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Multiwavelength pulse transmission
in an optical fibre — amplifier system

N.-C. Panoiu, 1.V. Mel'nikov, D. Mihalache, C. Etrich, F. Lederer

Abstract. The structure and dynamics of solitary waves
created in the interaction of multiwavelength pulses in a
single-mode optical fibre with amplification, filtering, and
amplitude modulation is analysed. It is shown that there is a
critical wavelength separation between channels above which
wavelength-division multiplexing with solitons is feasible and
that this separation increases with the number of channels.

Keywords: soliton, fibre amplifier, wavelength-division multiple-
Xxing.

1. Introduction

In the last decade, considerable progress has been achieved
in experiments on fibreoptic long-distance soliton data
transmission with wavelength-division multiplexing (WDM)
[1,2]. When compared to conventional single-channel
soliton systems, WDM offers the potential for a conside-
rable increase in the total capacity of soliton-based
communication devices. However, the use of WDM raises
a number of issues of both fundamental and practical
importance. First, the intrinsic Kerr nonlinearity of silica
that is used to balance the dispersion also causes interaction
among neighboring solitons. This interaction exists even if
all external perturbative factors are removed, i.e., in
physical situations when solitons are supposed to propagate
freely, and limits the bit rate of a soliton-based transmission
system [3—6]. Moreover, due to the periodic distribution of
amplifiers, a resonant instability created by nonlinear terms
can seriously degrade the signal. In WDM soliton systems,
there can also be serious timing displacement effects due to
inelastic soliton collisons in the presence of amplifiers which
induce permanent velocity and carrier frequency shift of the
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solitons [7—10]. Therefore, in order to be able to reduce
such deterimental effects, it is important to understand the
interaction of superimposed solitons which propagate at
different wavelengths through a communication line in the
presence of perturbations such as fibre amplifiers, filters,
ete.

In this article, we present a comprehensive description of
the structure of the optical field generated by the super-
position of soliton-like optical pulses propagating in
different channels. The article is organised as follows. In
Section2, we analyse the structure of the optical field
resulting from the general superposition of two soliton-
like optical pulses propagating in different channels. Then,
in Section 3, by using the adiabatic perturbative approach,
we describe the propagation of the emerging two-soliton
solutions in the presence of external perturbations relevant
for optical communication systems. The more general case
of the superposition of N soliton-like pulses is discussed in
Section4. Finally, in the last section, the results are
summarised and discussed.

2. Optical output from a two-soliton
superposition

In this section we study the structure of the optical field
emerging from a superposition of two soliton-like optical
pulses with different frequencies. We begin by considering
first two particular cases, namely, the two input pulses are
in-phase or out-of-phase, and then we discuss the general
case in which the phase shift between the two pulses is
arbitrary.

In the case of the negative dispersion and Kerr non-
linearity of the fibre, the pulse evolution obeys the following
nonlinear Schrédinger equation (NLSE):

i+, + 2Py =0, (1)

where  is the normalised complex amplitude of the pulse;
z=|$,]Z/27* is the normalised propagation distance;
t=(T—Z/vy)/t represents the normalised time; f, is the
group-velocity dispersion; t is the pulse width; v, is the
group velocity, and Z and T are the physical distance and
time, respectively.

2.1 In-phase pulses

To begin with, let us consider the following symmetric (in-
phase) superposition of solitons,

(0, 1) = sechzexp(iwt/2) 4 sechtexp(—iwt/2), (2)
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where o is the frequency separation between the two
channels. If the initial condition ¥(0,7) is a symmetric
function [Y(7) = (- 1)], the associated scattering coeffi-
cient a(4) of the inverse scattering problem, whose zeros
determines the soliton parameters, has the symmetry
property a(A) = a*( — A*), where the asterisk means complex
conjugation. Therefore, the zeros of a(4) are located on the
imaginary axis or appear in pairs at (4, —1"). Since it will
play an important role in our further discussion, we give
here the solution which corresponds to a pair (Jy, —4g) of
zeros situated symmetrically with respect to the imaginary
axis [11]

