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Distribution of the laser radiation intensity in turbid media:
Monte Carlo simulations, theoretical analysis, and results

of optoacoustic measurements
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Abstract. The spatial distribution of laser radiation intensity
in turbid condensed media is studied analytically, numerically,
and experimentally by the optoacoustic method. Based on
optoacoustic measurements and Monte Carlo numerical
simulations, the relation is obtained between the optical
characteristics of a scattering medium and the position of the
maximum of the spatial distribution of radiation intensity in
the medium. It is shown that, when the anisotropy factor
exceeds (.8, this dependence has a universal type in the
ranges of absorption and scattering coefficients typical for
biological tissues. The method is proposed for measuring the
extinction and absorption coefficients in light scattering
media from the temporal shape of an optoacoustic pulse
detected in relative units. An approximate method for solving
a radiation transfer equation is verified, and the regions of
application of the P; and P5 approximation are established.

Keywords: scattering media, absorption coefficient, scattering
coefficient, Monte Carlo simulation, radiation transfer equation,
laser optoacoustics.

1. Introduction

The experimental methods for determining optical charac-
teristics of turbid media based on the measurement of the
intensity of diffusion backscattering of light are currently
being widely discussed. The known optical characteristics
allow one to calculate the light intensity distribution in the
medium, which is important for laser diagnostics and
therapy of biological media and tissues. There exist the
time-resolved spectroscopic method [1—4], the modulation
method [5-8], and the stationary method with a spatial
resolution [9—12]. Note, however, that each of these
methods has some or other drawbacks, which restrict
their applications for studying the optical properties of real
turbid media. Therefore, the development of a noninvasive
method for measuring the spatial distribution of light
intensity in such media is still an important and urgent
problem.
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In this paper, we propose to solve this problem using the
optoacoustic method [13]. When a laser pulse of duration
that is much shorter than the travel time of an acoustic wave
in the region of heat release is absorbed in a medium, the
profile of an optoacoustic signal resembles the spatial
distribution of heat sources in the medium. Moreover, an
optoacoustic signal will be absent in a medium that does not
absorb light. The main advantage of this method is that
information on an object under study is provided not by
optical but acoustic waves, which are rather weakly
attenuated in biological media. Therefore, the optoacoustic
method can be used for diagnostics of light absorbing
inhomogeneities in media absorbing and scattering light
[14—16], as well as for measuring the spatial distribution of
the laser radiation intensity and the optical characteristics of
turbid media [17-19]. In addition, this method is success-
fully used for in vivo tomography of tumors in real
biological tissues and objects, which is especially important
at the initial stage of the cancer development [15, 16].

The aim of this paper is to find the dependence of the
position of the maximum of the spatial distribution of the
light intensity in a medium on its optical characteristics. For
this purpose, we studied the spatial distribution of the laser
radiation intensity under the surface of a scattering medium
by three methods: numerically (using Monte Carlo simu-
lations), theoretically (solving the radiation transfer
equation), and experimentally (by the optoacoustic
method). The solution of this problem will allow us to
perform noninvasive measurements of the absorption and
extinction coefficients from the temporal profile of an
optoacoustic pulse without pressure measurements.

2. Spatial distribution of the laser radiation
intensity in a scattering medium

The calculation of the light intensity distribution in an
inhomogeneous medium is a very complicated problem,
which can be solved only using some simplifying assump-
tions. We studied media representing suspensions of
scattering particles in a homogeneous absorbing liquid
assuming that: (i) scattering particles are homogeneously
distributed in the liquid volume; (ii) the particles do not
absorb light at the laser wavelength; and (iii) the volume
concentration of particles is lower than 2 %, so that the
absorption coefficient of a suspension was assumed equal to
that of the liquid without scattering particles.

Under such assumptions, we can treat the medium as
homogeneous and describe its optical properties by macro-
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scopic parameters, namely, the absorption and scattering
coefficients u, and pg, respectively.

