Quantum Electronics 32(9) 765—775 (2002)

©2002 Kvantovaya Elektronika and Turpion Ltd

INVITED PAPER

PACS numbers: 43.35.Sx; 78.20.Hp; 42.81.Dp
DOI: 10.1070/ QE2002v032n09 ABEH 002289

Excitation of sound waves upon propagation

of laser pulses in optical fibres

A.S. Biryukov, M.E. Sukharev, E.M. Dianov

Abstract. A revised, more comprehensive model of excitation
and propagation of acoustic vibrations, electrostrictively
induced in optical fibres by laser pulses, is presented. An
analytic expression for the acoustic response function of the
refractive index in a standard single-mode fibre is derived.
Response functions are found for a standard fibre as well as
for a single-mode double-clad fibre, which offers much pro-
mise for fibreoptic communication lines and where the effec-
tive area of mode-field cross section is increased with respect
to a standard fibre. It is shown that the intensity of excited
sound waves in double-clad fibres is usually several times
higher than that in standard fibres. This intensity is deter-
mined mainly by the shape of the radial distribution of the
electromagnetic field in the pulse, which is different for the
fibres considered in this paper.

Keywords: single-mode fibre, electrostriction, sound waves, acoustic
branch.

1. Introduction

In the early 1990s, it was shown [1—4] that electrostriction
is one of the physical phenomena limiting the data trans-
mission rate in fibreoptic communication lines. This effect is
known (see, e.g., [5]) to involve the deformation of die-
lectrics in the electric field. If the field depends on time, then
the alternating deformation manifests itself as acoustic
vibrations excited in a dielectric.

Fused silica fibres are typical dielectrics. Electromagnetic
radiation propagating through these fibres is concentrated
mainly in a comparatively narrow core, leading to a con-
siderable spatial inhomogeneity of the field. The time-
dependent radiation intensity, in the pulsed regime of pro-
pagation, in particular, determines alternating elastic stres-
ses in a fibre. Sound waves excited due to the electrostriction
give rise to spatiotemporal changes in the refractive index of
glass. Even small changes in the refractive index under
certain conditions should influence the propagation of
optical signals through a fibre.

The first serious investigation of the electrostrictive effect
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in fibres was performed comparatively recently [1]. The
authors of this paper proposed a model describing this effect
in terms of spatiotemporal changes in the medium density
caused by short pulses propagating through a single-mode
fibre. In particular, this model explained the mechanism
behind the previously observed effect of soliton interaction
in high-repetition-rate soliton trains within large propaga-
tion lengths [6]. In papers [2—4], the model of [1] was
improved and supplemented. Further investigations of aco-
ustic effects caused by electrostriction in fibres, performed
by different research groups, confirmed the basic concepts of
the model approach [1]. The essence of these concepts is that
the electrostrictive effect in fibres may become the most
important factor limiting the high-speed transmission of
large data arrays in long fibreoptic communication lines.

The most consistent description of electrostriction in
fibres based on equations of the dynamic theory of elasticity
was provided in [7, 8]. These studies have supplemented the
results of the above-mentioned papers by showing that the
influence of electrostriction on changes in the refractive
index is largely determined by the polarisation of the
electromagnetic field as well as by fluctuations of geometric
sizes of the light-guiding structure of the fibre.

Until recently, all the investigations of electrostriction
were confined to single-mode fibres with a standard light-
guiding structure, where the mode field is described to a high
accuracy by a Gaussian function of the radial coordinate. In
the last few years, several laboratories have been conducting
intense research of specific features of single-mode fibres
with a different light-guiding structure, providing an
increase in the effective cross-section area Ay of radial
mode-field distribution as compared with standard fibres.
The field distribution in these fibres, which is different from
the Gaussian, should also affect the electrostrictive acoustic
response of fibres to radiation pulses.

One of the possible practical implementations of such a
light-guiding structure is a double-clad fibre, consisting of a
central solid fused silica cylinder with the cross-section
radius ¢ and the refractive index #n;, surrounded by a con-
centric cladding of thickness » — a with the refractive index
n,, and yet another concentric glass cladding of thickness
¢ — b with the refractive index n;. The middle cladding has
the highest optical density: n, > n;, n;. The entire light-
guiding structure is usually protected by a polymer jacket.

The aim of this paper is to analyse in detail the processes
of excitation of sound waves upon propagation of laser
pulses through a single-mode standard fibre and the above-
described double-clad fibre. Our analysis is based on the
model approach [7, 8] to the description of electrostriction
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in solid dielectrics. We have, however, radically revised this
model.

2. Theoretical model

The choice of an adequate model is an important stage in
solving the problem specified above. Electrostriction in
fibres can be presently analysed using two modifications of
the model, which provide different levels of approximation.
Most of the papers employ the model proposed in [1]. This
model can be called the hydrodynamic approximation,
merely because it is based on the equation describing small
fluctuations of the density p’ of a compressible medium
near the equilibrium value p,. Accurate to the dissipative
term in the left-hand side, this equation is a typical equation
of hydroacoustics (see [9], for example):

aZp/

or?
where C is the speed of sound and F; is the density of
volume forces inducing small-amplitude acoustic vibrations
in a medium. Equation (1) involves the striction force
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which is determined in [5] for liquid dielectrics. Here, ¢, is
the dielectric function, E is the absolute value of the vector
of the electric component of the electromagnetic field.

In other words, the motion of particles in a fused silica
fibre is treated in this approximation as a motion of an ideal
compressible fluid.

