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Multimode oscillation of a cw unstable-cavity CO, laser
with a nonstationary active medium

V.G. Naumov, P.A. Svotin

Abstract. A method of analysis of lasing at several transverse
modes in a nonstationary active medium with substantial
optical inhomogeneities is developed. It is based on the
assumption that the round-trip transit time for radiation in
the resonator is much shorter than the characteristic time of a
change in the spatial distributions of the gain and refractive
index. The nonstationary oscillation of a transverse-flow CO,
laser is analysed by this method in a two-dimensional
approximation in the case when the vibrational excitation
of an active medium at the cavity input changes in time and
phase distortions move.
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1. Introduction

Both stationary or nonstationary oscillation regimes can be
obtained in transverse-flow industrial cw CO, lasers with
unstable cavity [1]. In certain cases, the nonstationary lasing
is manifested in the modulation of the output power and
even in the stochasticity of amplitude-phase characteristics
of radiation [2]. These effects are caused by substantial
optical inhomogeneities of the active media, nonlinear self-
action, thermal deformations of mirrors, and lasing at
several transverse modes [3].

The simulation of amplitude—phase characteristics of
radiation with nonstationary phase inhomogeneities under
the conditions when characteristics of lasing modes are
changing is, at present, a poorly studied theoretical problem.
The calculation of a cavity was traditionally performed by
the Fox—Lee method [4]. This method gives satisfactory
results in the case when optical inhomogeneities are small
and lasing proceeds at a single transverse mode. Methods to
analyse the stationary multimode lasing in an unstable
cavity with substantial phase inhomogeneities also exist
[5, 6]. The method of [6] provides the algorithm to find a
stable self-consistent set of modes, each reproducing its
amplitude-phase profile after a round trip in the cavity.
Quite often, the nonstationary lasing proceeds under such
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conditions when the round-trip transit time in the cavity is
considerably shorter than the characteristic time of a change
in the distribution of the gain and refractive index in the
cavity. In the case of substantial phase inhomogeneities, we
can assume that lasing proceeds at several transverse modes
simultaneously.

In this paper, we consider such a nonstationary lasing
and propose a novel method for analysis of a nonstationary
multimode lasing in the presence of substantial phase
inhomogeneities.

2. Method for calculating
nonstationary multimode lasing

A model developed in this paper assumes that the time of
light propagation through a path of length L from the
output mirror of a cavity to the highly reflecting mirror and
backwards 1, = 2L/c is much shorter than the characte-
ristic time of a change in optical inhomogeneities and the
distribution of the gain in a cavity. In this approximation,
we assume that the mode structure has been formed and the
output radiation is distributed among several self-matched
modes. The presence of the mode structure presumes the
complex wave amplitude of each lasing mode to be rep-
roduced with a high accuracy after a cavity round trip. In
the case of a great number of round trips, a drift of mode
characteristics matched with a change in optical inhomo-
geneities of the active medium, which can be described by
the kinetic and gas-dynamics equations, is possible.

The concepts of the self-matching and stability imply
that the simultaneous lasing at several transverse modes
provides the remaining of the rest of modes, not involved in
lasing, under the threshold. The deviation of the gain from
unity after a round trip of radiation in the cavity is caused
by nonstationary inhomogeneities and amplification of the
active medium. In such an approximation, the complex
amplitudes U;" and U;” of radiation waves of each mode,
which describe the light propagation from the highly
reflecting mirror to the output mirror of a cavity and
backwards, satisfy equations of quasioptics [4].

The functions g(x, z, ¢) and v(x, z, t), involved in the
quasioptical equation and taking into account distributions
of the gain and refractive index, are determined by a set of
differential equations depending on the kinetic model of an
active medium. In our approximation, the changes of func-
tions g(x,z,¢) and v(x, z, t) within the time t, can be
neglected, and we can use the stationary equations of
quasioptics for a single cavity round trip. The appropriate
boundary conditions for the set of quasioptical equations
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should take into account the nonstationary nature of the
active medium; therefore, the boundary conditions are given
by

Ui (x,0,1) = 6% exp[—2ikSE(x)|U; (x,0,1),

0.5 b M
U7 (x,L,t+1) = 0" exp[—2ikS°(x)|U;" (x, L, 1).