Experimental results [17] and Monte Carlo simulations
[20] show that the propagation of light in a turbid medium
under the condition y, < u, has a characteristic feature: the
maximum of the spatial intensity distribution is located
under the surface of a medium being irradiated at the
distance zy, ~ [* (where [I* = [u(1 — )] = 1/ul is the
mean photon free path in the medium; g is the anisotropy
parameter; and u. is the reduced scattering coefficient)
rather than on its boundary (Fig. 1). The amplitude of
this maximum can exceed the incident radiation intensity by
a factor of 4—6. At the same time, in the case of strong
scattering, the light intensity decays exponentially with the
penetration depth with the exponent p = (3ua,u;)1/ 2 (see,
for example, [18, 21]. Therefore, for u, < u,, the value
Zmaxtlerr ~ (1/10)Buait)'* = 341, /uggr. ie., it depends only
on the ratio u, /u. and is independent of the absolute values
of u, and p. and the anisotropy factor g. On the other
hand, the maximum of a light flux in the case of a
homogeneous absorbing non-scattering medium is located
on its surface. This means that the maximum will shift to the
surface with increasing the ratio u,/us , because in the limit
u, > u, radiation is absorbed, not having time to be
scattered, and z,,, =0. The question of whether the
dependence of zp. e ON W, /per Only is retained in the
range 0.05 < p, /ue < 0.35, which is typical for biological
media and tissues [9] is the main question that we solve in
this paper.
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Figure 1. Typical profile of the spatial distribution of the laser radiation
intensity in a turbid medium obtained by the Monte Carlo method.

2.1 Monte Carlo simulations

We performed the Monte Carlo simulations of the spatial
distribution of the laser radiation intensity in a scattering
medium for various values of u,,u, and g. These coeffi-
cients and the refractive indices n; and n, for transparent
and scattering media, respectively, were specified. The
values of z,, and p.y were determined from the model
profile of the spatial intensity distribution. The error of
measuring  Zzp,, was 3 %—5% (when 10° photons were
used), and for ugy it was less than 3 %. The parameters
U, ts and g were varied so that the relation 0.05 <
U/ ey < 0.35 was fulfilled. Using these data, we plotted
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Figure 2. Dependences of z, iy on the ratio w,/u e for different
anisotropy factors g obtained by the Monte Carlo method.

the dependence of zj.plerr ON i/t The aim of the
simulation was to find how this dependence changes with
increasing the ratio u, /g The relative errors of measuring
ZmaxMegr aNd ft, /Uer Were 5% and 8 %, respectively. These
dependences are presented in Fig. 2 for different values of
the anisotropy parameter g.

One can see that the value of z . pr decreases with
decreasing g when the ratio u,/p.; remains constant.
Indeed, when the ratio u,/p. is fixed, the value of
o/ 1h = 3(u, /tep)® also remains constant, while u,/u, =
(1 — g)/ul increases with decreasing g. Therefore, the
probability of absorption of photons under the medium
surface will increase. In the limit g, /p, > 1, the intensity
maximum will be located on the medium surface, and
Zmax = 0. At the same time, the curves corresponding to
g = 0.8 converge within the error of measurement of z, terr
for w /i < 0.3. Thus, Monte Carlo simulation shows that
under such conditions the value of z, i, depends only on
the ratio p,/us but not on the absolute values of p, and
Uer- These results cannot give a final answer about the
features of the laser radiation intensity distribution in a
medium because they were obtained using the Henney-—
Greenstein function, which approximately describes a real
radiation pattern. Below, we compare these results with
experimental data and the results of the approximate
solution of the radiation transfer equation.

2.2 Solution of the radiation transfer equation in the P;
and P; approximations

Consider an analytic approach. Let us assume that a
homogeneous transparent and scattering media occupy
half-spaces z <0 and z >0, respectively. If scattering
dominates over absorption (u, < ), multiple scattering
of radiation occurs in the medium. The angular radiation
spectrum inside the medium produced by an incident light
pulse with a planar wave front can be found by solving the
radiation transfer equation [22]

OL(z,s)
snT - _:utL(Za S) + Hs J4n

L(z,s")p(s,s")dQ’, (1)
where L(z, s) is the angular radiation spectrum, i.e., the
light intensity at the point z in the direction s; p(s, s') is the
scattering indicatrix; p, = p, + u is the total extinction
coefficient of the scattering medium; sn = cos0; 0 is the
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angle between the z axis and the direction of photon
propagation inside the medium; s and s’ are the unit vectors
in the propagation directions of the incident and scattered
photons, respectively; n is the unit vector directed along the
z axis; and dQ’ is the unit solid angle.