An alternative variant of the model for the analysis of
electrostriction uses the vector U(r,t) of displacements of
particles as a characteristic of the stress-deformed state of an
elastic solid. In this case, acoustic vibrations of a solid are
determined by solving the well-known wave equation of the
linear dynamic theory of elasticity [10]:

o*U oU .
szt 25— CPAU — (CF — CF)graddivU = f,  (3)

where C; is the velocity of the sound wave where the
particles oscillate along the wave vector (the longitudinal
speed of sound; for fused silica, C; = 5.996 km s™'); C, is
the velocity of the wave where particles oscillate in the
direction normal to the wave vector (the transverse speed of
sound; for fused silica, C, =3.74 km s~ '); I' is the para-
meter characterising the dissipation of sound; f= F(r, 1)/p,;
F is the vector of the density of volume forces [similar to F;
in Eqn (1)], which differs from F; for a solid.

To clarify the physical meaning of approximations that
distinguish Eqn (1) from more rigorous Eqn (3), let us
transform Eqn (1) applying the continuity equation. It is
easy to show that Eqn (1) is then reduced to

o? F

% — C%graddivU = f; = p—;, (4)

where C is the only speed of sound in fluid equal to C;.

Thus, along with different expressions for F; and F in
the right-hand sides and the so far insignificant dissipative
term, Eqn (1) [and equivalent Eqn (4)] differs from Eqn (3)
by the absence of the term

C2(graddivU — AU) = CrotrotU. (5)

The physical meaning of this term is explained below.

As is known, the sound field (the field of velocities v of
medium elements) in an ideal fluid is potential. However, a
single scalar potential function is not always sufficient to
completely describe any vector field. The field has to be
vortex-free, i.e., the condition rotv = 0 (or rotU = 0) should
be satisfied, to make such a description complete. In an ideal
liquid, the resultant of forces applied to a liquid element
passes through the centre of mass of this element, giving rise
to no rotational moment.

In a solid, shearing stresses appear at the boundaries of
an element. As a result, each element of a solid is subject to
rotating moments, becoming involved in rotational motion
in addition to translations. Thus, in a solid, rotv # 0, and it
is impossible to find a single scalar function that would
describe the total motion.

In other words, using approximate Eqn (1) instead of
Eqn (3), we assume that the motion in a solid is vortex-free
and, consequently, several elastic properties related to the
existence of shear deformations are neglected. The hydro-
dynamic character of the approximation of Eqn (1) is also
due to its right-hand side, which describes a liquid dielectric.
At the same time, the presence of two different velocities of
perturbation propagation in solids gives rise to new effects,
missing in the hydrodynamic approximation.

In this context, the model approach based on the theory
of elasticity provides the most consistent description of ele-
ctrostriction in optical fibres. However, papers [7, 8], which
developed such a model, suffer from some inconsistencies,
influencing the quantitative aspect of the results.

Before solving Eqn (3), which is a typical equation of
forced vibrations, let us determine the driving force f.

The density of the volume electrostrictive force F can be
found from the relation [5]

0ok

i (6)
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where gy, is the stress tensor, determining the change in the
total momentum of the medium and the field.

If F is understood as the force acting only on the
medium, then the change in the momentum per unit field
volume should be subtracted from Eqn (6).

The tensor g for an isotropic dielectric can be repre-
sented as

(0) M) (str)

0
e A
where 05(0) is the elastic stress tensor in the absence of the
field;
2 2
M & E yzt H
ot = ﬁ <EiEk - 5fk7> +ﬁ <Hin - 51’k7> (7

is the so-called Maxwellian stress tensor [5], E and H are
the electric and magnetic components of the field, y is the
magnetic permeability (for fused silica, u, = 1 with a high
accuracy); o0, is the Kronecker delta;

1
o’,flr) = T 8n (alEiEk + a25i’<E2) ®

is the striction component of the stress tensor.
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The quantities a; and a, in Eqn (8) are the coefficients
determining the expansion of the dielectric tensor in terms
&;r of the components of the deformation tensor Sj,. Due to
the deformation, the initially scalar dielectric function of an
isotropic solid generally becomes the second-rank tensor. If
we neglect quadratic and higher order terms in Sy, our
expansion is reduced to [5]

e = €00u + @ Sy + a20;SpS. ©)

In case of an isotropic dielectric, the paper [11] gives
expressions relating the coefficients @; and a,, appearing in
Eqns (8) and (9), to the elastooptic constants, known for
fused silica [12], P;; = 0.121, Py, = 0.27:

(10)

2 2
ay = —&)(Pyy — Pra), ay=—¢;Pyy.

Note that the expression for the striction tensor given in
[7, 8] differs from Eqn (8) by the dependence of a; on elasto-
optic constants in Eqn (10) and the opposite sign of the
coefficient a,.

Perturbations of the refractive index induced by light
pulses propagating in a fibre appear against the background
of elastic stresses o’i(ko), which already exist in the fibre. These
elastic stresses are independent of the field and will be
neglected in the calculation of F.

In accordance with Eqn (6), we first determine the
contribution to the volume force density corresponding
to the Maxwellian stress tensor (7). Using the Maxwell
equations and assuming the absence of free charges and
currents, we obtain

F<M)* & 0 E2

R 2 |ty v
4th61[ H] 8r Veo,

1
where ¢ is the speed of light in vacuum.