Wz, 1) = —ilne

¢“coshlnt + p(z) +ig] + ¢ “cosh[nr — p(z) — ig)
% cosh[nr — p(z)] cosh[nr — p(2)] + n*sin[{r + ip(z)] sin[(z — ip(z)]”
A3)
Here, g = &+in, ¢(2) = =i +n))z + ¢o. pl(2) = 2nz+
00> & =1nlg|, and ¢ =#n/{;n,{. As can be easily seen, the
symmetry of the solution is preserved during the propa-
gation: Y(z,t) = Y(z, —1).

In order to describe the structure of the optical field
emerging from the superposition (2), we determined the
spectrum of the linear eigenvalue problem, which corres-
ponds to the input (2) (i. e., the zeros of a(1) located on the
imaginary axis as well as the function a(Z) for 1 € {R}). The
numerical method used is based on an algorithm introduced
in Ref. [12].

The main results are illustrated by the Fig. 1a, where the
soliton spectrum is presented. One can see that three
different kinds of solitons can be generated. First, for
o < o} ~ 1.01, the coefficient a(4) has two distinct zeros
located on the imaginary axis, so that a bound state
consisting of two solitons with zero velocities (breather)
emerges. At o} < o < w3 ~ 2.626, the coefficient a(1) has
only one zero located on the imaginary axis, so that only a
single soliton with zero velocity can be generated. If the
frequency o is further increased, w5 < w < w} ~3.018,
again the coefficient @(1) has two zeros on the imaginary
axis, so that again a breather emerges. If o} < w, the
coefficient a(4) has two zeros situated symmetrically with
respect to the imaginary axis, so that the emerging solution
is the two-soliton solution (3).

By using the expression for the input pulse and the
scattering data, we calculate next the total energy E;, of the
initial pulse, the energy E,, of the emerging solitons and the
energy E,q in the radiative modes. They are defined as

E, = J ‘Ip(xa0)|2dxa (4)
Ey = ZZV’[: (5)
i=1
L
B = | Mla()idz. ©

and do not change upon propagation. Moreover, they must
satisfy the relation Ej, = Ey, + Epq-

The dependence of E;, and E.4 on w is presented in
Fig. 1b. An important fact this figure illustrates is that the
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Figure 1. The discrete spectrum determined by the symmetric input (2)
and the energies in the optical field at the output. (a) The amplitude 5
(dotted curve) and the velocity ¢ (solid curve) of the generated solitons as
a function of w; (b) The energies E;, (dashed curve) and E 4 (solid curve)
Vs .

energy of the radiative modes has two peaks at the threshold
frequencies w} and w5. Consequently, the generated solitons
are influenced by the radiative field, especially when the
frequency detuning w is close to these two threshold values.
The origin of these two peaks can be understood if we take
into account the spectrum shown in Fig. la. Thus, for
@ = o] 5, the scattering coefficient (1) has a zero in origin.
Therefore, the integrand in Eqn (6) has a logarithmic
singularity at these two critical values of the frequency
detuning .

2.2 Out-of-phase pulses

The second case we analyse is the generation of solitons
from an antisymmetric superposition of two soliton-like
pulses. The input pulse is described by the expression:

(0, 1) = i[sechzexp(iw?/2) — secht exp(—iwt/2)]. (7)

Here, the imaginary unit was introduced only to ensure that
the initial condition (0, 7) is a real function. As before, the
symmetry property y(z) = —( — t) implies that the zeros of
the scattering coefficient a(l) are purely imaginary or are
located symmetrically with respect to the imaginary axis. In
this case, the two-soliton solution, which corresponds to
such a pair of zeros, is given by the expression:

Y(z, 1) = —ilnel?@

e“cosh[nr + p(z) +ip] — e “coshlyr — p(z) — i)
& cosh[nt+p(z)] cosh[nt — p(2)]+4> cos[t + ip(z)] cos[(t — ip(z)]

