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On the problem of ideal amplification of optical solitons

G. Melo Melchor, M. Agiiero Granados, G.H. Corro

Abstract. The new possibilities of almost ideal amplification
of optical solitons during the incoherent interaction of light
pulses with a resonantly amplifying medium are considered.
The mechanism of two-photon amplification of optical soli-
tons with an optimal frequency-modulation law is proposed. It
is shown that the entirely ideal amplification of solitons
cannot be achieved because the law of phase modulation of
radiation differs from a parabolic law. The possibility of
using the phase cross modulation to produce the required
initial phase of amplified solitons is studied.
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1. New problems of physics of amplification
of optical solitons

Optical solitons are now considered as ideal data carriers in
fibreoptic WDM communication systems [1, 2]. The soliton
technique also opens up new possibilities for generation of
ultrashort light pulses [3—6]. The problem of an ideal
amplification of optical solitons is a rather old problem of
nonlinear optics. Until recently it was accepted, as had been
probably first assumed in paper [7], that a nonlinear capture
of energy by a soliton occurs in the following way: a soliton
system as if divided into two parts, one of which, called a
soliton wave, accumulates the energy according to the
Zakharov—Shabat concept [8], while the other one, called a
non-soliton or dispersing wave, accumulates the energy of
redundant waves, ‘thrown down’ by a soliton [1, 4, 7].
However, recent papers [9—12] radically changed this
concept. The problem of an ideal amplification of optical
solitons was in fact first formulated in papers [9, 10], where
a unique possibility of preserving the shape of a soliton
pulse in a medium with a spatially inhomogeneous gain was
discovered. The model considered in papers [9, 10], which
uses a nonlinear parabolic equation, is equivalent to a
model based on the nonlinear Schrodinger equation with
the self-consistent interaction potential produced by a
propagating pulse itself due to self-action effects in a
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cubic nonlinear medium [1, 4]. The mathematical model
[9, 10] and its ‘unexpected’ solutions in dimensionless stan-
dard (soliton) variables have the form [9-12]
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where # is a constant, which determines the so-called form-

factor of a Schrodinger soliton envelope; o >0 is an
arbitrary constant;
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is the gain of a spatially inhomogeneous active medium;
I'(0) = 1/(2C); and C is an arbitrary constant. The solution
¥, (2) describes the so-called clear soliton [9, 10], while the
solution ¥, (3) describes the dark soliton.

One can see from (2) that the main feature of the soliton
amplification is the presence of the phase modulation
(frequency chirp). The chirp depends on a distance propa-
gated by a pulse in the amplifying medium. The gain (4)
providing the ‘ideal’ amplification of a soliton is a hyper-
bolic function of the amplifying medium length. The area
under the pulse for a hyperbolically amplified soliton (2) is
preserved [2] because a decrease in its duration is determined
by a linear function of the medium length, which is typical
for soliton pulses [1, 4].

The problem of an ideal amplification of solitons is very
important for the development of new soliton information
systems [1, 2]. A radically new solution of this problem was
proposed in papers [12, 13], where a new concept of a quasi-
soliton was introduced for a chirped soliton in a nonlinear
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medium with a periodical spatially inhomogeneous disper-
sion parameter and a periodic gain. In this way, a quasi-
soliton of the nonlinear Schrodinger equation with a para-
bolic potential appeared [13], and a new, rapidly developing
scientific field was initiated — optical solitons in spatially
inhomogeneous nonlinear systems and soliton Bloch waves
in nonlinear communication lines and soliton lasers [11—15].
It was shown that there exist an infinite number of soliton
solutions of the Schrodinger equation in active inhomoge-
neous soliton systems [12]; the existence theorems for
chirped solitons were proved, and the method was develo-
ped for solving the inverse problem of the scattering theory
with a variable spectral parameter [15, 16] for analysis of
new problems; as well as the Lax pairs were constructed for
new, completely integrated generalised models on the non-
linear Schrodinger equation [14, 15].

However, a number of essential problems of the theory
remained unsolved. First of all, equation (1) and its solution
(2) posed new problems, the most important of them is how
to perform the experiment corresponding to solution (2). It
is obvious that a number of fundamental problems are
encountered in the experimental realisation of an ideal
amplification of solitons. First, the gain in model (1)
becomes infinite at the active medium length Z =
1/[2I'(0)] = C. Solution (2) has the same singularity at
the point Z = C. Second, the authors of papers [9, 10]
proposed no ideas concerning the experimental realisation
of the gain (4) that would be inhomogeneous over the length
or at least how to find the gain that would be close optimal.

