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Visualisation of details of a complicated inner structure of model
objects by the method of diffusion optical tomography

E.V. Tret’yakov, V.V. Shuvalov, 1.V. Shutov

Abstract. An approximate algorithm is tested for solving the
problem of diffusion optical tomography in experiments on
the visualisation of details of the inner structure of strongly
scattering model objects containing scattering and semi-
transparent inclusions, as well as absorbing inclusions located
inside other optical inhomogeneities. The stability of the
algorithm to errors is demonstrated, which allows its use for a
rapid (2—3 min) image reconstruction of the details of objects
with a complicated inner structure.

Keywords: optical tomography, light propagation in a scattering
medium, image visualisation.

1. Diffusion optical tomography

In optical tomography (OT), which is a new trend in
diagnostics rapidly developing in the last years, an object is
illuminated many times (at different positions of a radiation
source i and a detector j) by near-IR radiation. The para-
meters of transmitted radiation (the radiation power, the
pulse energy and shape, the pulse delay with respect to the
instant of its incidence on the object, etc.) are measured for
all combinations of 7 and j. As a result, the matrix {®; ;} of
the output data is obtained. The number of matrix elements
is determined by the number of positions of the radiation
source and detector. This matrix is used for the recon-
struction of the inner structure of the object, i.e., the so-
called inverse problem is solved. The absorption (u,) and
scattering (u.) coefficients, the anisotropy parameter y of
the scattering indicatrix and some other quantities play the
role of physical parameters whose spatial distributions are
being reconstructed at this stage.

Even in the case of multiple small-angle scattering [1, 2],
a contribution of photons propagating from the point i to
the point j (hereafter, the i, j measurement) almost along
linear trajectories can be separated from a total output
radiation flux [3, 4]. In this case, the inverse problem can be
solved by using algorithms that were developed for projec-
tion X-ray tomography [5, 6]. Most OT methods (for
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example, time-of-flight [7—9], coherent [10—12], and fre-
quency-domain [13—15] OT) differ in the ways of such
separation. A peculiarity of diffusion OT (DOT) is that it
uses the total output radiation flux. As a result, the diag-
nostics of much larger objects can be performed, other
conditions being the same, which is a main advantage of this
method. However, there also exists a serious problem. Pho-
tons detected in the 7, j measurements are propagating along
random trajectories, and therefore should be described
statistically with the help of the 3D probability distributions
fi.j(r) for the propagation of photons through different
(coordinate r) points in the object. However, because the
width of these distributions is finite, DOT allows the
reconstruction of the inner structure of an object [16—21].

2. Approximate algorithm
for solving the DOT problem

A fast approximate algorithm for solving the DOT problem
described in papers [22—24] assumes that A@H (D

@, ;, the difference of output radiation fluxes (hereafter
shadow) in the absence of opaque inhomogeneities (inclu-
sions, <D ) and in the presence of them (@, ;), is caused by
the appearance of inhomogeneities. It is assumed that the
probability of ﬁndmg inclusions from each i, j measurement
is P,.(l-) O(Aq’l: , and the spat1a1 drstrlbutlon of P(/) is
defined as Pi; }(r) x Pl j fl N (r) where fl y (r) is the distri-
bution of the probablhty of passing of photons detected in
the i, j measurement through the object without inclusions
(M s = cONSY).

