
of an ultrathin film

To describe the thermal expansion of a film upon excitation
of lattice vibrations, it is sufficient to take into account the
lowest-order anharmonic terms [25]

.k
uy + a (214‘, — Uy — uv—l)

(= 0,1 +10), (20)

=a |:(ul’+1 - uv)z -
in equations for the displacements of ions. Here, u, is the
displacement of the (001) crystal plane with the subscript 1

as a whole, the plane with the subscript 1 being adjacent to
a substrate; the function f(¢) describes excitation of
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vibrations by a pump pulse interacting with the d electrons;
and o is the anharmonicity constant.

The function f(7) is related to the recoil of ions during a
transition of the d electrons to the conduction band upon
pumping [26]. It is assumed that the transport of electrons
through an ultrathin film is ballistic [6, 8—10], so that no
vibrations are excited after the propagation of a pump pulse.

Therefore, the function f(¢) is nonzero only during the
propagation of the pump pulse. The boundary conditions
remain the same as in Section 4, i.e., we still neglect the
transfer of vibrational energy to the substrate. This approxi-
mation is justified by the fact that a nickel film expands
upon heating much more rapidly than a copper substrate
[13]. In the zero-order approximation over the anharmo-
nicity constant, the solution of system (20) has the form

1
0 _
|

x sin(¢v) Z sin(qov’)} +ul?,

l At sinw,(t —t")dt’

—00

@n

where
. 2n—1 2N +1
“N:ZSIH2<2N+|T”’) ==
"

is the normalisation factor for the nth mode. The last term
in the right-hand side is the solution of the corresponding
homogeneous equation in the zero-order approximation
over anharmonicity and describes thermal vibrations of the
lattice before their excitation by the pump pulse. The
duration of the pump pulse in experiments [13] was 150 fs,
whereas the observation was performed for a few pico-
seconds after the end of the pump pulse. Therefore, the
upper limit of the integral in (21) can be replaced by
infinity, and the solution takes the form

ul® = E Cop SIN W, 1,
n

(22)

where ¢,, is determined from (21) for #— oo. This
expression should be substituted into the first-order
approximation equation

. k
)

2 2
. {(um ) = (u® — ) }

In the right-hand side of (23) the terms appear containing
various combination frequencies w, + w,. If one or several
such frequencies coincide with the eigenfrequencies of the
homogeneous equation for u,fl), which are simply w,,, these
modes will be resonantly amplified during excitation. Let us
find the resonance conditions by representing the difference
of two frequencies in the form

. p—n wm p+n—1mn
(}Jp—(,l)n :2wmaxsln(2N+ 1 5) COS(W E) (24)

(23)

For the right-hand side to be equal to some eigenfrequency,
p and n should have different parities, and the equality

(25)

should be fulfilled.

Because p,n < N it follows from (25) that 3(p+n—1) =
2(2N + 1), which is possible only if 2N + 1 is divisible by 3.
For example, when N=4 and N =7 (for which the
experimental data are available), according to (25), the
resonance conditions have the form

forN=4 w4=w;+ o;
(26)

for N=7 Wy = W7 — W3, W5 = Wg — W].

Note that, if 2N + 1 is not divisible by 3, the resonance
conditions can be fulfilled approximately. Thus,

for N=5 2w, — w4 = 0.01wp,y,

w5 — (604 + wl) = O'Ozwmax; (27)
for N=6 ws5— (w4+ w1)=0.0150,; (28)
for N=9 ws5— (w4 + ®;) = 0.008w,y,

wg — (w4 + CO3) = —0.003wpax- (29)

One can see that modes with subscripts 4 and 5 are present
in all the cases. Therefore, it becomes clear why the best
agreement with the experimental data [13] is achieved by
assuming that the fourth and fifth modes play the main role
in the process [26, 27].

It follows from (25) that the number of resonances
increases with increasing N. For example, when N = 10,
there exist three exact resonances, although they are realised
for modes with large subscripts. The resonances overlap
with increasing film thickness due to their broadening, and
the film acquires the properties of a bulky sample. In this
case, the sound speed becomes insensitive to the film
thickness.

We already mentioned that in the case of four atomic
layers, the minimum frequency was observed experimen-
tally. However, the frequencies w; and w, satisfying the
resonance conditions (26) were not observed. We explain
this by the fact that the probe-pulse duration was ~ 150 fs,
and vibrations with frequencies exceeding the inverse
duration of the pulse, i.e., of the order of 6—7 THz were
averaged and could not be detected. In films seven atomic
layers thick and thicker, a great number of incommensu-
rable frequencies are overlapped, resulting in irregular beats.