Here, S&(x) and S°(x) are the profiles of surfaces of the
output mirror and the highly reflecting mirror, respectively,
specified in the coordinate systems where the axis of each
mirror directed into a cavity; ¢ = o(x) is the reflectivity of
the mirrors; 7 is the integration step of the set of differential
kinetic equations, used to calculate functions g (x, z, ) and
v(Xx, z, t). Because the parameters of the active medium are
considered to be stable within the time t, we can express the
wave U; (x, L,t+ 7) at the output mirror as a function of
the wave U;" at instant of time . The quantity  is equal to
7,, however for slow changes of the active medium, the
integration step of kinetic equations may be increased
(tr = s175). Under our conditions, the coefficient s =2 — 4.
The results of our calculation did not depend on the value
of s. Kinetic equations describing the active medium depend
on the total intensity of radiation of different lasing modes
I=3"1I, where I, = |U | + |U;|*.

The contribution of the interference of counterpropagat-
ing modes to the intensity distribution can be neglected,
because in the case of a stationary multimode lasing [6]
neither the transverse lasing mode composition, nor the
distribution of the radiation power among them are sensitive
to this interference. This assumption is based on the fact
that the mode competition depends [6] on the relative value
of overlap integrals of functions |Ui+\2 of different modes i
in any cross section of a cavity, while the relative value of
those integrals is virtually independent of this interference.
Thus, in the case of a nonstationary lasing with a stable
mode structure, the interference of counterpropagating
modes can be neglected.

The accuracy of reproducing of the complex wave
amplitude after a round trip in the cavitywas calculated
from a minimum of the function

f:J|U+(x,L7 1) — rexp(—ip)U ™ (x, L, + 1)|*dx

-1
x(J|U+(x, L, z)\zdx) )

depending on the complex quantity rexp (—ip). It is clear
that the minimum value of f characterises the reproduci-
bility of the complex wave amplitude after a cavity round
trip. To achieve high quality of the mode reproducibility,
the condition f < 1 should be satisfied. The quantity r in a
quasi-stationary regime of lasing should satisfy the con-
dition |r—1] <1, and the value of ¢ gives the phase
correction related to the change in the lasing mode
frequency [4].

Here, we consider multimode lasing in a cw subatmo-
spheric pressure transverse-flow CO, laser. The kinetic
model of this lasing is analogous to the simplified model
[7]. In this model, the vibrational excitation of the upper
level of CO, molecules and vibrational excitation of N, were
considered, and the equation for the change of the refractive
index v of the active medium was analysed. Hence, the
average numbers of vibrational quanta ¢ per CO, molecule,

and ey, per N, molecule were introduced. The equations for
én,» ¢ and v have the form

O¢ Oen,
aljz +V % = Wco,-N, (& — &n,)s
Oe Oe e
e e _ oy —g) o] —
3 TV 3y = Wnoco,(en, —8) — o e we,  (3)
ov oy &y
SVt = —Pev— oy ] ———.
o + o Pev — oy 0t 8)2

Here, V' is the velocity of a transverse active-medium flow; 7
is the radiation intensity; wco,—n, and wy,_co, are the rates
of transfer of vibrational excitation from CO, molecules
to N, molecules and ba?k, respectively; wco,-N, VN, =
WN,-co,Nco,; & = ao(liw)™"; g is the effective cross section
for the resonance stimulated transition; 7w is the photon
energy; w is the frequency of VT relaxation of the upper
laser level of the CO, molecule; o) = 1.500,; f = 2.5wa,;
oy = hwkNco,/(C,P); k is the Boltzmann constant; C,, is
the heat capacity per molecule of the working mixture at
normal pressure; P is the pressure; Nco, is the concentra-
tion of CO, molecules in the active medium. The gain in the
active medium is given by [7]:

&

(1+¢)? @

g(e) = agNco,

The set of equations (3) takes into account the changes
in the gain along the flow caused by the exchange of the
vibrational excitation between CO, and N, molecules and
by the formation of the inhomogeneous distribution of the
refractive index. The transverse velocity V' of the active-
medium flow in the cavity was assumed to be constant.