Then, applying Eqs (8) and (6) to find the force related
to the striction component of the stress tensor, we derive the
following expression for the total density of volume forces:

1
F=— {al(EV)E—s—anEz—f—?E(EV)eO
0

T

(12)
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In real fibres, the radial distribution of the dielectric
function is such that the difference in ¢, between the layers
of the light-guiding structure does not exceed 1% —3 %.
Calculations show that, even for large dielectric-function
gradients between the layers, the smallness of absolute
changes in the dielectric function makes the role of the
terms in Eqn (12) involving Ve, negligible. Formally, the
neglect of these terms in Eqn (12) corresponds to a step
approximation of the radial profile of the refractive index in
a fibre with uniform dielectric functions in each layer of the
light-guiding structure.
The electric and magnetic components of a transverse
wave propagating in a uniform medium are related to each
other by the following relation [5]:

H=¢,'"*kE], (13)

where k is the unit vector in the direction of wave
propagation. Then, the Abraham force [the last term in
Eqn (12)], which is an analogue of the recoil effect in
mechanics, is given by

g P(eg—1) , OE?

F\ = ——
A 4mc ot

(14)

In other words, this force has a component along the fibre
axis.

With above-specified approximations, Eqn (12) gives the
following expressions for the components of the mass
driving force f in Eqn (3) in the cylindrical system of
coordinates:
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where E,, E. and E, are the radial, longitudinal, and
azimuthal components of the electric field, respectively.

At each instant of time, the electromagnetic field in a
single-mode fibre is linearly polarised along a certain axis x
of the plane Cartesian coordinate system (x, y) related to an
arbitrary cross section of the fibre. At the same time,
E, = Ey(t, 2)V(r) and E, = E. =0, so that

E. = Ey(t,z)V(r)cos @, E,=—Ey(t,z)V(r)sine,

¢

E= Ey(t,2)V(r). (16)

In what follows, we will restrict ourselves to the
consideration of light pulses with flat edges. For such
pulses, the longitudinal derivative of the field intensity is
much lower than the transverse one. This assumption
usually holds true when the length of a comparatively
smooth pulse along the z axis substantially exceeds the
thickness of the fibre core [it 1is evident that
Ey(t, z) = Ey(f) in this case]. In this approximation, we
can neglect with an adequate accuracy the longitudinal
component of the driving force f. as compared with the
transverse components and consider the in-plane problem in
an arbitrary fixed cross section of a fibre.

Under the assumptions made, substituting Eqn (16) into
Eqn (15), we write down the components of the force
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_Eg(V(r) av(r)

1= T6mp 3 (a; + 4a; + a; cos2¢),
! (17)
_Ej (V) ov()
Jo= I67p, 5, isin 2¢.

Note that in the expressions of f, and f, in [7, 8], the
multiplier V(r)/p, is missing in addition to the above-
mentioned incorrect dependence of the force components
on the elastooptic constants.

Given the relation between the driving force and the
pulse [Ey(2), V(r)] and fibre [a;, a,, &(r)] properties, we next
turn to the solving of Eqn (3). We treat a fibre as a cylinder
of an infinite length with a circular cross section, where the
elastic properties of different layers of the light-guiding
structure are identical with a high accuracy. The velocities
C; and C; in polymer jacket substantially differ from those
in fused silica; thus, for sound wave this fibre generally
corresponds to a coaxial two-layer cylinder. The polymer
jacket, as shown, in particular, in [13], plays an important
role in the propagation of sound waves in a fibre, since such
waves are characterised by high losses, resulting from con-
secutive reflections from a glass—polymer interface.

As usually, we search for the solution of the inhomoge-
neous equation (3) as an expansion over the complete basis
of eigenfunctions of the relevant homogeneous equation.

A large number of papers is devoted to the problem of
eigenfunctions and eigenvalues of a solid elastic cylinder of
an infinite length, as well as to the analogous problem for a
cylinder with an elastic cladding made of a different mate-
rial. A detailed review and analysis of solutions of these
problems can be found, e.g., in [14]. In particular, it follows
from these solutions that eigenfunctions group into infinite
sets (branches), which differ from each other in functional
dependences on coordinates. A specific driving force excites
the corresponding specific branches of acoustic vibrations.
Thus, under the above-made assumptions, the motions
propagating along the axis (f. = 0) should not be excited.
In other words, only vibrations with eigenfunctions depend-
ing exclusively on the radial and azimuthal coordinates are
excited. The time dependence of each eigenfunction corre-
sponds to a harmonic oscillation with an eigenfrequency w,,
(w is the circular frequency, m is the number of the
eigenfunction). Therefore, the solution of Eqn (3) can be
obtained as

Ulr,1) = Ay (1)t (r) exp(—ie,t — T'1), (18)

where u,,(r) is the coordinate dependence of eigenfunctions
of the homogeneous equation corresponding to Eqn (3),
A,,(t) are the expansion coefficients to be determined.

Considering u,,(r) to be known, we substitute Eqn (18)
into Eqn (3). Then, using the orthogonality of eigenfunc-
tions, we derive equations for A,,():

d*4,,(0) . dd,(0)
dr? 2icoy dt
¢m 2 :
= B EO (Z) exp[(lwm + F)t}’ (19)

where

D, = J (g(r)7 u, (r))dS, B, = J (um(r))zdS. (20)

Here, the function g(r) is the coordinate dependence of the
vector of the driving force f(r, ) [sce Eqn (17)]. The
integration in Eqn (20) is performed over the area of the
fibre cross section.

The general solution to Eqn (19) for an arbitrary
function Ey(¢) is written as

m

wiﬂ BH‘I

A, (1) = [Clm cos Wyt + Cy,, sSin w,,t +

t
X J Eoz(x) exp(I'x) sinw,,(t — x)dx| exp(iw,,), (21)
0

where C,,, C,,, are the integration constants.

It is obvious that for the moments of time ¢ < 0, when no
electromagnetic field is applied in the considered cross
section of a fibre, the sum of the first two terms in
Eqn (21) is generally nonzero. Physically, this corresponds
to the presence of a certain initial level of acoustic vib-
rations, caused by fluctuations of the fibre density at the
actual temperature of the fibre. We will be interested
hereinafter only in the electrostrictive contribution to the
acoustic field, keeping only the last, field-dependent term in
Eqn (21).

