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Effect of the intensity modulation on the operation
of an adaptive system with an optical feedback

P.V. Ivanov, A.V. Koryabin, V.I. Shmalhauzen

Abstract. The effect of the intensity modulation on the
operation of an adaptive system with a shearing interfero-
meter in an optical feedback loop is studied numerically. It is
shown that intensity fluctuations at the system input
deteriorate the quality of compensation of phase fluctuations.
The dependences of the residual compensation error on the
statistical characteristics of the radiation phase and intensity
fluctuations at the system input are obtained.
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1. Introduction

The operation of adaptive systems with an optical feedback
is based on the transformation of optical distortions in the
intensity distribution of light, which is used to control a
liquid-crystal (LC) phase modulator [1]. A control light
beam was formed in a feedback loop with the help of an
interferometer with a reference beam [2], a shearing
interferometer [3, 4], the effect of phase visualisation
upon diffraction [5], as well as a phase knife [6]. It was
assumed in studies of these systems that the light-beam
intensity does not exhibit fluctuations. However, this
condition is not often fulfilled in practice, and the intensity
distribution of light controlling an LC modulator depends
not only on phase distortions of the light beam but also on
the intensity modulation at the system input. In this paper,
we study the influence of intensity fluctuation on the
operation of an adaptive system with a shearing interfero-
meter in an optical feedback loop.

2. Analysis of the system operation

Consider the principle of operation of an adaptive system
with an optical feedback loop, whose general scheme is
shown in Fig. 1.

Let a light beam with phase distortions F(x,y,?) be
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incident on a system input. The light passes through a
semiconductor mirror ( /), an LC layer of a modulator (2),
is reflected from the inner mirror of the modulator and is
directed to the optical feedback loop with the help of the
mirror (/). Phase distortions in the optical feedback loop
are transformed with a shearing interferometer (4) to the
control intensity distribution I(x, y, ), which is transferred
to a photosensitive layer of the modulator with the help of a
mirror (5). This is accompanied by a change in the
refractive index of the LC layer of the modulator, and
an additional correcting phase shift is introduced to the
system, which is described by the equation of the diffusion
type [2]
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where T is the time constant of the modulator; x and y are
the transverse coordinates; /gy is the diffusion length
characterising the spatial resolution of the LC modulator;
and G(I) is a statistical characteristic of the modulator.

The initial light beam with phase distortions F(x, y, t)
acquires the total phase H(x,y,t) = F(x,y,t)+ U(x,y,1)
after reflection from the LC modulator. This phase is
analysed at the system output after a semitransparent mirror
(3). R

When the control light intensity 7 is lower than the
saturation intensity 7, of the LC modulator, the expression
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Figure 1. Principal scheme of an adaptive system with a shearing
interferometer in an optical feedback loop; (7, 3, 5) mirrors; (2) LC
modulator; (4) shearing interferometer.
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is valid, where k=0G/0I; C| is a constant parameter
determined by the threshold intensity of the LC modulator.
When a light beam with a uniform intensity distribution
I, and phase modulation H(x, y, t) is incident on a shearing
interferometer, the light intensity distribution at the inter-
ferometer output is described by the expression [3]

I~ L1 + vy cos(AH + 4,)],
(©)
AH(x,y,1) = H(x + S,y,1) = H(x, y, 1)

where y is a contrast of the interference pattern; 4, is the
average phase shift determining the position of a working
point of the interferometer; S is the transfer displacement of
beams in the interferometer. We assume hereafter that
y=1.

When the total phase H(x, y, t) is small, the system
operation can be analysed in a linear approximation
assuming that

cos(AH + 4y) = cos 4y + AH sin 4. 4

In this approximation, the stationary coefficient of sup-
pression of harmonic phase distortions

F(IJ Jr U(JJ
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(U, and F,, are the amplitudes of harmonics) is described
by the expression [3]

D
V= 2 127
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D=1+ +2)), (5)

Ko = —k[() sin Ao,

where Q, and Q, are spatial frequencies along axes x and y,
respectively.

The suppression of phase perturbations corresponds to
the case of V' < 1. This inequality is fulfilled simultaneously
for all spatial frequencies (the condition of the system
stability), when the feedback coefficient K, > 0 (the sign
of K, depends on the choice of the operating point 4).

3. Influence of the intensity modulation near the
aperture boundary

In practice, the beam width can exceed an aperture of the
LC modulator of size 4 or can be comparable with it. In
this case, a region appears near the aperture edge of the
shearing interferometer where the light intensity undergoes
a jump.

Let us assume that a beam with a plane wavefront and a
uniform intensity distribution 7, with a diameter that
exceeds the aperture size arrives at the system input. In

this case, the control intensity distribution I(x,y,f) at the
system output is described by the relation

1(x,y,1)
| I{1 + cos][AU(x,y,t) + 4y]} for 0 < x < 4 — S, ©)
1 5L forA-S<x< A,

AU(x,y,t) = U(x + S, p,1) — U(x,»,1)

where I, is the intensity of light reflected from the rear
surface of the interferometer. One can see that near the
boundary of the LC corrector x = A4, a region of width S is
formed, in which the interfering beams are not crossed and
phase distortions are not visualised, and the average light
intensity differs from that inside the aperture. Upon
transition through the boundary x =4 — S, the light
intensity undergoes a jump equal to I, — I,.