The finite-difference approximation was used for the
combined numerical integration of the set of quasioptical
equations and the set of equations (3). Equations of
quasioptics were solved by the standard method of splitting
over physical parameters [7]. According to this method, the
active medium was divided in a cavity volume into layers of
equal thicknesses perpendicular to the z axis. In each layer,
the characteristics of the active medium along the cavity axis
were assumed constant and their temporal evolution was
described by the set of equations (3). The transverse dis-
tribution of the radiation intensity in each layer was
assumed to be equal to the incident intensity distribution,
which was determined by the simultaneous solving qua-
sioptical equations and Eqns (3). The finite-difference
approximation of the set of equations (3) was taken
from [8].

In our work, much attention is focused on the case of
nonstationary multimode lasing in an unstable cavity. To
choose the computational scheme for these cases, we
examine the results of simulation of the stationary multi-
mode stable lasing under the conditions of substantial
optical inhomogeneities of the active medium [3]. The sta-
bility criterion implies that nonlasing modes decay after
repeated round trips in the cavity, while lasing modes
maintain the self-matching regime, in which the distribution
of the radiation power over modes and mode characteristics
remain stable with time [6].

This fact is of fundamental importance in our method of
simulation of nonstationary lasing. It points out that per-
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turbations of characteristics of an arbitrary lasing mode in a
stationary state, caused by other lasing modes propagating
in a cavity, on average suppress each other; therefore, the
amplitude-phase characteristics of the modes remain stable
within the infinite time interval. Probably, this fact is caused
by the dependence of the active-medium parameters on the
superposition of intensities of different lasing modes and the
difference between their transverse distributions. Therefore,
there is a strong probability that slow changes in the phase
and gain inhomogeneities will not cause the destruction of
the mode structure of radiation, i.e., the complex wave
amplitude, which describes each lasing mode, will be
reproduced.

The calculations of a stationary multimode lasing depen-
ding on the parameters of optical inhomogeneities showed
that the parameters of lasing modes change largely conti-
nously. However, there is some discrete set of values of these
parameters, at which characteristics of lasing modes change
stepwise [3]. In this connection, the new method for
calculating a nonstationary multimode lasing should take
into account the possibility of such a drastic change in the
lasing regime. In this work, we consider only changes in the
lasing regimes in the case of single-mode and two-mode
lasing.

The specific initial condition should be assigned to
describe the evolution of a multimode lasing by means
of the equations of quasioptics and kinetics, since the mul-
timode structure of radiation cannot be formed spon-
taneously in the calculation. In our opinion, it is most
convenient to determine the stable initial conditions by
solving simultaneously equations of quasioptics and the
stationary analogue of the set of equations (3) by the
method [6]. This allows one to specify the initial static
phase distortions in the cavity and its geometrical characte-
ristics, and then to determine the initial number of modes
involved in lasing, and their characteristics, which are
matched with each other and with optical inhomogeneities
of the active medium. The further simultaneous solving of
the set of nonstationary equations gave the changes in the
amplitude-phase characteristics of all modes matched both
with each other and with the active medium. As a rule, mode
characteristics slowly change in time because the values of f
from (2), estimated after each cavity round trip for each
lasing mode i, satisfy the following condition:

fi<107? =107 (5)

This result confirms that the mode structure of radiation
under nonstationary conditions is stable if the parameters of
the active medium change gradually. If the rearrangements
of the active medium and changes in the radiation characte-
ristics caused by them occur rapidly the reproducibility error
of the complex amplitude f;, which is close to the upper
boundary (5), increases. At the same time, the rate of
changing of the correction of the mode eigenfrequency
(2) increases and the angular divergence and other charac-
teristics of each lasing mode change faster.

As mentioned above, we should expect that the slow
evolution of characteristics of lasing modes can be disrupted
by their sufficiently fast changeover. The numerical simu-
lation showed that there are several variants of changing to
other lasing modes. In a softest regime of the change, the
solving of the set of equations can proceed without

interruption, the accuracy of the mode reproducibility
decreasing within a short time interval (f; ~ 107> — 107%).
In the further solving of the set of equations the values of

f; usually decrease. It is rather simple to take into account

the termination of lasing at some of the modes. In this case,
we can exclude this mode from lasing at some instant of time
when its power is low. The case of the involvement of a new
mode into lasing is more interesting. The calculations
showed that this case is accompanied by the worsening
of the reproducibility of a single or several lasing modes. In
the calculation, the criterion for a change in the composition
of lasing modes can be the abrupt increase of the reprodu-
cibility error f; of any lasing mode after a cavity round trip.
To apply this criterion in the computational program, we
may represent it as a parameter

fi=fT)f>13-16, (6)

where f* and f are mode reproducibility errors after two
consecutive round trips.