The reconstructed inner structure is described by the
distribution Pz (r) of the probability of finding inclusions at
dlfferent omts of the object, which is proportional to
I y P f (r) according to the results of all the i, ]measure-
ments. A prrory information on the functions f (r) and
q§<1> required for the algorithm is calculated approx1mate1y
F or this purpose, the only calculated ‘standard’ distribution
f 7 (r) for an object without inclusions is approximated by a
smooth function of r with the Gaussian cross sections,
which is success1vely transformed [scaled, ‘bent’, and nor-
malised; fL (r) f (r) f (r) taking into account a
change in the distance between a radiation source and a
detector (L — L;;) and their specific positions i and j].
Upon bendmg, the generating (axial) lines of the distribu-
tions f . (r) are described by parabolas, and the calculation
time of a complete data array of 1024 (0 < i,j < 31) such
dlstrrbutlons is less than 30 s. The elements of the matrix
{(P } also are calculated approximately using empirical
propertles described in paper [22].
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The testing of this algorithm showed [23] that, in the
presence of several opaque inclusions of different sizes in an
object, only the largest details of the structure could be
reconstructed. This problem can be solved by using the
second iteration in the algorithm, in which a priory infor-
mation is calculated taking into account the details of the
inner structure reconstructed dunn the first iteration
[23, 24]. It is assumed that A(D =9, ) — the differ-
ence of the radiation fluxes in the presence of reconstructed
details, information on them being contained in pZ (;) and
the fluxes obtained experimentally is caused by the recon-
struction errors, and the total probability of finding the
error in the i, j measurement is P( ) O(A@ . It is also
assumed that the spatial d1str1but10n of P 1s deterrnrned
b?/ the 3D probability density p (r) o P{ f (;) where

(J) is the distribution of the probablllty of passing of
photons detected in the 7, j measurement, through an object
with a structure defined by the function l’z (r) The inner-
structure details reconstructed after the second iteration are
descrlbed by the pI’Obdblllty density Pz (r) which is defined
as pz (r) x [ y Pl /fl] (r) according to the results of all the
i, j measurements.

The requ1red a priori information on the functions f (r)
and <1>(> is also calculated approximately by using the
above- described successive transformations of the ‘standard’
distribution /" () and ‘cutting out’ (which is possible due to
a 11near1ty of the propagatlon problem) the absorbed part
Pz (;) of the photon flux @( ]) by inclusions reconstructed
after the first iteration [23, 24] The resulting i 1nner structure
is described by the superposition py(r) = Pz (r)+ pé ),
which can be calculated in the case of two absorbing
inclusions by using the total data array of 1024 (0 < i, j
< 31) distributions /‘Z (r) and fluxes dﬁ() for less than
2 min. If necessary, next iterations can be used in the
algorithm described.

3. Formulation of the problem

The applicability of the above-described procedure for the
reconstruction of the inner structure of strongly scattering
objects by the DOT method in several simplest experi-
mental situations with opaque inclusions was demonstrated
in papers [22—24]. Below, we describe the application of
this algorithm in experiments on the visualisation of the
inner structure of strongly scattering objects with more
complicated inclusions (strongly scattering and semitrans-
parent inclusions, and systems in which a part of inclusions
is either indiscernible by the DOT method or located inside
other semitransparent optical inhomogeneities). We will
show that, after some corrections, the algorithm provides
the reconstruction by the DOT method of the inner
structure of strongly scattering objects containing absorbing
and scattering inclusions.

4. Experimental

Radiation from a 30-mW, 820-nm cw diode laser was
delivered through one of the 31 fibres of an optical ‘switch’
to an object under study, which represented a black
cylindrical vessel of diameter 140 mm and height
170 mm. Optical fibres (31 input fibres and one output
fibre) were glued to the side walls of the vessel at its half-
height. A two-component (aqueous fat emulsion and ink)
strongly scattering and weakly absorbing liquid (u} ~

1.4 mm™" and u, = 0.005 mm~') was poured into the

vessel and inclusions were added. The inclusions were
black opaque cylinders of diameter 9 mm, a Teflon rod of
diameter 8 mm, and chicken bones of diameters 8 and
10 mm. In addition, we could place into the vessel a ball of
thin metal wire (the wire diameter was smaller than the
spatial resolution) of diameter 110 mm, which simulated a
capillary system, or a thin-wall (the wall thickness was
1 mm) hollow strongly scattering plastic cylinder of dia-
meter 81 mm, which simulated a scull. The output radiation
was delivered through a fibre to a Hamamatsu R-636-10
photomultiplier operating in the photon counting mode.
Because the position of the output fibre was fixed, the
positions of inclusions were changed appropriately during
the object scanning. For this purpose, the inclusions were
mounted on a movable cover of the vessel, which was
rotated around its axis during scanning. The experimental
data were accumulated, controlled, and processed with a
PC. As a result of measurements, we obtained the 31 x 32
matrix {®;;} of the input data.