As the scattering indicatrix p(s,s’) in the case of a strong
anisotropy, the Henney— Greenstein function [23]

1 1-¢g°
!
p 5,85 ) =— (2)
HG( ) 4 (1 g2 _ 2gss/)3/2

is commonly used. The intensity of light /(z) at the point z
in a strongly scattering medium is related to the ray
intensity L(z,s) by the expression [22]

1
I(z) = EJ4K L(z,s)dQ. (3)

Therefore, by solving integro-differential equation (1), we
can calculated from (3) the intensity of light /(z) at any
point of the medium.

Let us represent the ray intensity of light L(z,s) inside
the medium as a sum of two components [22]: the coherent
L.on(z) and diffusion Lgi(z,s). Then, we obtain from
equation (1)

aLcoh (Z) _ P;
S = —pL(2), (42)
OLgif(z, s

Sn% = — i Lgit(z, 5)

+ﬂSJ Ldif(z7sl)p(s7sl)dQ,+Q(Z,S), (4b)
4n

where O(z,8) = u [, L. (2)p(s,s")dQ’ is the source func-
tion for the scattered light field. The coherent component of
the intensity L.,,(z) can be easily found by solving equation
(4a). The boundary condition of reemission for equation
(4b) gives the relation between diffuse light directed inside
the scattering medium and a fraction of diffuse light
reflected from the interface between media [8]:

J L(z =0,s)P;(sn)dQ
cos 0>0

- J Rex(—sm)L(z = 0, 5)P,(—sm)d, )
cos <0

where Rp.(sn) is the Fresnel reflection coefficient for
nonpolarised light [8] and P(sn) is the Legendre poly-
nomial of the kth order.

The diffusion component Lg;(z,s) of the light intensity
in (4b), the scattering indicatrix pyg(s, s’) and the source
function Q(z, s) can be represented as expansions in
Legendre polynomials [22, 24]

2k+l

Lyir(z, 5) (z)Py(sn), (62)

N
2k +1
puc(s,s’ Z " (6b)

=0

ngSS)7

N
005 =S 2L g (o) peom),

(6¢)
— 4n
where yi(z) and ¢,(z) are the coefficients of expansion of
functions L(z, s) and Q(z, s) in Legendre polynomials,
respectively.

The expansion coefficients ¢,(z) of the source function
can be written in the form [24]

4i(2) = ng" Iyexp (- p2), (7

where 7, is the intensity of incident laser radiation. By
substituting (6a), (6b), and (6¢) into (4b), multiplying
successively by Pj(sn) (where /= 0, 1, ... , N) and integra-
ting over a total solid angle 4m, taking into account the
orthogonality of the corresponding Legendre polynomials,
we obtain a system of independent differential equations
for the expansion coefficients y(z) of the diffusion
component of the light intensity. The kth order equation
will have the form

k dyk,1 (Z)
2k+1 dz

k+1dyg(z)
2k+1 dZ _qk(z)v

+ ey (2) + ®)

where . = u, + pu(1 — ¢“). The boundary conditions
required for the solution of this system can be found
from expression (5). By solving the system (8) and
substituting the values of y;(z) into (6a), we can sum up
the obtained series and find Lg;(z, s) and, hence, by using
(3), also find the diffusion component I4:(z) of the light
intensity in the medium.

Because it is impossible in principle to solve a system of
an infinite number of differential equations, the number of
terms in expansions (6) is truncated. The case N =1
corresponds to the diffusion approximation. In this approxi-
mation, the spatial distribution of the light intensity in a
medium is described by the expression

3

1(2)
h(z) = —= =exp(—puz) + ——
(€)= = epm) 3.