We assume that in experiments with metals that are
heavier than nickel, for example, gold, the higher-frequency
phonon modes will be observed, confirming the validity of
the approach discussed above.

7. Application of the FPPW method
in superconductivity studies

The development of the FPPW method shows promise that
precision measuring of the electron — phonon coupling
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constant g in metal films will make a fundamental
contribution to the physics of superconductivity [28-30].
The application of this method for studying bulky
samples involves great problems, which are avoided in
the case of ultrathin films. The case in point is that the
penetration depth of light inside a metal is of the order of
12—15 nm, and the perturbation caused by light rapidly
dissipates in the sample due to diffusion. In this case, the
effects being studied have no time to manifest themselves.
Bardeen and Frohlich showed [31] that the effective
matrix element of scattering of two electrons can described
an exchange by a virtual phonon, which, can lead, under
certain conditions, to the attraction, producing a super-
conducting state. It is known that the electron—phonon
interaction perturbs the state of the electrons with energies
lying within a narrow layer near the Fermi level. If the
energy transferred from one electron to another during a
scattering event is lower than the Debye energy (o < huk,),
then the scattering amplitude becomes positive, which
means that the electrons are attracted to each other:

w?kd

r—=- :
p(w? — u?kd +10)

(30)

where /i is the transferred energy; 7k, is the transferred
momentum; u is the sound speed; w? is a constant
proportional to the square of the matrix element of the
electron—phonon interaction; and p is the equilibrium
density of a medium. Note that it is the exchange by virtual
phonons that causes the attraction between the electrons
accompanied by the formation of Cooper pairs. It is
obvious that the exchange by real phonons can result only
in repulsion between the electrons, as follows from the law
of conservation of momentum.

On the other hand, the relaxation of hot electrons due to
energy transfer from the electrons to the lattice is described
as emission of real phonons by electrons. Therefore, the
superconductivity equations consider the exchange by
virtual phonons only, whereas the TTM equations deal
with emission of real phonons. To determine the electron—
phonon interaction constant in the superconductivity theory
from the experimental data on the relaxation of hot
electrons, it is necessary to find the relation between
parameters entering the TTM equations and the super-
conductivity theory. This problem was solved by Allen [32],
and subsequent experiments confirmed the validity of his
conclusions [13]. Allen showed that the constant g entering
the TTM equations (2)—(4) can be expressed in terms of the
second moment of the electron—phonon spectral function
a2 F(Q), which is proportional to the probability of emission
of a phonon with frequency Q by an electron, as

 3hi{w?)
8= m, (3D

where

Aw?) = 2J: Q? {@}dg;

kg is the Boltzmann constant and g, is a constant.
Expression (31) was confirmed in a number of experiments;
the measured values of g were compared with those
obtained by using the calculated values of the parameter

Mw?). The agreement for gold and aluminium was
satisfactory within +30% [13, 15]. Note that it was
assumed implicitly in the papers cited in this section that
the electron —phonon interaction in films and bulk samples
is identical. It seems that the consideration of size
quantisation of the phonon spectrum would improve the
agreement, especially, for very thin films.

8. Conclusions

Femtosecond laser pulses are an efficient tool for studying
ultrafast processes in solids. Such studies became very
important in recent years due to the discovery of unique
physical properties of low-dimensional systems such as
ultrathin films, ultrathin wires, and nanoparticles. The
application of such systems in ultrafast electronics requires
the knowledge of their parameters with a high precision. At
present, such a precision of measuring relaxation and
optical constants can be achieved only by the FPPW
method. Moreover, this method allows one to study the
dynamics of thermal expansion of ultrathin films, which is
hardly probable to do by conventional methods.

Most of the results described in the paper stimulate the
continuation of studies. This concerns especially the measu-
rement of the dependences of the film parameters of its
thickness because these dependences directly affect the
operation of devices. We have shown already that the
size quantisation of the phonon spectrum or, in other
words, phonon trapping in ultrathin metal films not only
reduces the electron—phonon relaxation time but also
substantially reduces the propagation velocity of a thermal
expansion pulse — the sound speed in the film. We can hope
that a further development of the femtosecond technique
with allow us to discover new properties of low-dimensional
metal structures, which, being of the fundamental interest,
expand the scope of applications of these structures.
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