For simplicity, we also assume that the electromagnetic
field is a pulse of such a duration 7 that it can be appro-
ximated with a Dirac delta function, Ey(f) = Ey8(¢/7). The
latter assumption is valid for laser pulses with lengths
shorter than the minimum among the characteristic times
of the acoustic response of the system 7,,;,. In the problem
under study, the radius of the cross section of the fibre core
a is the smallest geometric size; thus, we have t.;, ~
a/Cy =~ 1 ns. Therefore, pulses with 7 < 100 — 200 ps can
be approximated by the delta function. Under this approxi-
mation, the integral in Eqn (21) is easily taken,

E¢1®,, exp(iont) .
A (1) = OZ)W—B’H’” sinw,,t, (22)
and the solution (18) can be written as
2 S P
Ulr,t) = E ~I't p 2 si t 23
(}"7 ) 0 rexp( )Zum(’) w SI w,, 1, ( )

m=0 m=m

where I' is understood in what follows as a decay caused by
the losses of acoustic energy due to reflection from the
glass—polymer interface. In the absence of a polymer
jacket, sound waves in a fibre become long-lived [13] due to
the fact that the reflection coefficients for these waves at the
glass—air interface are close to unity.

Let us then specify the class of functions u,,(r) that
determine the solution (23). In the general case, the eigen-
functions of a solid homogeneous cylinder with a circular
cross section and infinite length can be represented as [14]

(n) B (). ) sinne () cosne
U()m(r7l)_<Wm (}){Cosn(p}vgm Oﬁ){*Sinl(])}’
(24)

Z,f,”)(”){ zi)nszz }) exp (iyz — i — I,
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where n >0, m > 1 are integer numbers, the number n
determining the type of vibration symmetry and the index
m numbering the roots of the characteristic equation deter-
mining the frequencies w,!”; y is the propagation constant,
being equal to zero in our case (i.e., the absence of motions
propagating along z); W, (r), ©(r), Z"™(r) are the radial
dependences of the components of eigenvectors. The
multipliers involving trigonometric functions in curly
brackets signify that, for each pair of numbers n and m
(in the case of n > 1), there are two equivalent eigenfunc-
tions, which differ only by their dependences on the
azimuth angle.

Since in our model approach the components of the
driving force (17) contain both the terms independent of ¢
and the terms dependent on 2¢, of all the available normal
modes (24), only the vibrational mode branches correspond-
ing to n=0 and n =2 are excited. We know from the
literature on acoustics that, in the absence of the longi-
tudinal component of the displacement vector, Ry,,, Tom»
and TR,,, could be such branches.

Axisymmetric branches Rg,, and T,,,, corresponding to
the condition » = 0 and eigenfunctions independent of the
azimuth angle ¢, differ in the following: in the general case,
the components W,,(qo)(r) and Z,,(io)(r) (in our case Z,,(f))(r) =0)
are nonzero for the first branch, while the component @,(,?)(r)
is nonzero for the second branch. However, one can see
from Eqn (17) that the component f;, of the driving force
has no terms independent of ¢. Therefore, the T, branch is
not excited, but only two branches of the whole set of
normal modes (24) should be excited: Ry,,, which is named
the family of longitudinal normal modes, and TR,,, — the
family of bending normal modes of a high (second) circular
order. For the branch TR,,, the two components of the
displacement vector (24) are nonzero: namely, ur(,,%)(r):
sz)(r) cos2¢ and uqf,%,),(r) = —@,(,?(r) sin 2¢ (the superscripts
hereafter specify the branch, Ry, or TR,,,).

The problem of normal modes of an elastic solid cylinder
is self-adjoint, and, consequently, the eigenfunctions are
orthogonal to each other. The functions within each branch
(with different n) are also orthogonal with respect to mz;
thus, the eigenfunctions form a complete basis.

The expressions for the radial dependences W,,(lo)(r) and
W,,(lz)(r), @,(,f)(r) of eigenfunctions for both the R, branch
and the double-degenerate TR,,, branch can be found, e.g.,
in [13]. The characteristic equations for the determination of
w,ﬁf’) for both branches are also given in that paper.

Having obtained the displacement vector by the above-
described method taking into account the specific form of
the driving force (17), we represent the components of this
vector U(r,t) in the following way:

Uy(r,@.1) = U0 (r, 1) + U (r, 1) cos 20,
(25)
U,(r,p,1) = Uf) (r, 1) sin 2¢.

Finally, we should obtain the response function, i.e., the
spatiotemporal change in the refractive index. Since the
refractive index is uniquely defined by the dielectric con-
stant, we will find the function of the dielectric-constant
response. For this purpose, we use the expansion (9) and the
relation between the components of the vector U(r, ) and
components of the deformation tensor Sy, which is known
from the theory of elasticity (see [13], for example):

aUr(rv @7 f)

Srr(ra @, t) = or ’

s

Udr.g.1) | 12U, (r0.1)

S, (1 1) =
q)(ﬂ(}vq)? ) ; P 3

(26)

1[10U.(r,,t
Sr(p(rv(P7t) =5 {7&

20 Op

aUqD(r7qD7t) U(ﬂ(rv(p7t):|
- - :
or r
The components of the symmetric tensor of the dielec-
tric-function increment, caused by the electrostriction, can
be determined from Eqn (9) as dgy = €5 — €y0i, OT

O, = (a) + @) S, + @3Sy, »