New modes were included into lasing in the following
ways. First, the gain distribution and phase inhomogeneities
were fixed in the cavity and then highest-Q modes were
calculated. Next, the lasing modes were selected among
them. If modes with the round-trip gain greater than unity
were among the remaining modes, they were included in
lasing. Modes were identified by the value of the phase
correction related to the change in the eigenfrequency ¢ (see
Eqn (2) and [6]). The power of a new mode involved in
lasing was taken to be 107 — 1077 of the power level of
lasing modes.

When phase inhomogeneities in a cavity are moderate,
we, as a rule, have to include only one mode in lasing. The
method to determine whether a new mode should be
included in lasing, which was described above, leads to a
time delay. Therefore, when we need a high accuracy of the
description of the temporal evolution of lasing, we have to
watch the Q factor of each nonlasing mode at almost equal
time intervals. If some of the nonlasing modes had the
round-trip gain exceeding unity, they were included into
lasing. More precise but more complicated methods of
inclusion of a new mode in lasing may be realised in prog-
ram, but actually, these methods are similar to the method
described above.

When the composition of highest-Q modes substantially
differs from the composition of modes involved in lasing,
the mode structure does not exist during a certain time
interval (the previous structure breaks down, while a new
one is not formed yet). This corresponds to the case of the
considerable change in the mode composition. One can
consider this case if the number of modes is no less than
3—4; we intend to perform this analysis in the future. Note
that the present method implies the intrinsic control of the
applicability based on the calculation of f from Eqn (2). In
this case, we can assume that the generated radiation has no
mode structure, if we fail to describe the nonstationary
multimode lasing at which all f; are small.

3. Results of calculations

We performed calculations for the confocal unstable single-
pass cylindrical cavity with the gain M = 2. The distance L
between the highly reflecting and the output mirrors was
540 cm. The cross sizes of the output () and highly
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reflecting (b®) mirrors were 4.22 and 8.44 cm, respectively.
The optical scheme of a cavity, which fully coincides with
the one shown in Fig. 1 of [6], included also an intracavity
aperture of size 11.9 cm located at equal distances from the
output and highly reflecting mirrors. The active medium
was settled in a rectangular of size al,, = 15 x 400 cm at
equal distances from the output mirror and the highly
reflecting mirror. The computational grid consisted of 2048
mesh points, the step of the grid was 4 = a/m = 7.3242x
1073 cm (here « is the cross size of a rectangle, m is the
number of mesh points). Phase inhomogeneities in the
cavity volume were produced by periodic distortions of
both the surface of the highly reflecting mirror and the
phase screen, placed at the diaphragm location. The
distortions of surfaces of mirrors per a period d were
defined as:

H(x+d) = H(x)

:{%wﬂmmm N < dy/2 ™

07 d1/2<|x|<d/2a

where d = 0.8 cm; d; = 0.4 cm; and A, is the amplitude of
distortions of the surface of the highly reflecting mirror.
Periodic distortions of the phase screen simulated the
presence of two flat deflecting mirrors, positioned at an
angle of 45° to the cavity axis, in the cavity scheme.
Periodic distortions at each deflecting mirror were specified
by expression (7) and the parameter x,,, which determined
the initial shift of these distortions. During the calculations,
the position of distortions at the highly reflecting mirror did
not change, so that static phase distortions in the cavity
scheme could be described by the parameter Hy, = 21A,/A

and the parameters x,; and x,,, which specified the initial
shift of phase distortions on deflecting mirrors.

The parameters of the set of equations (3) were specified
by assuming that the pressure of the active medium is
P = 0.14 atm; the velocity of the gas flow is ¥ =190 m s~ ';
the relative concentrations of CO,, N, and He are 5%,
50 %, and 45 %, respectively; and the effective length of the
flow at which the population of the upper lasing level
decreased by e times, is 10 cm. The effective values of the
cross section for stimulated emission and the frequencies of
the vibrational excitation exchange between CO, and N,
were calculated assuming that the translational temperature
in the active medium is equal to 350 K.