We formulate and solve the problem of the ideal
amplification of a soliton within the framework of model
(1) and show that the required gain can be realised expe-
rimentally by manufacturing a two-photon fibre amplifier,
which excludes effects related to the diffraction and self-
focusing of radiation. We also show that the method of
modulation of frequency of the initial pulse plays a crucial
role in the experimental realisation of the ideal soliton
amplifier. We study the possibility of using the phase cross
modulation to obtain the required initial phase of amplified
solitons. This can be achieved if a control pulse at different
wavelength is used simultaneously with the amplified
soliton.

2. How can a soliton be perfectly amplified
without its transformation
to a multi-soliton pulse?

At present, two basic methods for amplifying optical soli-
tons are employed: a rapid nonadiabatic amplification in a
line with lumped amplifiers and adiabatic amplification in a
distributed active medium (see, for example, books and
reviews [1, 2, 4, 17, 18] and references therein).

In the theoretical analysis of the nonadiabatic amplifi-
cation, it is assumed that the length of an amplifying
medium is infinitesimal compared to the characteristic
length of the dispersion spread of a pulse. This allows
one to consider the amplification of a soliton as a ‘point’
(delta-like) process, which is equivalent to a simple multi-
plication of the soliton amplitude by the gain at each point
of the medium. A soliton pulse amplified in such a way
behaves differently during its propagation in the medium. It
can, bypassing the intermediate process of decaying oscil-
lations, either transform to a new soliton or form a bound
soliton state, which, as is known, has a complicated periodic

temporal structure [18]. These two well-known facts in the
theory of Schrodinger solitons were used in one of the first
experimental models of a soliton communication line, the
so-called a dynamic soliton communication line [18], in
which pulses were used with the amplitude exceeding the
fundamental-soliton amplitude by a factor of 1.2-2 [4].

In the theoretical analysis of adiabatic amplification, the
length of an active medium can no longer be treated as
infinitesimal, and the gain is a function of the active-medium
length, if for no reason than the inevitable presence of
nonzero radiation losses in a fibre. Such a situation is
realised, for example, upon Raman pumping of solitons
[17, 19, 20].

By analysing the development of theoretical and experi-
mental studies on the amplification of optical solitons, we
should note that as a whole the solution of the problem of
optimal amplification of a soliton proved to be at a loss.
Experiments on the generation of optical solitons are still
being performed in homogeneous nonconservative systems,
which, however, are described by nonintegrable models.
This even in principle does not allow one to expect to
amplify a soliton as a whole by retaining its unique pro-
perties. The theoretical analysis is based entirely on the
perturbation theory [21], which, as we will show below,
proves to be invalid already upon amplification of a soliton
by a factor of e.

Consider the amplification of a Schrodinger soliton in
more detail. The propagation of an optical soliton in a
resonance active medium upon the incoherent interaction of
the pulse with the medium is described by the well-known
system of equations: the nonlinear Schrodinger equation
(nonlinear parabolic equation) and the equation for the
polarisation P of particles of the active medium [22]. This
system in the dimensionless standard form is
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Here, the running time 7 is normalised to the initial pulse
duration 7, at the entrance to the active medium, the
distance propagated by the soliton is normalised to the
dispersion length of the pulse spread Ly = 14 /|k.2|, and the
wave amplitude is normalised to the characteristic initial
value |y = [8mk.> x (rgkonzcno)_l]l/z; va = Ta/t9; T, i
the transverse relaxation time of the high-frequency dipole
moment; AQ = t5(wy — wy3); @, is the carrier frequency of
the pulse: and w;, is the resonance-transition frequency.
The gain parameter in equation (5) is determined by the
relation G = Ly/L, [22], where L, =1/(6yNy) is the
characteristic gain length; N, is the inversion-population
density in the absence of the field; and o is the cross section
of the radiative transition at the resonance frequency.

Upon the incoherent interaction of a coherent pulse with
a medium, polarisation follows quasi-statically the field, and
the contribution to the dispersion of the refractive index has
is [3]
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where Aw = wy — wj,. When the carrier frequency of the
pulse coincides with the frequency of the resonance
transition, the quasi-static refractive index becomes purely
imaginary. It is known that the mathematical model (5), (6)
correctly describes the amplification dynamics of solitons in
the picosecond range, when the nonlinear electronic Kerr
effect, related to the inertialless addition to the refractive
index n,, dominates. If G < 1, then equation (5) can be
solved using the apparatus of the adiabatic perturbation
theory for solitons [21].