6'949(0 = (a; + aZ)Sqw + @S, (27)

d¢,, = a1,

re re *

To find the experimentally measured maximum changes
in the dielectric function, we transform the tensor d¢;, (27) to
the Cartesian coordinates diagonalising this tensor averaged
over the azimuth angle. Performing the necessary mathe-
matical manipulations and taking into account Eqns (25)

and (26), we obtain

68-’(«“ = 88R0m + SSTRZ/U’

Bey) = Beg,, — Oern,, s (28)
Oy, = 8¢y, = 0,
where 3¢, ~and depg, are the individual contributions of

both excited acoustic branches to d¢;, with

a d U,.(()) Ur(o)
deg,, = | 5 ta ) —g T )

a [d(u,@ - Ul

(29)

OeTR,, = 7

2 2
+U,4()—Uq§)
; :

dr r

To simplify expressions (28), (29), we neglect the terms,
containing multipliers cos2¢, sin2¢, cos4p and sin4e,
which vanish after the averaging over the cross section
of the fibre. Finally, the tensor function of the response of
the refractive index is given by

1 [Se V72 (r)rdr
280’/2 [ V2(r)rdr

(30)

6nik =

In the case of the Gaussian radial distribution of the
mode field V(r) =exp(— 1'2/2af2), which is mostly used in
practice, the quantity dnm; in Eqn (30) can be easily
represented in the analytical form [a, = (Aeff/2n)1/ 2 is the
effective radius of the mode cross section]. With the high
accuracy (assuming m,, > I') we can take W,,(,O>(r) =
C,,J1(o,,r) as the eigenfunctions of the R, branch, where
oy, = 0,,/Cy, C,, is an arbitrary constant, J; is the first-order
Bessel function (see, e.g., [12]). The overlap integral in
Eqn (20) can be easily calculated in the case of the Gaussian
distribution:
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a
®, = 2nC,, [ 1, 0y (o)l
JO

. Cm(al +4(12)af2'ocm _ Ly Ay ’ (31)
- 32p, P 2 )|
The quantit B,, in Eqn (20) is
B, = 21tC,,21J rJ 2 (o,r)dr = nC2a>
0
|3 g - 2N o). )
m

Next, we use the characteristic equation, which defines
the eigenfrequencies of the R, branch and which is written
as [13]

s2Jo(v) = 21 (y) =0, (33)
where y = o,,a = w,,a/Cy; s = C,/C,.

By using Eqn (33), expression (32) can be transformed to
the form

445 (comaz/Cl —4)

B, = nCn2102J02(ama) 4

(34)

In the approximation of short (delta-like) pulses, we find
U(r, t) (to be precise, the only nonzero component U, of this
vector) according to Eqn (23):

Eftexp(—I't)(ay + 4a2)af2

U,.(I", t) = 8Tcp0a2

EOC: OCmJI (O(mr) €Xp [ B (O‘ma/‘/z)z} sin Wyt (35)

= 0, (0,a)[4+ s (w3a’ /CP —4)]

Hence, according to Eqns (29), (30), we obtain

Pyt(a; + 4ay)(a; + 2a,) exp(—TI't)

dn(t) =
16n8(3)/2cC1p0a2

" Z 0ty €xP( oc,fqafz-/Z) sin w,, ’ (36)
T2 (o) [4 1 52 (022 CZ — 4)]
where P, is the peak power of a pulse.

The analytic expression for the TR,,, branch contribu-
tion to dn(t) can be found in a quite similar way; however, it
is substantially more intricate compared to Eqn (36) and is
not given here.

In the case when a very high accuracy is not necessary,
the contribution of the TR,,, branch is negligible, and the
radial distribution of the mode field is described by a
Gaussian function (as it is usually the case), the simplicity
of formula (36) makes it very convenient for finding dn(z).

3. Results and discussion

The validity of a model is determined by comparing the
model predictions and experimental results. For the present
day, we know two experimental works [15, 16], in which the
acoustic response in a standard single-mode fibre in the

process of laser pulse propagation was measured. However,
before we turn to the analysis of results of the calculation
and the comparison between the calculated and exper-
imental data, let us qualitatively discuss the process of the
propagation of perturbations of the refractive index, which
appear due to the electrostriction.

First, the R, branch is a set of acoustic vibrations with
purely radial direction of the particle motion corresponding
to the compression and rarefaction waves. Arisen in the core
and partially reflected at the glass—polymer interface,
perturbations return after a time to the fibre core as an
echo. In other words, the response function should contain a
number of equidistant, reducing in time echo-perturbations
of the refractive index, in addition to the initial perturba-
tion. These perturbations take place at the moments of time
t; =21 ns, 42 ns, 63 ns,..., divisible by the time of the
sound passing (with the velocity C;) from the fibre axis to
the surface of the glass—polymer interface and backwards.
The Ry, branch causes no other perturbations of the
refractive index. Hereafter, we consider the fibre diameter
d without polymer jacket to be 125 um.

At the same time, the TR,, branch describes other
motions of the medium. These motions imply complicated
vibrations of medium particles in the plane of a fibre cross
section, which have components both along the radial
direction and perpendicular to it. Radial components (com-
pression and rarefaction) propagate with the velocity C; and
make the contribution to the response function at the
moments of time from the above-mentioned row ¢;. Per-
turbations normal to the radial direction, propagating along
it with the lower velocity C; determine the purely shear
motion. Since shear motions in a medium do not change its
density, it might seem that normal components should not
influence the change of the refractive index. However, as is
seen for example from Eqn (27), components of the dielec-
tric tensor depend not only on compression—rarefaction
deformations, but also on deformations caused by shear
tensions (specifically by torsion). This follows also from the
expression (29) for 6erg, , involving the shear component
U, of the transition vector. Therefore, the slower compo-
nents determine one more set of equidistant echo signals
with the consecutive centres of mass coming at 7, ~ 33 ns,
67 ns, 100 ns, ..., (with the period ~ 33 ns).