®)
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As before, we calculate the soliton spectrum, which
corresponds to the choice (7). The structure of this spec-
trum, as well as the dependence of the energies E;, and E, 4
on the frequency detuning w, is shown in Fig. 2. As Fig. 2a
illustrates, for frequency detuning o < wj ~ 0.738, no
soliton is generated, while for @ > w} the emerging field
is the two-soliton solution described by Eqn (8). Unlike the
symmetric case, for antisymmetric input pulses with w ~ o},
the emerging soliton is observed to have a finite velocity.
This fact can be understood as follows: if both the velocity &
and the amplitude n would vanish, then the coefficient a(1)
would have a zero in origin. It is shown, however, in the
next subsection, that this would require the area of the input
pulse to be an odd multiple of 7/2, a condition which cannot
be satisfied by an antisymmetric function. Finally, similar to
the symmetric case, the energy in the radiative modes E,.4
has a maximum at o = wj.

n,{

0 o 2 4 6 ®

Figure 2. The same as in Fig. 1 but for the antisymmetric input (7).

2.3 Arbitrary phase shift

In this subsection, we discuss the general situation, in which
there is an arbitrary phase shift between the two over-
lapping solitons. This kind of input is described by the
expression

¥(0,7) = sechtexpli(w? + 0)/2]

©)

where 6 is the phase difference between the two solitons. In
order to understand the structure of the emerging optical
field, which corresponds to an arbitrary value of the phase
shift 0, we use the relation [13]

+ sechrexp[—i(w? + 0) /2],

a(0) = cos Sy, (10)

where S, is the initial area of the pulse. Note that Eqn (10)
holds only for pulses which are real up to a constant overall

phase. Now let us see how Eqn (10) can be used to explain
the structure of the soliton spectrum and, consequently, the
structure of the emerging optical field. The initial area of
the optical pulse described by Eqn (9) is

So(w, 0) = 2msech(nw/4) cos(0/2). (1D

One can see from Eqns (10) and (11) that if v = 0, there
are two critical values of the phase difference  for which
a(0) = 0. The two critical values are 0\ = 2arccos(3 /4) and
GS) = 2arccos(1/4) and correspond to n=2 and n=1,
respectively. This implies that at w = 0, depending on the
value of the phase difference 6, there are two distinct zeros
of a(A) located on the imaginary axis, if 0 < 0 < Bg), one, if
0) < 0 < 02, and none, if 0¥ < 6 < . Consequently, the
soliton spectra in the first and the third case are topologi-
cally similar to the ones presented in Fig. la and Fig. 2a,
respectively. A typical spectrum which corresponds to the
second case, i.e., 08) <0< 99, is presented in Fig. 3. We
emphasise that in order to generate solitons of the type (3)
and (8), the choice of the initial pulses is not restricted to
sech-like type. Thus, we calculated the structure of the
emerging solitons from a superposition of two Gaussian
pulses, and the results obtained were qualitatively similar to
those presented here. As a final remark, we mention that in a
WDM transmission line, the relative phase between the
initial pulses in different channels is not the same for all the
pairs in the pulse train. However, the results presented here
can serve as a first step towards a general description of a
more realistic situation in which the relative phase between
adjacent pulses varies randomly.

7,8

Figure 3. The discrete spectrum determined by Eqn (9). The amplitude n
(dotted curve) and the velocity ¢ (solid curve) of the generated solitons
vs w. The phase difference is 0 = 27/3.

3. Perturbative propagation of two-soliton
solutions

As shown above, solitons described by Eqns (3) and (8) can
be obtained from a superposition of optical pulses of a
rather general shape. In practice, however, one is interested
not only in the conditions under which one can generate
such pulses but also in how they propagate along an optical
transmission line in the presence of perturbations, when
soliton parameters such as amplitude and velocity become
dependent on the propagation distance.