In the case of incoherent amplification, when the width
of the pulse spectrum is small compared to the width of the
gain line [3], system of equations (5), (6) can be transformed
as
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The soliton solution of equation (8) with slowly changing
parameters has the form
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where t.(z) is the coordinate of the centre of gravity of the
pulse and ¢, is the phase. To pass to the equation that is
close to the initial model (1), we set y, = 0. Then, system
(5), (6) is transformed to the well-known nonlinear
Schrodinger equation with amplification (absorption)
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The perturbation theory for solitons [21] gives the solution
of equation (13) in the form [1, 4]

¥ (z.7) = n(2)sechly(=)1] explio(2)] + 0(G).

n(z) = ¥(0) exp(2Gz), (14)
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Note that solution (14) has been treated for many years
(see, for example, book [4] and references therein) as a
rather exact approximation for the description of amplifi-
cation of solitons. However, our computer experiments
showed that this is not the case. Recall that, as was already
shown in paper [23], the distortions of the soliton shape in a

linearly absorbing medium are caused by the appearance of
the frequency modulation of the pulse, which substantially
restricts the application of the apparatus of the perturbation
theory. Let us show that a similar result is obtained for a
linear amplification of solitons, and that there exist rather
substantial qualitative and quantitative differences from the
case corresponding to the propagation of a soliton in a
linearly absorbing medium [23].

We performed the numerical study of the propagation
and interaction of solitons in an active medium, by
considering various relations between the parameters of
the model (13). We found that there exists a limiting energy
of the amplified soliton, when the results of the perturbation
theory for solitons and expression (14) prove to be invalid at
all. A soliton is not amplified as the whole in the regime of
incoherent amplification: during the soliton amplification,
its shape and spectrum substantially change.

During the soliton amplification, two characteristic
features appear in its temporal structure: a narrow intense
peak and a broad low-intensity pedestal to which an
increasing fraction of the pulse energy transfers in the
process of amplification. A detailed picture of the soliton
amplification is shown in Figs 1 and 2, where the results
obtained in the adiabatic and nonadiabatic amplification
regimes are compared. The spectrum of the amplified soliton
has a structure, which demonstrates the appearance of a
substantial frequency modulation of radiation.

The processing of the results of numerical experiments
suggests the existence of a maximum gain at which the
soliton is no longer stable during amplification. This occurs
when the soliton energy increases by a factor of e,
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Figure 1. (a) Dependence of the shape I(Z,T) of a soliton pulse
(orthographic projection at a logarithmic scale, the upper view at an
angle of 60°) and (b) the shape S(Z,w) of its spectrum on the active-
medium length Z upon adiabatic amplification of solitons and G = 0.1.
Thick curves are geodesic equal-level lines for 1g/ =0, —1, -2, =3, —4.
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Figure 2. Dependences of the shape 7(Z, T') (a, b) of a soliton pulse and
the shape S(Z, w) (c) of the pulse spectrum on the active-medium length
Z upon nonadiabatic amplification of solitons and G = 1.0.

irrespective of the way of the energy accumulation in the
soliton [adiabatic (Fig. 1) or nonadiabatic (Fig. 2) amplifi-
cation]. Detailed calculations performed in a broad range of
soliton gains show that the structural instability of solitons
is explained by the unbalance of the process of trans-
formation of frequency modulation to amplitude
modulation. All these features are well demonstrated at
the logarithmic scale in Figs 1 and 2.

Therefore, the adiabatic and nonadiabatic regimes of
incoherent amplification of solitons in an active medium
with constant parameters are always accompanied by the
appearance of the structural instability of solitons and the
growth of the non-soliton component of the field during
amplification. The region of applicability of the perturba-
tion theory is determined by the inequality G < 1, which
expresses in fact the condition of the adiabatic rearrange-
ment of the soliton, which acquires new values of the
amplitude and duration corresponding to its greater energy.

Figure 3. Interaction of two counterpropagating solitons (a) in the
absence of amplification and (b) upon adiabatic amplification for the
group-velocity detuning AV = 2.0 and G = 0.1.

Due to the imperfect amplification of solitons and the
growth of the non-soliton component of the field, the
solitons cease to interact elastically with each other, as
shown in Fig. 3, where the contour map (the equal-height
lines) is presented for two interacting solitons moving
toward each other. The calculations were performed both
for ideal solitons, when the parameter G = 0, and linearly
amplified solitons described by a simplest model (13).