X { exp (el ) — exp [ — Hepel " (24 + 1)] } exp(—#egrz), (9)

where
4 _2 (1 +Rcff>’
3\ 1— Ry

R, is the effective coefficient of reflection of diffuse
radiation from the interface between media [24]. The first
term in (9) describes the coherent component, which rapidly
decreases with distance from the interface, and at distances
z> (2 +3)I" the light intensity is determined only by the
diffusion component of the scattered field [the second term
in (9)] because the extinction coefficient is u.y <yt in the
approximation g, < fi.

The analytic expression for the spatial distribution A(z)
of the light intensity in a medium, obtained within the
framework of the diffusion theory (N =1) in the region
0 <z < (2+3)", incorrectly describes a real distribution
(see, for example, [6, 23, 24]. For this reason, as noted in
[24], the spatial distribution of the light intensity within a
small near-surface region of a medium should be calculated
by using higher expansion orders N in (6).

Assuming that N = 3 in (6), we obtain from (8) a system
of four differential equations for the expansion coefficients
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vo(2), ..., y3(z) of the diffusion component of the ray
intensity of light in the medium

%dyéf) i (2) %dydziiz):ql(zx (10b)
%%9 +2)a(2) + %dyj—iz) = ¢2(2), (10c)
%dycf) +133(2) = ¢3(2). (10d)

The boundary conditions (5) have the form
4(=2Ry + 1)yo +8(3Ry + 1)y
+5(—12R; + 4R, + 1)y, +28(5Ry — 3R,) = 0, (1la)

(=20R5 + 12R; + 1)y + 12(5R4 — 3R,) + 5(—30Rs + 28R;

—6R;+1)y, + 2(175Rs—210R,+63R,+4)y; = 0, (11b)

where all the values of y,(z) are taken for z =0, and

/2
R, = J R (0) cos” 0sin 0.d0. (12)

0

By solving system (10) with boundary conditions (11) and
taking into account that y,(z — oco) — 0, we obtain the
spatial distribution of the light intensity in the P;
approximation:

_ Liig(2) + Loon (2)

h(z) T

= Cl exp(—oclz)

+ Crexp(—uz) + (mo + 1) exp(—p2), (13)

where I,oy(2) can be found from (4a); C,, are constants
determined from (11); m, and o, , are complicated functions
of the optical characteristics u,, f;, and g of the medium,
which are calculated by solving this system using a
computer.

In the case of the P5 approximation, a greater number of
terms y.(z) are taken into account in expansion (6a). The
general solution of the obtained system can be found in the
form

_ Lyi¢(z) + Leon(2)

h(z) I

= Cyexp(—a,z) + Cyexp(—a,z)

+ Cyexp(—&32) + (my + 1) exp(—p2), (14

where unknown constants C; 5 and parameters my; and
%3 can be found from the corresponding boundary
conditions [see expression (5)], as in the case of the P;
approximation.

Thus, the spatial distribution /(z) of the light intensity in
a medium with the known optical characteristics p,, t; and g
can be calculated by solving the radiation transfer equation
in the diffusion, P;, and Ps approximations.

3. Theoretical model of a pulsed optoacoustic
effect in a scattering medium

Under the assumptions made in Section 2, a medium
under study can be described by some ‘effective’ parameters:
the specific heat c,, the sound speed V), the thermal
expansion coefficient f§, and the temperature conductivity
x. If the relaxation time ~ 1/ (uZgy) of a thermal field in the
heated region is much longer than the laser-pulse duration
11, then the diffusion of heat during laser heating of a
medium can be neglected. Acoustic perturbation caused by
absorption of a short laser pulse (t Vo7 < 1) in a medium
can be calculated by representing the light intensity in the
form I, f(£)H(z) = E6(t)H(z), where E; is the power density
of the incident laser radiation. In this case, the time
dependence of pressure in an acoustic wave produced in
the absorbing medium has the form [13, 18].

2 _
P(r) —ﬁzﬁuan{H( o), © <0 (15)
(/p RaCH(VOT)v‘[ > 0.