In order to determine the shape of the propagating
optical pulse in the presence of weak perturbations, we
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resort to both adiabatic perturbation theory and direct
numerical integration of the NLSE (1) perturbed by a

term eP(y, y"),
W+ Y+ 2P = P, ¥), (12)
If ¢ < 1, the evolution of the soliton parameters with
respect to the propagation distance is given by a set of

differential equations, which are fully determined by the
perturbation P(yr,y") (for details, see Ref. [11]),

%ﬂ}: JdfF{PWvW>P*<w,w*);5(w,w*>}, (13)

—00

where S is the set of scattering data and F is a functional,
which depends both on the scattering data S and the
perturbation P. Thus, if one knows the initial values of the
soliton parameters one can integrate Eqn (13) and then,
from the values obtained for the soliton parameters, can
reconstruct the soliton solution at that propagation dis-
tance. Alternatively, one can integrate directly Eqn (12)
with the specified initial conditions. In what follows, we will
use both these methods to describe the propagation of the
two-soliton solutions (3) and (8) in the presence of various
perturbations.

3.1 Soliton propagation in the presence of lumped
amplifiers, band-pass filters, and nonlinear amplifiers

Due to the inherent losses in a long-haul transmission line,
optical pulses can propagate over long distances only if
amplifiers are inserted periodically. Usually, the distance
between the amplifiers is z, ~ 50 — 80 km. However, due to
the excess gain introduced by the amplifiers, the dispersive
wave noise increases exponentially with the propagation
distance, leading to the instability of the soliton propaga-
tion. In order to overcome this problem, a nonlinear
amplifier can be used [14, 15], and the averaged equation
describing optical pulse propagation in a transmission line
with such nonlinear amplifiers inserted periodically can be
rewritten as:

W.+y,+ 2|‘//|2¢ =ioy +ify,, + i}'|l//|21ﬁ. (14)
Here, y = 2gy/z,, wWhere the parameter g, characterises the
averaged nonlinear gain over the amplifier span

g(lWf?) =z " n (Gl [?), (15)
with G =1+ g0|1p|2 being the gain characteristic function of
the nonlinear amplifier.

Obviously, Eqn (14) can be written in the form (12), with
¢ =10 and the perturbation P(y,y") given by:

PO ™) =Y+, + oy

The coefficients »; = /0 and %, = y/0.

The numerical simulations of Eqn (14) with the initial
symmetric and antisymmetric two-soliton solutions show
that when the condition »; =3 + 2x, is satisfied, these
solutions evolve into a pair of solitons with zero velocities
and amplitudes equal to unity. Moreover, we observed that
no significant amount of radiation is generated.

We also used the adiabatic perturbation method to
investigate the evolution of the two-soliton solutions under

(16)

the influence of the perturbation (16). The results are shown
in Fig4 for the symmetric and antisymmetric solitons,
respectively. In each figure, three cases are presented
and, as one can see, only in the case described by the
coefficients »; =7 and x, =2, the soliton parameters
approach asymptotically the values (&, #,) = (0,1). This
fact confirms that, as in the single soliton case, the
propagation of a two-soliton solution is stabilised only if
the relation »%; = 3 + 2%, is satisfied. In the other two cases,
ie., if % <3+4+2% (3%, >3+ 2%,), the soliton amplitude
increases (decreases). Furthermore, in all cases, the soliton
velocity decreases to zero.

—_—— - %1:4,%2:1
wp=4% =1

nr w1 =T,% =2 4 -0
— =1l =2 n # =T =2
- 04 \\— = m=1lx=2
1.00 | -
'\ a
0.75 |
.
050 1 1 1 1

nfk —-- % =8,%, =3 e

xy =T,%=2
— e g =11,y =2 0.4

1.00 £ -7
- 0.3
=== 0.2

0.75 —\_ ¢
N\ 0.1

B
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Figure 4. The soliton amplitude and velocity vs the propagation
distance: 6 = 0.02 and the ratios %; =4, %, = 1 in (a)—(b) and »; =8,
%, = 3 in (c)—(d) (dashed curve); »; =7, », = 2 (solid curve); »; = 11,
%, = 2 (dotted-dashed curve). (a) The amplitude 5 of the symmetric
soliton (3) with n(0) =1, £(0) = 0.4, py(0) =0, ¢¢(0) =n/2; (b) the
velocity ¢ of the symmetric soliton (3) with the same parameters as in (a);
(c) the amplitude n of the antisymmetric soliton (8) with n(0) =1,
£(0) = 0.4, py(0) = ¢y (0) =0; (d) the velocity ¢ of the antisymmetric
soliton (8) with the same parameters as in (c).