3. Singular amplification
of frequency-modulated solitons

As mentioned above, the accepted opinion that ideal
Schrodinger solitons cannot be formed in an active medium
upon incoherent amplification was subjected to the first
blows in papers [9, 10]. The authors of these papers showed
that there exists a unique possibility of amplifying a soliton
as whole, if the gain is a singular hyperbolic function of the
active medium length, while

the soliton phase at the entrance to the medium is a
parabolic function of time. The interaction of such fre-
quency-modulated solitons becomes completely elastic when
soliton phases and the gain are made self-consistent. In the
following papers [12, 15], a regular method was found for
searching solutions in the form of frequency-modulated
solitons. It was shown that, in the case under study, there
exist not one but four soliton solutions corresponding to
hyperbolically amplified or decayed clear and dark solitons
for positive or negative initial gains (4). Strictly speaking,
the solutions presented in [9, 10] are one of the particular
cases of the application of the second theorem, which was
proved in paper [12], where the Wronskian of two constant
functions: the dispersion [D(Z)=1] and nonlinearity
[R(Z) = 1] is exactly zero [W (R, D) = 0].

We will show that the singular amplification of fre-
quency-modulated solitons can be described by an
equivalent model without singularities. Let us make a
change of variables in (1):

rz"dz',
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In this case, the Schrodinger equation will have the form
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After simple transformations, equation (15) takes the form
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Therefore, model (1) is transformed to model (15) in new
variables, and its solutions (2) and (3) for clear and dark
solitons are transformed to the solutions

u(Z',T") = —no P exp[(0)2']
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—in*Z" exp[2I(0)Z']}. (18)

These chirped soliton solutions differ in two respects
from canonical solitons of the model of nonlinear Schro-
dinger equation without amplification or absorption. First,
solitons (2), (3), and (17), (18) are frequency-modulated
pulses, whose amplitude, duration, and frequency modu-
lation are described by the same function of Z — a hyperbolic
function of the amplifying-medium length. Second, solitons
(2) and (3) are the singular solutions of equation (1) and
have a meaning only for Z < C. When the amplifying
medium length approaches the singularity Z = C, the soli-
ton amplitude increases infinitely and its duration decreases.
Nevertheless, solutions (2) and (3) are of certain practical
interest, because the active-medium length can be always
restricted by the condition that the singularity is not
achieved [10].

A linear law of the frequency modulation of the pulse at
the entrance to the active medium determines all the
subsequent regime of pulse compression it the medium.
Fig. 4a shows computer simulations of the amplification of
a frequency-modulated soliton. The compression of this
soliton does not change the law of frequency modulation
only its value being changed according to expression (2). On
the contrary, the amplification of a usual (without frequency
modulation) soliton is accompanied by the appearance of
nonlinear frequency modulation, which is described by the
envelope of the amplified pulse shown in Fig. 4b.

At present, a variety of methods for light modulation

0o 1 2 T

1 1 1 1

0 1 T
a b

Figure 4. Amplification dynamics of an optical soliton in a medium with
hyperbolically increasing gain: (a) an amplified frequency-modulated
soliton of equation (1), whose envelope /(Z, T') and frequency modula-
tion F(Z,T) are calculated for G = 1.0 and the active-medium length
restricted by the condition of approaching a singularity by the value
Z — C =0.125 and (b) a change in the envelope and the appearance of
the frequency modulation of the pulse upon amplification in an inho-
mogeneous medium in the absence of initial modulation of the pulse for
G=0.

[24, 25] and different fibreoptic systems have been develo-
ped, in which, as stated in paper [26], virtually any
dispersion profile can be realised. In this connection, the
main difficulty of the experimental detection of frequency-
modulated solitons (2) is the necessity of producing linear
frequency modulation of radiation at the entrance to a
medium.

Let us assume that the initial phase modulation of a
pulse is produced due to phase cross modulation and has the
form

2n
d(Z=0,7) = Aexp {— ( ! ) ]
Tmod

According to (19), the frequency depends linearly on time
only at the central part of the pulse (2). The numerical
experiment allows one to study in detail the dependence of
the degree of pulse compression on the magnitude of
frequency modulation at the entrance to the medium. By
varying the duration of the control super-Gaussian pulse
(19), which propagates at the different wavelength, we can
expand the region of a linear frequency scan in the soliton
pulse. As expected, the soliton is compressed efficiently only
in the part of the initial pulse where the time dependence of
the frequency slightly differs from a linear law.