Here, t =t — z/Vy; Rie = (1 — Z)/(1 + Z) is the coefficient
of reflection of the ultrasonic wave from the scattering
medium-transparent medium interface; Z is the ratio of
acoustic impedances of the absorbing and transparent
media. Therefore, the optoacoustic signal (15) represents a
compression wave followed by a dilatation (for Z > 1) or a
compression (for Z < 1) wave.

One can see from expression (15) that the leading edge of
the optoacoustic signal P(t < 0) is proportional to the
spatial distribution H(z) of the light intensity in the medium,
the time scale of variation in P and the spatial scale of
variation in H being related via the sound speed as
z = —Vyt. Upon a direct detection of optoacoustic signals
(in an absorbing medium) [14, 18], the instant of time 7 = 0
corresponds to the arrival of a signal excited on the surface
z = 0 of the medium under study to an acoustic detector. In
the case of an acoustically rigid boundary, pressure P(t) has
a local minimum at 7 = 0 (Fig. 3), which corresponds to a
local minimum of the distribution H(z) of the light intensity
in the medium at z = 0 [18]. Because the time dependence of
the leading edge P(tr < 0) of the optoacoustic signal is
determined by the spatial dependence H(z), by measuring
pressure at the leading edge of the optoacoustic signal and
normalising it to (V¢ /2¢,)1, Ey, we can calculate the spatial
distribution of the light intensity in the medium [17].
Measurements in media with different coefficients u, and
u' provide information on the properties of the distribution
H(z). In addition, the function H(z) = h(z) at distances
z > (2+3)I", and therefore [see (14), (15)]

BV§

:E

P(2) HerrEo { exp(perel ™)

(16)

The coefficients i, and p, can be calculated from pressure
at the leading edge of an optoacoustic signal detected with a
high time resolution [18]. However, one can see from
expression (16) that the value of .y in the medium can be
obtained from the approximation of the leading front of the
optoacoustic signal (Fig. 3) detected in relative units. The
position of the maximum z,,, = —Tn. Vo of the spatial
distribution of the light intensity is also determined from

—exp [ — perel " (24 + 1)] } exp(—prege2).-
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Figure 3. Typical profile of an optoacoustic signal excited in a scattering
medium with an acoustically rigid boundary. The curve is the appro-
ximation by the function P(t) ~ exp (uVo7) for < 0.

the shape of the optoacoustic signal. This allows us to plot
the dependence of z . flesr ON L, /Uerr (Which is similar to
that in Fig. 2), where all the quantities can be found
experimentally from the profile of the optoacoustic signal.

4. Experimental setup

The spatial distribution of the light intensity and the optical
characteristics of strongly scattering media were measured
using a setup with a direct detection of optoacoustic signals
[14, 18]. Optoacoustic signals were excited by 10—12-ns
pulses from a Q-switched 1.06-um Nd:YAG laser. The
pulse energy was 50—70 mJ. An optoacoustic signal excited
in the medium was detected with broadband piezoelectric
detectors made of a PVDP film of thickness 110 and 30 pm.
The detectors were absolutely calibrated [25] in ranges
0.05-8 and 0.01-30 MHz, respectively, and their low-
frequency sensitivity was 13.5+ 0.1 and 4.5+ 0.3 mV Pa~!,
respectively. To obtain the acoustically rigid boundary of
the medium, a cell was covered by a quartz plate (Z =
0.12, R,. = 0.79).

This setup is capable of exciting and detecting acoustic
pulses of duration from 200 ns to 10 ps with the pressure
amplitude of 2-3 Pa (upon signal averaging over 64
realisations). This provides the measurement of u.p in
the range from 1.5 to 100 cm™' for g, > 0.05 cm™'.

5. Media studied

For test measurements, we used a medium with known
optical properties — an aqueous suspension of polystyrene
microspheres (the radius of particles was ry = 0.38 pm and
their volume concentration was N, =1%). The values
ul =218 cm ! and g = 0.782 were calculated using the Mie
theory [26] for the known values of r, and N, and the
refractive index of polystyrene ny = 1.56 at 1.06 um. The
absorption coefficient of the initial suspension was assumed
equal to that of distilled water u, = 0.17 cm™' at 1.06 um
[27] because absorption of polystyrene at this wavelength
does mnot exceed 0.05cm~! and the concentration of
scatterers was low.