In order to see how reliable are the results obtained by
the perturbation method, we compared the optical fields
obtained by the direct numerical simulations of Eqn (14)
with those obtained by the perturbative method. The
propagation distance was equal to 20 units in both cases.
The results are presented in Fig 5 and correspond to the
symmetric case. As these figures illustrate, there is a very
good agreement between the two methods, so that one can
conclude that the perturbation method describes properly
the soliton interaction. Moreover, we mention that a very
good agreement has been observed for the antisymmetric
case as well.

3.2 Soliton propagation in the presence of lumped
amplifiers, band-pass filters, and amplitude modulators

A different approach to overcome the limitations imposed
by the bandwidth-limited amplification (BLA) on the
efficiency of the soliton transmission system is to use an
amplitude modulator (AM) inserted into the repeater loop
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Figure 5. The amplitude || of the symmetric soliton (3) with 5(0) = 1,
£(0) = 0.4, py(0) =0, ¢(0) =m/2 after 20 propagation units: input
pulse (solid curve), numerical simulations (dashed curve), adiabatic
perturbation method (dotted line); d = 0.02. (a) »x; =7, %, =2; (b)
=11, =2;(c)x; =4,% =1.

[16]. In this case, the soliton propagation is governed by the
averaged equation:

i+ Y, + 2 =10 + 1By, + i lcos(Q,1) — 1)y,  (17)

where u, is the effective loss modulation; and Q, is the
modulation frequency, equal to 2z times the bit rate.
Eqn (17) can be written in the form (12), with the
perturbation P(y,y") given by the expression

P ™) = (1= ) + 1, + 23 cos(u0), (18)
where ¢ =15; %3 = u, /9.

Before dealing with a more complex case of two-soliton
propagation, let us gain some qualitative insight into this
problem by considering the one-soliton propagation
through the system comprising both BLA and AM. To
do this, let us apply the adiabatic perturbation method to

Wo(z,1) = nsechn[t — p(z)] exp{illr + ¢(2)]}, (19)
where  p(2) =22+ py;  0(2) = (" =)z + 9y py =
In(|ye|)/n; and ¢, = arg(y,). Then the dynamics of the
soliton parameters is governed by the set of equations [17]:

d 2
£ =4(0 — py)n — 4pn <% + C2>

Q
+27Q, 1, cos(Q, p)cosech (nz a), (20)
n
d¢ 8,2
g% __° 21
o= 3P @1
% =20+ 21ty sin(Q,p)cosech ( n;;“)
ne2, nQ,
1 — —2%coth—2|. 22
X 2 cot o } 22)
Obviously, this system has a fixed point at
(’77 é? p) = ('/’()7 07 0) lf
2
Q Q
T bro o U,cosech (n a) =0, (23)
30 2 21y
and the fixed point is stable if
3nQ nQ,\ (7R Q2
a,u,dcosech< a) { 2coth=——2 — 1} < B. (24)
411(3) 2y ) [ 2n9 2ny

Since the two-soliton state breaks after a short distance
in two solitons, which can be viewed as being rather
independent, Eqns (20)—(22) are expected to give a fairly
good qualitative description of the asymptotic behavior of
the two emerging solitons. Therefore, when we chose the
parameters J, f3, u,, and ©, for the numerical simulations of
Eqn (17), we have been guided by Eqn (23). However, it is
necessary to bear in mind that in the case of two-soliton
solutions, the asymptotic time shift p is no longer zero, so
that the asymptotic state of the emerging solitons cannot be
the fixed point (#,,0,0). Moreover, Eqn (23) does not take
into account the mutual interaction between the asymptotic
solitons, so that we cannot expect that it is rigorously
verified by the asymptotic values of the parameters of the
emerging solitons.