Typical results of computer simulations are presented in
Figs 5 and 6. One can see that the pulse self-compression as
a whole cannot occur. This fact is clearly demonstrated by
the dependence of the pulse shape on the gain length in
Fig. 6. The self-compression and compression occur only in
the upper part of the pulse, whereas the pedestal duration is

(19)
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Figure 5. Amplification of a phase-modulated soliton 7(Z,T) in an
active medium with the hyperbolic gain in the case when the initial phase
modulation @ (Z, T') is produced due to phase cross modulation by the
pulse at the nonresonance wavelength (19) with duration 7,4 = 5.0,
amplitude 4 = 1.0, and parameter n = 1.

not changed. Let us compare these results with Fig. 4, where
an exact solution is presented at the same scale, which, on
the contrary, demonstrate the compression of the frequency-
modulated soliton as a whole.

Consider now how solitons can be perfectly amplified in
a real experiment. It was shown already in paper [27] that
two-photon absorption (and Raman amplification) can
change the shape of a soliton pulse is such a way that
its amplitude (and hence, duration) will vary as

(20)

It is obvious that, if we take the minus sign in the
dominator in (20), we obtain a singular function coinciding
with expression (4) for the gain. Therefore, the answer to
the above-formulated question is obvious — its is necessary
to create a two-photon fibreoptic amplifier.

To be consistent to the end, we will study the properties
of interaction of frequency-modulated solitons during their
amplification. The aim of our computer experiments was to
elucidate the possibility of the existence of a static soliton

I N |
| W/////////
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Figure 6. Comparison of the relative energy redistribution during
amplification of solitons for (a) a perfect parabolic profile of the initial
phase in (2) and (b) for the initial phase specified by the temporal profile
of a control pulse (19).

attractor, which causes the inelastic interaction and merging
of solitons!. Note that inelastic scattering is a characteristic
feature of non-integrable systems.

Consider, for example, the situation when solitons are
amplified by a factor of 100 (strongly nonadiabatic regime).
The different group velocities of solitons mean that the
solitons were initially subjected to WDM. Let us assume
that the spectra of initial pulses do not overlap. If solitons
are amplified in a system with constant parameters, then the
energy distribution substantially changes in time (Fig. 7a).
In this case, the interaction between solitons is inelastic. If,
however, solitons are amplified in a system with the
inhomogeneous gain, their interaction becomes completely
elastic (Fig. 7b). Let us assume now that the spectra of
initial solitons are partially overlapped (Fig. 8). The inter-
action of solitons in the inhomogeneous amplifying medium
is still elastic (Figs 8a and 8b). For comparison, Fig. 8c
shows the interaction between ideal solitons in the absence
of amplification.

1Segev and Stegeman assert erroneously in their review [40] that Gatz and
Herrman [41] were the first to discover the inelastic scattering of solitons in
the model of nonlinear Schrodinger equation with saturation. Note that
actually the effect of inelastic scattering of Schrodinger solitons, resulting
in their merging to a pulse and called the soliton attractor in the model
with saturation, was first discovered by Zakharov and co-workers [42].
Nikonova and Serkin [43] were probably the first to apply the concept of
the soliton attractor to the problems of nonlinear optics. They used this
concept to the model of nonlinear Schrodinger equation with saturation
and calculated the inelastic scattering of Schrodinger solitons and the
conditions of merging of their bound states, which appear at the intensities
of solitons pulses when the higher terms in the expansion of the nonlinear
polarisability should be taken into account [4].
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Figure 7. Comparison of the dynamics of interaction of solitons for a
strongly nonadiabatic amplification regime (amplification by a factor of
100) in an active medium with (a) the gain that is constant over the
medium length and (b) a hyperbolically increasing gain for the non-
overlapped spectra of interacting solitons and AV = 10.0.

Figure 8. (a, b) Interaction of hyperbolically amplified solitons and (c)
ideal solitons with strongly overlapped spectra in the absence of
amplification for AV = 1.5.