Consider now the nonstationary lasing in the case, when
the average number of vibrational quanta of N, and CO,
molecules in the active-medium flow at the cavity input
changes as

e(1) :so<1+ “lo ) (®)

ty+1

where ¢ = 0.12; ¢y = 0.1; and ¢, = 200 ps. Phase distortions
of the surface of the highly reflecting mirror and the phase
screen were specified using parameters Hy, = 0.225 and
Xp/4 = x,5/4 =25. Under this condition, the two-mode
lasing is generally observed. Fig. la shows time depen-
dences of the radiation power for each mode within a
period of about 1 ms. One can see that the radiation power
of each mode changed greatly. Within certain time
intervals, the lasing vanished and then appeared again.
Within the given time interval, the characteristics of lasing
modes changed continuously in general. When a new mode
was involved in lasing, the phase correction ¢ = 2LAw/c
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Figure 1. Time dependences of the mode radiation power (a) and errors
of the complex mode amplitude reproducibility after the cavity round
trip in the case of the change in vibrational excitation of the active
medium at the cavity input (b); &y = 0.12, ¢y = 0.1, Hy = 0.225, x,,; /4 =
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[see Eqn (2)], where Aw is the change of the mode
eigenfrequency, could exhibit a sudden jump (Fig. 2a).
The angular divergence of radiation of lasing modes
changed as well (Fig. 2b). At other instants of time, the
phase correction ¢ changed very slowly, which confirms the
presence of the mode structure of radiation. In this variant
of the simulation, the eventual inclusion of a new mode in
lasing was controlled using the above-mentioned criterion
(6), which determines the rate of the increasing of the mode
reproducibility error after each cavity round trip. The time
dependence of the reproducibility error f is shown in
Fig. 1b.

The phase inhomogeneities of the active medium can
move, resulting in the multimode nonstationary lasing. The
movement of inhomogeneities in the plane of the phase
screen can simulate the presence of moving phase inhomo-
geneities. This allows the possibility of simulations of lasing
in the presence of nonstationary gas-dynamical density
perturbations by the method proposed. The movement of
phase inhomogeneities was simulated by varying the coor-
dinates x,; and x,,, which specify the initial position of
periodic distortions of surfaces of deflecting mirrors, the
initial value of x,; /4 = x,,/4 = 10 and the parameter H, =
0.225. The average number &, of vibrational quanta in the
active-medium flow at the cavity input was equal to 0.12.
The velocity of a transverse movement of phase distortions
was low enough to neglect the Doppler shift of the lasing
frequency. Periodic distortions of mirror surfaces moved
with the same velocity in the opposite directions. The
temporal increment of the displacement, scaled to the
grid steps, was determined by the expression

t

X"]—an: c !
4 0 g+t

Here, ¢4 is the velocity of the displacement of phase
inhomogeneities within a long time interval; and ¢, is the
time necessary to reach this velocity. The results of
calculation for ¢y = 0.14 ps~! and 7, = 100 ps are shown
in Fig. 3. The calculation presented in Fig. 3a demonstrates
the exit of a mode from lasing. Fig. 3b shows the time
dependences of phase corrections ¢;, characterising changes
in the mode eigenfrequencies, and of the angular divergence
of radiation for the 75 % power level of each mode. The
error of the mode reproducibility after the cavity round trip
is negligible (less than 1077) for both modes.

dr. )

4. Conclusions

We have developed the method for analysis of the
nonstationary lasing at several transverse modes in the
case of substantial nonstationary phase and gain inhomo-
geneities of an active medium. We assumed in our
calculations that the round-trip transit time in the cavity
is much shorter than the characteristic time of the change in
spatial distributions of the gain and the refractive index in
the active medium. Our method includes the selection of the
initial state of lasing, the scheme of the calculation of
nonstationary lasing with a fixed number of lasing modes
and the algorithm for including other modes in lasing. By
using this method, we calculated a two-mode osillation in a
transverse-flow CO, laser under conditions of the nonsta-
tionary vibrational excitation of the active medium at the
cavity input and stimulated the changes in the amplitude-
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Figure 3. Time dependences of the power of different lasing modes
during the movement of phase inhomogeneities on deflecting mirrors (a);
and the time dependence of phase corrections to lasing eigenfrequencies
and the angular divergence for the 75 % power level (b); Hy, = 0.225,
Xp1 /4 = x,p/4 =25, 6, =0.1.

phase characteristics of radiation during the transverse
movement of phase distortions.
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