For a more detailed analysis of the propagation of the
two-soliton solutions (3) and (8) in the presence of the BLA
and the amplitude modulation, Eqn (17) is integrated
numerically for a set of parameters d, f§, u,, and Q,. The
numerical integration shows that for both cases (symmetric
and antisymmetric), the asymptotic value of the amplitude 5
of the emerging solitons increases as the modulation
frequency Q, decreases, which agrees with Eqn (23). More-
over, we observed that as the modulation amplitude g,
increases, the soliton propagation becomes more unstable,
in agreement with Eqn (24).

Fig. 6 represent the results obtained by using the
adiabatic perturbation method for the symmetric (antisym-
metric) case. One can see that though the adiabatic
perturbation method gives a good qualitative description
of the soliton propagation, unlike the previous case, the
quantitative results obtained by the two methods do not
agree so well. This can be explained by the emission of a
larger amount of radiation.

4. Superposition of /N solitons

Since in the optical networks, which are presently in use,
the optical signal is transmitted over several frequency
channels, it is natural to ask how the results presented in
the preceding sections can be extended to the case of soliton
propagation in N different channels. In order to address
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Figure 6. The amplitude || of the symmetric soliton (3) with 5(0) = 1,
£(0) = 0.2, py(0) =0, ¢y (0) = /2 [(a) and (b)] and of the antisymmetric
soliton (8) with 5(0) =1, &(0) =0.2, py(0) = ¢(0) =0 [(c) and (d)]:
input pulse (solid curve), numerical simulations (dashed curve), adiabatic
perturbation method (dotted curve); f=0.06 and p, =0.01 (a)
0=0.039, Q, =2n/20; (b) 6=0.038, Q, =2n/10; (c) ¢ =0.039,
Q, =2n/20; (d) 6 = 0.038, Q, = 2n/10.

this problem, let us consider the superposition of N single
solitons with different frequencies,

W(0,1) = Z sechzexp{ilk — (N +1)/2]
=1

x[wt 4+ 0/(N — 1)}, (25)

where N is the number of solitons, w is the frequency
detuning between adjacent solitons, and 0 is the total phase
shift between the first and the last soliton.

The first fact observed when the number of solitons N is
increased is that the structure of the soliton spectra of the
emerging field becomes highly intricate. In order to illustrate
this, we present in Fig. 7 the soliton spectra which corre-
spond to N =4 and N = 8, respectively. We mention that all
these spectra correspond to the input pulses (25) for which
the phase shift § = 0. As a check of these numerical results,
we verified that for each value of the frequency detuning the
equality E, = E g + E 1s satisfied. As another test of the
validity of the spectra in Fig. 7, we used the initial condition
(25) for various values of the parameters N and w and, for
all values, we obtained an optical field with the structure
implied by Fig. 7.

As a general remark related to Fig. 7, we mention that,
as in the case N =2, in order to obtain N solitons with
distinct frequencies (as necessary in a WDM scheme) the
frequency detuning o must be larger than a certain thresh-
old value. Furthermore, our numerical simulations show
that, as the number N of channels increases, the threshold
frequency detuning increases. For example, for N =2 the
critical frequency detuning is w, = 3.018, for N =4 the

0 1 2 3 4 5 6 1 o
r 0=0,N=4

8 I /
/

0 ( ¢
\

8 F \

716 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7

e

12

'

_36 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 [0

Figure 7. The soliton spectrum determined by the input (25) with 0 = 0 vs frequency detuning: (a) The soliton amplitude for N = 4 solitons, and (b) for
N = 4 solitons. The soliton velocity vs detuning (c) for N = § solitons, and (d) for N = 8 solitons.
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critical frequency detuning is @, = 3.385, while for N = 8 it n( L
is wg = 3.629.