The initial acoustic perturbation should have the fine
structure due to the processes of compression and rarefac-
tion in the core. The compression proceeds during the time
comparable with the laser pulse duration. For typical radi-
uses of single-mode fibre cores ~ 3 — 5 pm the character
widths of peaks of the fine structure of the initial perturba-
tion (as well as of subsequent echoes) should be about 1-—
2 ns.

Note that time dependences of response functions given
below correspond (except for dependences shown in Fig. 3)
to the fibre core, or more precisely to the points on its axis
(r=0).

In the experiment of the work [15] (one of investigations
[15, 16] mentioned above) 50-ps pulses of 1551-nm radiation
with the pulse energy of 230 plJ, delivered by diode laser,
were coupled into the fibre with the core diameter of 8.8 um
and standard outer cladding diameter of 125 um. The pulse
repetition rate was 1 MHz. For the parameter I’ = 2.1x
107 s7!, according to [13], the time of the virtually total
decay of sound in the fibre after several (about four)
reflections at the glass—polymer interface is ~ 100 ns.
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Therefore, in the case of the indicated pulse repetition rate,
every pulse can be considered (with respect to sound
vibrations) as a very close approximation to an isolated
pulse, noninteracting with sound waves excited by preceding
pulses.

The response function was measured by varying the time
delay between the two pulses: the exciting pulse and the
probe pulse of the same laser, the polarisation of which was
orthogonal to the exciting pulse polarisation and the
intensity was much lower. In the Sangac interferometer,
the probe pulse followed the exciting pulse and acquired a
phase shift relative to the latter, depending on the time delay
between pulses at the input of the interferometer. The total
perturbation of the refractive index, which implies the
superposition of perturbations introduced by all modes
of excited acoustic vibrations, was determined by using
this measurable relative phase.

Fig. 1 shows the response function én,,(7), calculated for
the above experimental conditions [15]. The radial distri-
bution of the mode field was assumed to be Gaussian. The
perturbations of the refractive index presented in paper [15]
correspond only to the acoustic Ry, branch (the ¢
sequence). Referring to [7] and considering perturbations
of the TR,, branch to be small, authors give no data
concerning other echo-signals. The comparison of the curve
shown in Fig. 1 with the experimental curve given in [15]
indicates a good agreement between the theoretically calcu-
lated and experimentally measured echo signals of the ¢,
sequence with respect to their intensity and structure. The
only exception is the initial perturbation, which will be
discussed below. At the same time, besides the echo of #; and
1, sequences one can see on the calculated curve a set of
echo-signals (¢ ~ 27 ns, 48 ns,...), which we did not men-
tion above. This set will be discussed below as well.
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Figure 1. Acoustic response function 8n.,(t) = dng, (1) + dng,, (1) cal-
culated for the experimental conditions of [15].

In contrast to [15], in the experiment [16] optical
properties of a fibre, perturbed by the intense 1547-nm
exciting pulse, were probed by means of the low-power
continuous laser. The 1540-nm (/) radiation of this laser
was coupled into a fibre of a length L simultaneously with
the exciting pulse. At the fibre output the radiation of the
probe laser was filtered, and then the deviation Av of the
probe laser frequency from its initial value was determined

by means of the Mach—Zehnder interferometer. Thus,
authors of [16] measured not the response function dn(t)
(30), but the quantity

(37

where Leg = [l —exp(—al)]/o; « is the optical losses in
the fibre.

Works [16, 17] are remarkable because they were the
first to give measured index perturbations caused by the
acoustic TR,,, branch and to ascertain [17] that the
contribution of this branch to the total electrostrictive
change of the refractive index is about ~ 20 %.

The dependence Aw(r), that was calculated for the
experimental conditions of [16], is shown in Fig. 2. The
comparison of this curve with the curve given in [16]
indicates their satisfactory agreement (our results are on
average twice lower than the measured ones). At that,
besides the echo, forming sequences ¢; and ¢,, (in particular,
in the work [17]) the above-mentioned perturbations at ¢ ~
27 ns, 48ns,..., which were theoretically predicted by
works [7, 8] and this work, can be seen both on the
calculated and the experimental curve. The presence of
these echo signals is concerned with physical features of the
processes of the elastic wave propagation in a solid. In an
infinite medium, longitudinal and shear waves propagate
independently, noninteracting with each other. However, at
the free boundary as well as at the media interface these
waves may interact. When the purely longitudinal or purely
transverse wave falls on the interface, resulting fields (of
refracted and reflected waves) generally contain both waves:
longitudinal and transverse. Obviously, the character of the
wave does not change in the reflection for the normal
incidence. It also does not change in the case of the oblique
incidence of a transverse wave of such polarisation, when
the transition vector is parallel to the interface. Such
behaviour of elastic waves on the interface is concerned
with the necessity to satisfy a number of boundary con-
ditions, which in turn correspond to certain conservation
laws. In our case, the appropriate boundary condition for
Eqn (3) implies the vanishing of the components of the
stress tensor.

In this work, it is impossible to go into details of this
part of the theory of elasticity. We will note only the fact

Av/GHz
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Figure 2. Electrostrictive shift of the probe laser frequency Avw(f) cal-
culated for the conditions of [16].
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that the incidence of perturbation waves of the TR,,, branch
on the glass—polymer interface is not normal. Therefore, the
reflection of any of orthogonal components of that branch
should be accompanied by its partial transformation into
the wave of another type. The direct calculation of the radial
and azimuthal components of the velocity of medium
particles for the TR,,, branch shows that both components
are nonzero in the interface, so that the resultant velocity is
directed at an angle with the interface normal.