5. Experimental results

All the measurements were performed using the same
procedure. First we measured the dependence of the
photocounting rate <15() on the position of the point of
radiation coupling (1 <7 < 31) in the vessel with a strongly
scattering and weakly absorbing liquid in the absence of
inclusions for an arbitrary position of the cover (j = jj).
Taking into account the axial symmetry of the object, all
the other elements of the matrix {115 } (1 <j<32) were
found by the cyclical permutation of the elements of a
column @( 3 Then, a complete scan (1 <i<31,1<;<32)
of the ObJCCt with inclusions was performed, and the matrix
{®;;} was found. The elements of the matrix {A@ '} were
calculated from these two measurements and then were
used as the input data in the visualisation algorithm des-
cribed above.

When the inclusions had a complicated structure, the
second measurement was divided into two—three stages.
Along with the measurements of the matrix elements {®; ;}
for the object with a ‘complete’ set of inclusions, the dis-
tributions of photocounting rates were also determined for
‘incomplete’ sets. For example, when two opaque inclusions
were placed inside the scattering plastic cylinder in the
object, the measurements were performed both for the
object with two inclusions without the cylinder and for
the object with the cylinder but without inclusions. The
results of these measurements were used in the second
iteration or for testing the applicability of the above-
described algorlthm for a fast approximate calculation of
the matrix {(D, ,} in the presence of semitransparent or
scattering 1nclus10ns or directly as a priori information on
the matrix {(D” 1.

As mentioned above, upon a fast approx1mate solution
of the DOT problem (calculation of (15 ) for objects
containing opaque inclusions, a part of the photon flux
<I><i propagating through points in the object occupied by
inclusions is completely ‘cut out’ from the corresponding
cross sections of the distributions /( >(r), In the case of
semitransparent inclusions (absorbing a part of propagating
photons) this part of the photon flux can be partially ‘cut
out’ from f; M (r) due to the linearity of the propagation
problem, by 1ntroducmg an additional weight factor — the
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transmission coefficient of an inclusion. Fig. 1 shows the
first- and second-iteration reconstructions of the inner
structure of an object with two inclusions — chicken bones
of diameters 10 and 8 mm, which were obtained with the
help of the modified algorithm described above. The geo-
metrical positions and sizes of the reconstructed images of
the inclusions very accurately correspond to the real
geometry of the object.
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Figure 1. Visualisation of two semitransparent inclusions (chicken bones
of diameters 10 and 8 mm) after the first (a) and second (b) iterations,
and the visualisation of a scattering inclusion (Teflon rod of diameter
8 mm) for two experimental geometries (c, d). Here and in other figures,
white circles are the real positions of inclusions and the number of the
figure corresponds to the fibre number on the model object.

The inner structure of objects containing strongly
scattering inclusions can be reconstructed in the same
way. The matter is that the photocounting rate in the
‘shadow’ region (a photodetector is placed behind a
scattering inclusion) will be also lower in this case than
for an object without inclusions. However, because now the
inclusion only scatters photons without absorbing, a part of
these ‘lacking’ photons will be still detected, although
beyond the ‘shadow’ region. This means that, unlike the
case of an object with a partially absorbing inclusion
considered above, the photocounting rate for other (side)
positions of the detector should increase. In the case of
strong scattering (to a large solid angle), an increase in the
flux of photons detected in side detector positions will be
rather small to be neglected in the following data processing.
Therefore, although the geometrical position and size of the
image of a strongly scattering inclusion (a Teflon rod of
diameter 8 mm) (Figs 1c, d) reconstructed with the help of
the above-described algorithm almost exactly coincide with
the geometry of the real object, the image itself is recon-
structed so that as if the inclusion is partially absorbing.