In what follows, we discuss the changes which are 3k To =0
introduced in the soliton spectra by the initial time shift | . _~— Wy = 3.018
between the solitons in different channels [optical time- 0 7
division multiplexing (OTDM)]. Consider the superposition — ¢
of the two solitons: =3 ”

W(0, 1) = sech(t — T,) exp(iwt/2), (26) —6 0 i '2 '3 :‘ '5 6I '7 ('/)

a
where 27| is the time separation between the solitons. For ni b
simplicity, we assume that both solitons have the same '
input phase (0 = 0). 3k

The soliton spectra corresponding to Ty =0 and T, =1 | " _—" .. To =1
are presented in Figs 8a and 8b, respectively. As the time 0 Wer = 1.72
shift increases from 0 to 1, the overlap between solitons n
decreases, the soliton interaction becomes weaker, and, in -3 r — ¢
turn, the critical frequency shift is seen to decrease from Ger
e = 3.018 to w,, = 1.72. As an important consequence of -6

o 1 2 3 4 5 6 7 o

this decrease in the interchannel frequency separation is the
increase in the transmission capacity of the WDM system.
On the other hand, by introducing the time shift 7|, the
temporal bit window widens and, consequently, the trans-
mission capacity tends to decrease. However, it is not
difficult to see that the combined action of these two
competing factors is a net increase in the transmission
capacity of the WDM system. Consider an optical fibre
for which the soliton repetition period is At =mt (in
practical applications m < 10) and the interchannel fre-
quency separation is . The transmission capacity per
channel is inversely proportional to the repetition period
At, and the total transmission capacity of the line is
proportional to the number of channels N, or, in other
words, inversely proportional to the frequency interchannel
separation w. Therefore, the total transmission capacity R is
inversely proportional to the product wAt. Furthermore,
suppose that w is chosen to be equal to the critical frequency
o = 3.018, which corresponds to 7, = 0. We emphasise
here that although w,, is not the lowest frequency separation
that can be used in a reliable WDM system (a larger
frequency separation @ would be needed for the effect of
initial overlap to be rendered insignificant), it represents a
very useful parameter for estimating the upper bound of the
bit rate R. Now, if we introduce the time shift 7;, and require
that the time separation between adjacent solitons remains
the same (equal to mr), the repetition period becomes
At = mt 42T, and the frequency separation
® = w,, = 1.72. Thus, the ratio of the bit rates is

MWy,
(WZ‘C + 2T0)wér '

R/
7= (27)

Therefore, for m = 10 a combination of OTDM and
WDM gives an increase in the bit rate of about 50 %. As the
last comment related to this problem, we mention that we
expect that the above conclusion remains valid for m > 10
and for time shifts 7, not too large. This is so because if the
parameters m and T are in this range, the improvement in
the bit rate due to the reduction of w. overcomes the bit
rate reduction due to the increase in the bit window.
However, as the determination of the soliton spectra is
very time consuming, we restricted our numerical inves-
tigations to the example presented above.

Figure 8. The soliton spectrum determined by the input (26).

5. Conclusions

We have demonstrated that, by using the adiabatic pertur-
bative method, many of the properties of multiwavelength
optical pulse propagation through various communication
systems can be explained more thoroughly than in previous
studies. The most important result is that we are able to
relate an emerging field structure to an input superposition
of a rather general form. This relation provides a more clear
interpretation of the interaction of optical solitons endowed
with symmetry. Using our analytical solutions, we are able
not only to explain some of our results obtained by
numerical simulations, but also to obtain a quantitative
understanding of the physical processes which take place in
a multi-channel WDM optical transmission system.

Note that the problem of the dynamics of a two-
wavelength pair of optical solitons appears in a number
of other applications, not just in WDM communication
lines; for instance, in the case of passively mode-locked
solid-state lasers, when different-color pulses are generated
from a single gain medium. Thus, recently it has been shown
that the retarded coherent response of such an amplifier may
essentially change the behavior of two-frequency solitons
from that predicted by a standard soliton perturbation
theory [18]. Devices like these may find applications as
sources for generation of THz trains of narrow-band optical
pulses.
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