Fig. 3 most visually follows the dynamics of propagation
of the perturbation in a fibre as well as that of the rise of the
echo-signal of the TR,, branch. Here, the calculated
spatiotemporal behaviour of the function dnyg, (X,7) =
derg,, (X, 1)/ 2801 / 2 averaged only over the azimuth angle
¢ but non-averaged over the radius, is shown in (x, ?)
coordinates (the coordinate x corresponds to the radial
coordinate and has different signs on the opposite sides
from the axis of symmetry). One can see that each reflection
on the glass—polymer interface (for x = +62.5 um) of either
shear or longitudinal components (the inclination of their
trajectories with respect to coordinate axes are different in
Fig. 3) is indeed accompanied by the partial rise of the wave
of a different type. This leads to the fact that a pair of echo
sequences of the TR,,, branch, whose neighbouring centres
of mass turn to be at instants #~(2k— 1)d/Q2C)+
d/(2C) ~27n's, 48 ns, 69 ns,... (with the same period,
as that of ¢, which is about 21 ns) and at #4 =~ 2k + 1)x
d/(2C) +d/(2C)) =~ 61 ns, 94 ns, 107 ns, ... (with the same
period, as that of ¢,, which is about 33 ns), where k are
integer numbers, arise in addition to the pair of main
equidistant echo sequences (z; and 7,).
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Figure 3. Component dny, (7) of the response function calculated for
the fibre and pulse parameters given by [3].

In cited papers [7, 8, 16, 17] there are no comments
concerning just described perturbations of the refractive
index.

Note that the absence of the turbulent component of the
motion in hydrodynamic approximation principally does
not allow us to describe the acoustic response as a TR,,
branch. Note also that according to [7, 8] the excitation of
the branch is most efficient in the case of linear electric field
polarisation.

Let us say a few words about theoretical results of other
authors. The comparison of our calculations with calcu-

lations of the response function made in hydrodynamic
approximation [1—4] showed that our absolute values of
response functions on average are twice lower than that of
[4], calculated for the same parameters of the fibre and
exciting laser pulse. We cannot quantitatively compare our
results with the calculations made within the bounds of the
model [7, 8], since the authors of those works did not give
power parameters of pulses. The only result of [7, 8], which
can be compared with our calculations, is the relative
contribution of the acoustic TR,, branch to the total
response function 6n. In [7, 8] this contribution is estimated
as approximately 7 %. In spite of a number of inaccuracies
in those works, their estimates approach values resulting
from our calculations. However, both results are noticeably
lower than 20 % obtained in experiment [16, 17]. The valid
explanation of this fact is not found yet.

Overall, our calculations correctly describe the exper-
imentally observed perturbations of the refractive index at
the instants of time when the echo comes into the fibre core.
However, it is prematurely to discuss the level of the
quantitative agreement between measured and calculated
response functions because of two facts. One is that cal-
culations were performed with a number of approximations,
and the other is that the authors of [15—17] give results
without the experimental errors.

The first approximation of the model implies the neglect
of the influence of pulse fronts on the formation and
propagation of the acoustic perturbation. This approxima-
tion may adversely affect the propagation of short pulses
(shorter than 10 ps). Besides this, to correctly compare the
calculated results with the experiment the model should take
into account the average deflections of the light-guiding
structure geometry from the axisymmetric one (these
deflections are always present in reality). The premature
analysis testifies, for example, that the ellipticity of the core
in standard two-layer fibres greatly influences the result of
calculation. Depending on the scope of the core deflection
from the form of a circular cylinder, the high-order TR,
branches with even values of q are excited in addition to Ry,
and TR,,, branches. Obviously, these additional branches
will cause index perturbations, the echo signals of which will
correspond exactly to above-mentioned sequences t,, t3, 4.
Due to this fact, the relative contribution of shear motions
to the response function will be increased approaching the
experimentally observed.

As for the initial perturbation of the refractive index, it
implies the sum of contributions of a number of nonlinear
processes determined by the third-order susceptibility. The
main of them, as it was noted, e.g., in [17-21], is the
quadratic Kerr effect. These processes do not directly
involve the deformation of dielectric and excitation of
acoustic vibrations in it, but the strictive contribution to
the initial perturbation can hardly be distinguished against
their background. Thus, according to the estimations of
works [18, 20, 21] the Kerr-effect contribution to the non-
linear refractive index n, is 3—4 times greater than that of
the electrostrictive effect. Remember also that in the experi-
ment [15] the exciting pulse had the peak power of about
4.6 W, and in [17] — more than 5 W. In both cases, these
values exceed the threshold of the stimulated Raman
scattering (SRS). The SRS badly distorts the form of the
acoustic response, measured in experiments [16, 17], for the
times up to about 1 ns. By the described reasons, the papers
([16], in particular) give no initial perturbation; therefore,
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the comparison of the initial perturbation measured in [15]
with the calculated one is improper.

Let us analyse the results of the calculation of the
response function of a single-mode double-clad fibre. Since
the solving of the electrodynamic problem of the distribu-
tion of the mode field in such fibres goes beyond the scopes
of our paper, let us use the data of other papers. We will give
the preference to the experimentally measured distribution
found by authors of [22]. This distribution is given in Fig. 4,
where the radial profile of the refractive index in the fibre is
schematically shown on the separate incut. Fig. 4 represents
the measured distribution of the field intensity ~ ¥ 2(r), but
not the field V(r).
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Figure 4. Normalised distribution of the intensity of the electromagnetic
field of the main mode for a double-clad fibre with the high-density
middle layer [22].