We studied suspensions of particles of titanium oxide
TiO, in water (the average size of particles was less than
1 um, N, =0.2 —1.7%) and 3.5 % fatness milk as scatter-

ing media with unknown optical properties. Because of a
low volume concentration of particles, the refractive index
and thermal parameters of the media were assumed equal to
those of water: n, = 1.33 at 1.06 um, , f = 1.82 x 107* K7,
¢, =4187 g 'K y=143x10" em®s™!, V= (1.49 £
0.01)x10°> cm s~!' [27]. We also assumed that g ~ 0.8 — 0.9.
The absorption coefficient p, was varied by adding
different amounts of black India ink (0.02—1.2 ml) to a
fixed volume of the medium (100 ml). We assumed that the
absorption coefficient changed proportionally to the Indian
ink concentration, whereas the scattering coefficient
remained unchanged. Thus, the absorption coefficient g,
of media under study was changed from 0.17 to 14.8 cm ™.
The reduced scattering coefficient u, was in the range from
18 to 52 cm™! and was measured from the absolute value of
pressure produced by an optoacoustic signal [18].

6. Experimental results

To demonstrate the possibility of the experimental study of
the properties of the distribution H(z) in a scattering
medium, i.e., of correct measurements of z,, from the
temporal profile of an optoacoustic pulse, we tested the
optoacoustic method in a medium with known optical
properties — an aqueous solution of polystyrene micro-
spheres. The absorption coefficient of the solution was
varied by adding black Indian ink of a certain concen-
tration. The parameters pgy and zg. = —VoTmax Were
measured from the temporal profile of the optoacoustic
signal (Fig. 3) up to p,/usr = 0.21. The relative error of
measurements of 7, was 5% —6% in the range 7,,, =
5 —200 ns and was determined by a finite frequency band
of piezoelectric detectors used in the experiments.

The experimental dependence of zp. e ON 1,/ Uesr 1S
shown in Fig. 4, where the dependence calculated by the
Monte Carlo method is also presented for comparison. The
relative errors of measurements of values of p,/u.s and
ZmaxHMerr Were 3 % —4 % and 6 % —7 %, respectively. One can
see that the experimental dependence coincides with the
Monte Carlo simulation within the error of measurements.
This means that both these methods yield the same results,
and we can use the optoacoustic method for measurements
in media with unknown optical properties as well.

Zmax Mefr
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0.15 -

0.10 -
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0 005 0.0 015 020 025 030 u,/p

Figure 4. Dependences of z, fier ON the ratio p, /ug for a suspension of
polystyrene spheres obtained by the Monte Carlo simulation (A) and
experimentally (@).
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Figure 5. Experimental dependences of zy,x iy ON the ratio p, /ptey for
two aqueous suspensions of TiO, particles [} = 35.5 (m) and 51.1 cm ™
(0)] and milk [u} =21.6 cm™' (A)] (a) and Monte Carlo simulations
[g=0.80 (a) and 0.95 (O)] (b). The thick curve is phenomenological
dependence (17).

Fig. 5a shows the experimental dependence of z,, sy
on p,/ug for media with fixed pl: milk (u; = 21.6 cm™)
and two suspensions of TiO, with different concentrations
(1t =35.5 and 51.5 cm™'). For comparison, Fig. 5b shows
the Monte Carlo simulations for g =0.8 and 0.95. The
relative errors of measurements of i, /u.g and zp,, fe Were
3% —4% and 6 % —7 %, respectively. One can see that the
experimental data obtained in different media with different
reduced scattering coefficients u, coincide with each other
and the Monte Carlo simulations within the error of
measurements. Thus, the experimental data confirm the
prediction of the Monte Carlo simulation (see Fig. 2) that
the quantity z., i 1s @ function of the ratio w, /p. and is
independent of the absolute values of x, and ¢ for g > 0.8.
This allows us to approximate the experimental points, for
example, by the function

Y5 = 0.276 |1 — exp <— 13.42ﬁ> ,
Hefr

(17

which is shown by thick curves in Figs 5a, b. Note that the
values of p.r and z,,, are determined from the leading edge
P(t < 0) of the optoacoustic signal.