We studied the influence of this region on the system
operation by solving numerically equation (1) using an
implicit scheme. The number of mesh points was chosen
so that a step over spatial coordinates was substantially
smaller than the diffusion length /;;;. We used the boundary
conditions of the second kind

oU(0,y,1) _dU(4,y,1)
= = 07
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0
oU(x,0,¢) 0U(x,4,1)
= =0.
oy oy

The real behaviour of a photoinduced charge at the
boundary can be more complicated, and it depends on
the fabrication technology of the LC corrector. Alternati-
vely, we can choose, for example, the zero boundary
conditions of the first kind

U0, ) = U4, y,1) = U(x,0,0) = Ulx, 4,1) = 0. (8)

The numerical experiment showed that the solutions of
equation (1) with boundary conditions (7) and (8) differ
from each other only near the boundaries. At a distance
from the boundary equal to several Iy their difference
becomes insignificant.

Fig. 2 shows the phase profile calculated upon the
feedback closure. One can see that the low-intensity region
near the LC corrector boundary x = 4 causes the phase
modulation, which propagates to the opposite edge of the
modulator. An increase in the feedback coefficient K, and in
the displacement S results in a stronger modulation and in
the modulation movement to the aperture centre. When the
displacement S exceeds the diffusion length, the phase
profile represents a step function decaying to the aperture
centre (Fig. 2b). In the case of lower displacements, the
phase profile is smoothed due to diffusion of a charge in a
photoconducting layer of the transparency (Fig. 2a).

The appearance of such a strong phase modulation in
the system is extremely undesirable. This effect can be
reduced by placing, for example, a filter with a selected
transmission coefficient to the region of the beam overlap.

Consider the dependence of phase distortions at the
output of the system on the ratio of intensities in two
regions. We will estimate the phase modulation from the
quadratic error
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Figure 2. Profiles of phase modulation caused by the intensity jump near
the edge of the LC corrector x = 4 for S/4 = 0.01 (a) and 0.05 (b) for
various feedback coefficients K, and /y;/A4 = 0.002.
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where U(x, y)Ais the aperture-averaged value. Fig. 3 shows
the dependence of the error ¢7; on the intensity ratio I /1.
One can see that o7, decreases when this ratio approaches
unity. When the intensity ratio is equal to unity, the phase
error a5 is zero in the absence of external phase distortions.
The phase modulation, which appears in the system due to
the presence of the boundary region, depends on the
feedback coefficient K,,. For example, for K, = 3, the phase
modulation with the root-mean-square error o% = 0.05

appears if I,/I, = 0.6, and when K; =5, it appears when
]2/[0 - 08

4. Influence of a small-scale intensity modulation
on the system operation

A beam being corrected can exhibit small-scale intensity
fluctuations, which can appear, for example, due to
diffraction from small-scale phase inhomogeneities. Let
us study the effect of such fluctuations on the system
operation.

Let us represent the intensity distribution ,(x, y) in the
incident beam in the form

Ib(xay) :Ib[l +ib(xay)]7 (10)
where I, is the average light intensity and iy(x,y) is the
modulation coefficient. In this case, the intensity distribu-
tion at the output of a shearing interferometer will be
determined by the expression

Izé[lb(x,y) + Ly (x +S,)]

} cos(AH + Ao)}. (11)

X [[b(x7y)]b(x+s7y)}l/2
{1 —&—2[ Iy(x,y) + I,(x + S,7)

Let us assume that a beam with a plane wavefront
[F(x,y) = 0] and random intensity fluctuations arrives at the
system input. We will characterise a random intensity field
by the correlation radius r,, and the root-mean-square
dispersion a;,,. Intensity fluctuations will cause phase dis-
tortions U(x, y) of the initially plane wavefront of the
incident beam. Fig. 4 shows the phase error o7, averaged
over 300 random realisations of the intensity as a function
of the ratio ry, /A. The random intensity field was simulated
with the help of no less than one hundred Gaussians with a
random distribution over the aperture. The correlation
radius of a random field in this model is determined by
the width of Gaussians, while the amplitude of Gaussians
determines the dispersion.

One can see from Fig. 4 that the root-mean-square phase
error increases with increasing the correlation radius of
intensity fluctuations. Such a behaviour of ¢7, can be
explained as follows. Because the incident beam has a plane
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Figure 3. Dependences of the root-mean-square error azU on the intensity
ratio I, /1, for different K, l4;r/A = 0.002 and S/A4 = 0.02.
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Figure 4. Dependences of the root-mean-square error O'%r on the

normalised correlation radius r, /A4 for different root-mean-square
intensity dispersions oy, Ky = 5, lgir/A = 0.005 and S/4 = 0.02.
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wavefront, the intensity modulation in the feedback loop at
the first instant of time will be caused only by fluctuations of
the beam intensity. The beam intensity fluctuations will
produce the phase modulation in the photosensitive layer of
the LC transparency, the characteristic size of the phase
modulation being coincident with the characteristic scale of
intensity variations. These phase distortions are visualised
during the second passage in the feedback loop, and the
beam intensity is additionally modulated, resulting in a
partial compensation of phase distortions. The quality of
this compensation depends on the characteristic size of
phase inhomogeneities [3]. For this reason, the phase error
o7, increases with increasing the correlation radius ry,, the
root-mean-square dispersion oy, of the intensity at the
system input being invariable.