The quantity A.p ~ 42 ym? calculated for this distribu-
tion turns out to be the same order as a typical section of a
mode in a standard fibre, but the distribution itself sub-
stantially differs from the Gaussian. This difference mainly
lies in the following: the distribution, shown by Fig. 4, has
the regions with different signs of the derivative V'(r), and
the form of the profile from the side of a cladding is steeper
as compared with the Gaussian distribution. The rapid
decay of the field in the cladding is, as a rule, achieved with
the purpose to lower microbending losses. The mentioned
specific features of the field distribution in a double-clad
fibre determine some other form of the acoustic response
functions as compared with conventional fibres considered
above. This fact is illustrated by Figs 5, 6 [23], which show
the contributions of Ry, and TR,,, branches calculated for a
certain distribution of the field intensity (see Fig. 4) to the
response function. For the comparison the response func-
tion of the standard fibre with A,y = 35 pm? is shown there.
The calculations were made for the pulse of the duration
7 =50 ns and peak power of 0.6 mW.

One can see that the response function of a double-clad
fibre qualitatively keeps the same form as that of a two-layer
fibre. However, both the echo and the initial perturbation
acquire the more complicated structure. The more compli-
cated fine structure of perturbations is caused by the
following. In a double-clad fibre the source of perturbations
is a cylindrical layer, wherein the field has its maximum,
while in the case of a standard fibre perturbations arise in a
narrow paraxial cylinder. As distinct from a standard fibre,
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Figure 5. Contribution of the R, branch to the response function in the
fibre with the ring profile of the refractive index (solid curve) and the
standard two-layer fibre (dotted curve) [23].
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Figure 6. Same as in Fig. 5, but for the TR,,, branch [23].

where the duration of the initial perturbation is determined
by a single character time, a double-clad fibre has at least
two character times. These times are determined by two
dimensions: namely, the thickness of a cylindrical layer,
wherein the field has its maximum, and the radius of its
cross section. As in the case of a standard fibre, the R,
branch makes the main contribution to the response
function, while the contribution of the TR,, branch is
about 4%. We suppose also that the probability of the
geometry deflection from the axial symmetry in the case of
fibres with the ring profile of the refractive index is higher
than that of standard fibres.

The complication of the fine structure of perturbations
in a double-clad fibre is also experimentally observed. Thus,
in Fig. 7, taken from the paper [24], the experimentally
measured value of the frequency shift Av(f) of the probe
pulse radiation (37) and the shift theoretically calculated by
the above-described model, are compared. Here, the effec-
tive area of the cross section A.g of the main mode is equal
to 120 um?; therefore, the distribution of the field intensity
differs from the given in Fig. 4. Both qualitative and
quantitative satisfactory agreement between calculated
and measured values of Av corresponding to the echo,
determined by compression-rarefaction waves (the 7; sequ-
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Figure 7. Comparison between the calculated (a) and the measured (b)
frequency shift of the probe laser pulse radiation in the fibre with the ring
light-guiding structure. A = 120 pm?, © = 100 ps, the pulse energy is
530 pl, the fibre length L = 9 km, o = 0.21 dB km™"' [24].

ence) is evident. Moreover, as well as in the case of standard
fibres, the calculated values of Av, corresponding to the echo
related to shear motions of the medium, are lower than the
measured ones.

A special attention should be paid to the fact that for the
similar pulse parameters absolute values of the response
function in a double-clad fibre, even for the greater value of
A, can, nevertheless, be higher than those in a standard
fibre. The reason behind this fact is that the electrostrictive
effect is a nonlinear phenomenon determined not by the field
intensity, but by its gradient [see (17)]. The calculations
confirm that for a double-clad fibre the value of V'(r),
exceeds the derivative of the Gaussian function by several
times in a certain region of the dependence, shown in Fig. 4.

The first study of the influence of the form of the radial
distribution of electromagnetic field on the electrostrictive
excitation of sound in fibres was performed in [25]. By using
the hydrodynamic approximation the author of this work
calculated the response function in the standard fibre for the
Gaussian-like function of the field intensity distribution
V2(r) = exp|—(r/a)”] depending on the parameter p. It was
found that the response function becomes smooth with the
growth of p and its amplitude value decreases. However,
analogous calculations performed in our work give the
contrary results: the amplitude of the response function
increases, while p and the value of V'(r) grow. It is easy to
show that the functional dependence of the 6n amplitude on
the p value is rising. However, starting from the certain
values of p, this dependence comes to constant and then
virtually does not change. Hence, the hydrodynamic
approximation could lead not only to overestimated quan-
titative results, but also to the qualitatively different
conclusions.

4. Conclusions

The model presented above allows one to calculate the
function of the fibre response to the propagation of a single
pulse. However, this model is far from being sufficient for
the analysis of the electrostrictive effect in fibres, because
from the practical point of view the investigation of the
interaction of pulses in their high-frequency train, caused
by the acoustic perturbation of the refractive index, is of
primary importance. The relative temporal shift between
pulses in the information sequence may cause considerable
distortions in the process of the information transfer in
fibreoptic communication lines. In this case, the electro-
strictive effect can be one of the primary limitations
imposed on the data transfer rate. The work [1] was the
first to express this conclusion with respect to standard
fibres. Later it was confirmed by a number of other
investigations. The above-performed comparison between
the acoustic response functions of fibres of two different
types demonstrates that electrostrictive limitations of the
data transfer rate even in double-clad fibres, which offer
much promise for fibreoptic communication lines, would be
not less (if not more) substantial. To reveal the quantitative
aspect of these limitations with respect to the problem of
the communication, further theoretical and experimental
study of the electrostrictive effect in fibres seems to be
useful.
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