The experimental study of the spatial distribution of the
laser radiation intensity in strongly scattering media and
Monte Carlo simulations showed that the value of u, can be

obtained from the experimental values of . and z,,, using
the universal dependence
wy = —0.074uer In(1 — 3.6220 Megr) - (18)

Then, we can calculate the value of the reduced scattering
coefficient from the expression u. = ﬂesz/3ua.

7. Calculations by solving the radiation transfer
equation

We have shown in Section 2.2 that the spatial distribution
H(z) of the light intensity in a scattering medium can be
calculated in the diffusion, P; and Ps approximations if the
optical characteristics of the medium are specified. The
solution obtained in the diffusion approximation gives
Zmax = {7, which is incorrect because the diffusion approxi-
mation itself is valid only at distances z > (2 =+ 3)I* [21, 22].
The dependences of z. s ON W, /e Obtained in the P
and Ps approximations for the anisotropy factors g =
0.80 —0.95 are presented in Fig. 6. For comparison,
phenomenological dependence (17) is also shown in this
figure.

One can see from Fig. 6 that the dependences of z,,,, ftery
on the ratio p,/u.y strongly differ from the phenomeno-
logical dependence (17) for p, /tter > 0.12 and w, /ptegs > 0.15
for the P; and Ps approximations, respectively. This
discrepancy can be caused by several reasons. First, as
1, increases, the maximum of the light intensity in scattering
media under study shifts to their surface and gets into the
region where even six terms in expansion (6a) are not suffi-
cient for the adequate description of the angular spectrum of
light in the medium. Our results show that the regions of
applicability of the P; and Ps approximations can be
estimated as z > (0.6 + 0.7)/" and z > (0.4 + 0.5)/" , respec-
tively. To describe correctly the spatial distribution H(z) of
the light intensity at smaller distances from the surface of
the medium under study, it is necessary to use higher
expansion orders in (6).

Zmax Heff -

0.30

0.25

0.20

0.15

0.10

0.05

L‘ 1 1 1 1 1 1 1
0 005 010 0I5 020 025 030 u/pur

Figure 6. Comparison of phenomenological dependence (17) (thick
curve) with the results obtained in the P; (open symbols) and Ps (dark
symbols) approximations for g =0.80 (A, A), 0.90 (T, m) and 0.95
(0, @).

The second source of errors in the analytic approach is
the use of the Henney — Greenstein function (2) in the form
(6b). Note that it is very difficult to estimate the influence of
this factor on the accuracy of description of the function
H(z), and this question should be probably studied in a
separate paper. It is clear, however, that the accuracy of
description of H(z) will improve with increasing approxi-
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mation order, and the region in which the applied approxi- 17

mation correctly describes the function H(z) will increase.

[mE18.

8. Conclusions

19.

We have studied the spatial distribution of the laser

radiation intensity in model scattering media by the  20.
Monte Carlo method, by solving the radiation transfer 2L

equation, and by the optoacoustic method.
We have investigated the dependence zp,, ter(iy / tefr) DY

the Monte Carlo method for p,/uer < 0.32 and different 55

anisotropy factors g and have found that for g > 0.8 the

dependences coincide with each other within the calculation  24.

error. 25.
We have found by the optoacoustic method that the
dependence zp. pesr(iy/Legr) for model scattering media ;2

(with the anisotropy factor g > 0.8) for u,/p; < 0.35 is
determined only by the ratio u,/p.r and is independent of
the absolute values of u, and py, i.e., it has a universal
form. The optical characteristics g, and u% of homoge-
neously scattering condensed media can be determined,
using this dependence, from the temporal profile of an
optoacoustic signal detected in relative units.

We have tested the approximate analytic method for
solving the radiation transfer equation in a strongly scatter-
ing medium. The dependences zp, ter(iy / Lefr) Obtained in
the Py and Ps approximations coincide for p,/py < 0.12
and u,/per < 0.15 respectively, and g = 0.80 — 0.95 with
optoacoustic measurements and Monte Carlo simulations
within the error of 5% —7 %.
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