Experiments with a more complicated system of inclu-
sions proved the versatility and stability of the approximate
algorithm described above. Figs 2 and 3 illustrate the
arrangement of two opaque inclusions of diameter 9 mm

in an object and the result of the successive reconstruction
(the first and second iterations) of the inner structure of the
object in the absence (Fig. 2) and in the presence (Fig. 3) of
a capillary system (a ball of thin wire) indiscernible in DOT.
One can see that the position and size of the inclusion are
reconstructed after the first iteration with errors (Figs 2b
and 3b). Therefore, the size and position of this inclusion
were slightly changed during the second iteration: the
diameter and the distance from the axis were 9 and
30 mm, respectively (Figs 2¢, 3c) and 12 and 20 mm,
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Figure 2. Geometry of the experiment (a) and visualisation of two
opaque inclusions of diameter 9 mm after the first (b) and second (c, d)
iterations taking into account the results of the first iteration.
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Figure 3. Geometry of the experiment (a) and visualisation of two
opaque inclusions of diameter 9 mm in the model with a capillary system
after the first (b) and second (c, d) iterations for two positions and sizes
of the inclusion reconstructed after the first iteration.
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respectively (Figs 2d, 3d). The experiment showed that the
reconstruction algorithm is weakly sensitive to errors
introduced at the first iteration, and the image of the
second inclusion is reconstructed almost exactly after the
second iteration. One can easily see that an absorbing
capillary system indiscernible in DOT and placed inside
the object (Fig. 3) does not prevent the accurate recon-
struction of images of opaque inclusions.

As in the experiment with a Teflon rod described above,
the image of a strongly scattering hollow cylinder of
diameter 81 mm was reconstructed by the algorithm as a
weakly absorbing inclusion of the corresponding size
(Fig. 4a). Moreover, the inner structure of a model object
with a scattering cylinder and an opaque inclusion of
diameter 9 mm was accurately reconstructed already after
the first iteration (Fig. 4b). In this case, the second iteration
of the algorithm, which takes into account cutting out a part
of the detected photon flux by a semitransparent (the
transmission coefficient 0.8) inclusion of diameter 81 mm
(Fig. 4c) or uses the input matrix {Ad?g)} representing the
difference of two real matrices obtained in experiments in
the absence of a strongly absorbing inclusion and in its
presence, accurately reconstructs the object image.
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Figure 4. Visualisation of a hollow scattering cylinder of diameter 81 mm
after the first iteration in the absence (a) and presence (b) of an opaque
inclusion of diameter 9 m; the same for the input matrix (c) representing
the difference of matrices for cases (a) and (b), as well as the second
iteration (d) with ‘cutting out’ of photons by a semitransparent inclusion
of diameter 81 mm with the transmission coefficient 0.8.

6. Conclusions

We have tested a fast approximate algorithm for the DOT
reconstruction of the inner structure of strongly scattering
model objects with inclusions of different types (strongly
scattering and semitransparent inclusions, and inclusions
that are either indiscernible in DOT or are located inside
other optical inhomogeneities) and have shown that this
algorithm, modified in an appropriate way, is not only

18.

23,

stable to errors but also allows the reconstruction of the
inner structure of objects with semitransparent and strongly
scattering inclusions. The errors appearing at the first
iteration of the algorithm due to its nonlinearity can be
evidently corrected with the help of a similar third iteration
performed taking into account the inner structure described
by the function pz2 (r) reconstructed after the second
iteration. These procedures are performed in a short
time. It is important from the practical point of view
that we used in all experiments low-cost, cw, low-power (up
to 30 mW) diode lasers emitting in the near-IR region.
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