Therefore, the smaller the characteristic spatial size of
intensity fluctuations, the weaker they affect the system
operation. If ry < Iy then the system is insensitive to
fluctuations at all because they are smoothed due to dif-
fusion. As r;, increases, the phase error gradually saturates.
This is explained by the fact that the phase distortions
caused by intensity fluctuations are almost not suppressed,
and, hence, the residual error o7, depends only on the root-
mean-square dispersion a;,; of intensity fluctuations.

Consider now a more interesting case, when a beam with
random modulations of the phase F(x, y) and intensity
I(x, y) arrives at the system input. In this case, it is
convenient to estimate the quality of compensation from
the residual relative compensation error

JIH(x, ) — H(x, p)]dxdy

2_ 4 7 12

" [RG) ~ Fx)Pasdy 2
where H(x, y) u F(x, y) are the aperture-averaged values.
For the fixed parameters of the system, the error 5>
depends on the four statistical characteristics of random
fields: 6, rp, Ojy, Fin- The phase distribution H(x, y) at the
system output is determined, as before, by a sum of the
phase at the system input and the phase introduced by the
LC modulator, i.e., H(x, y) = F(x, y) + U(x, y). However,
the phase function depends now not only on the intensity
modulation related to the visualisation of phase distortions
F(x, y) but also on the external intensity fluctuations
Iyiv(x, y). Fig. 5 shows the dependence of the relative
root-mean-square compensation error ;12 on the root-mean-
square intensity dispersion o;,;. One can see that the error
n? increases with increasing o;,. Note that the larger is the
characteristic spatial size of initial beam intensity fluctua-
tions, the stronger they deteriorate the system operation.

Phase distortions in the system are compensated if
n* < 1; otherwise, they are enhanced. In the absence of
intensity fluctuations in a beam being corrected, when phase
fluctuations are sufficiently weak, the relative error n>
should not depend on the phase amplitude at the system
input (in this case, a linear approximation is valid). If the
beam intensity is modulated, then at small phase fluctua-
tions at the system input, the wavefront distortions at the
system output will be mainly determined by this intensity
modulation. Therefore, we can expect that in the presence of
intensity fluctuations, a decrease in the phase amplitude will
lead to an increase in the relative error 7. This increase does
not mean an increase in the phase dispersion at the system
output but is caused by the reduction of the dominator in
expression (12). Fig. 6a shows the dependence of the relative
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Figure 5. Dependences of the relative residual error 52 of compensation
for random phase distortions on oy, for different normalised correlation
radii ry, /A for statistical characteristics of phase fluctuations
rp/A=S/A4=0.02 and oy = 0.25 (rp and of are the correlation radius
and the root-mean-square dispersion of phase distortions).
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Figure 6. Dependence of the relative residual compensation error 172 (a)
and root-mean-square phase error o (b) on the root-mean-square
dispersion ¢ of phase fluctuations at the system input for different
rim/A,rF/A = S/A = 0~027‘7im = 0.035,Kg =35.

residual root-mean-square error 7> on the root-mean-square
dispersion o of phase distortions in the presence of
intensity fluctuations. Indeed, the relative error increases
with decreasing phase fluctuation at the system input. One
can see from Fig. 6b that the phase dispersion o7 at the
system output (when o — 0) tends to the value close to
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zero, which is determined by intensity fluctuations (which
are weak in this case). At sufficiently large phase distortions,
the ‘useful’ intensity modulation produced due to visuali-
sation of these distortions exceeds intensity fluctuations,
which explains a decrease in the relative error 5> with
increasing . An increase in 7 for o5 > 1 is explained by
the restriction imposed on the magnitude of phase dis-
tortions, which can be compensated by the system.

5. Conclusions

We have shown in this paper that, when broad light beams
are used, a region of low intensity is formed at the edge of
the LC corrector, whose width is equal to the transverse
displacement S of beams in the interferometer. Our
numerical study has shown that a jump in the intensity
at the boundary of this region causes phase modulation,
which propagates to the aperture centre. This modulation
increases with increasing the intensity jump, the feedback
coefficient K|, and the displacement S.

We have simulated numerically the influence of the
input-beam intensity fluctuations on the quality of com-
pensation of phase distortions and have shown that this
influence decreases with decreasing the correlation radius r;,;
of fluctuations.

The relative residual error of compensation depends on
the relation between the phase fluctuation and intensity. In
the case of small phase distortions, weak intensity fluctua-
tions result in a strong increase in the relative error #>.
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