Note that the problem of soliton amplification in a
spatially inhomogeneous system is well known to experi-
menters for a long time [1, 4, 17, 18]. Moreover, during the

energy exchange between nonlinear waves, the situation that
is very close to this considered here is always realised.
Indeed, we can consider for example, spatially inhomoge-
neous energy transfer during the intracavity generation of
ultrashort laser pulses and of solitons of stimulated Raman
scattering upon cascade frequency conversion in optical
fibres [1, 4, 17—22, 28]. The inhomogeneous gain, close to
the required hyperbolic gain, can be also obtained, if a
pump pulse, for example, during Raman amplification of
solitons represents a multi-soliton pulse, which itself under-
goes avalanche-like self-compression during propagation in
a medium at the initial stage of energy transfer to the Stokes
pulse. As shown in [29], the degree of compression of a
multi-soliton pulse is a hyperbolic function of the number of
solitons in the pulse, while an increase in the peak power
with the fibre length is described by a function that is close
to the required hyperbolic function. The required gain can
be also obtained by using special tapered fibres, which were
recently fabricated (see review [6] and papers [30, 31]).

Upon self-compression of a soliton in an active medium
in the case of femtosecond pulses, it is necessary to take into
account the higher approximations of the dispersion theory
and the Raman frequency shift [32, 33] appearing due to
Raman self-scattering [17]. We will consider elsewhere the
optimal amplification of femtosecond solitons, when one of
the main limiting factors is the Raman self-conversion of the
soliton frequency.

4. Conclusions

We have studied in this paper the new possibilities of
amplification of optical solitons. We have shown that the
most important condition determining the principal possi-
bility of amplification and compression of a frequency-
modulated soliton in an amplifying medium is the
maintaining of a linear frequency modulation during
time intervals exceeding the initial soliton duration. The
optimal function of the soliton gain can be obtained in a
two-photon fibre amplifier.

The ideal amplification of optical solitons is possible
because, in the case of the inhomogeneous gain, the
conditions are produced for the changing of a chirped
soliton in such a way that an amplified soliton completely
retains its unique properties of elastic interaction with
similar solitons. We will show in our next paper that a
finite width of the gain band of an amplifying medium does
not prevent the formation of ultrashort optical solitons
(which is a new fact). We will show that a complete analogy
exists with the problems of linear amplification of ultrashort
pulses, which have been considered already in paper [3].
Concerning periodic problems and the so-called soliton
Bloch waves [34], we can assert that they are completely
analogous to the problems of generation of ultrashort pulses
during the intracavity self-focusing of radiation [35, 36]. We
intend to consider this old problem using the space-time
analogy, which allows us to generalise easily the obtained
results to the case of optimal intracavity self-focusing of
radiation. As noted in review [36], the studies initiated in a
pioneering paper [35] have anticipated the advent of lasers
of the type of a Kerr self-mode-locked Ti : Al,O; laser.

Therefore, the problem of optimal (in our terminology,
ideal) amplification of solitons proves to be closely related to
various problems of generation of ultrashort laser pulses
and the development of new communication systems [1 —6].
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These problems are still far away from their complete EE14.

solution. The model of nonlinear Schrodinger equation
cannot answer the question about the limiting duration

of solitons in an active medium. This problem can be solved 1

by the methods based on a direct numerical solution of the

Maxwell system of equations in a nonlinear amplifying mmie.

medium [37].

By analysing the references presented below (which are
not complete due to the limited scope of the paper), we find
a very important circumstance, in our opinion, which was
pointed out in recent reviews [5, 6]. Although the problem of
generation of ultrashort laser pulses has already a thirty-
year history [3], it is now that interest in old problems was
rekindled. This is especially clear demonstrated by the
development of high-speed communication lines and the
generation of a femtosecond supercontinuum in optical
fibres (see, for example, reviews [2, 5, 6] and references
therein, and paper [38]). The fabrication of new fibres
with special dispersion characteristics [30] and tapered-waist
fibres and photonic crystals [31] stimulated the further
development of the theory.

Note that the problem of optimal amplification of
solitons is important from the point of view of general
physics because a soliton is one of the fundamental natural
objects. This nonlinear object is being studied almost in all
fields of modern science, and it is difficult not to agree with a
hypothesis put forward in paper [39] that the soliton
paradigm will serve as a unifying basis for the further
development of science.

Acknowledgements. The authors thank V.N. Serkin whose
lectures delivered at Benemerita Universidad Autonoma de
Puebla were used in writing this paper. The authors also
especially thank V.A. Rabinovich for constant help and
careful linguistic correction of the paper translation into
Russian. This work was also supported by the CONACYT
Foundation (Mexico). This work was reported at the
section of Mathematical Methods in the Applied Sciences
of the III International Conference on Electromechanical
Engineering and Systems (ICEES-2002).

References

1.  Hasegawa A. (Ed.) Massive WDM and TDM Soliton Trans-

mission Systems (Kluwer: Acad. Publ., 2000).

Dianov EM. Kvantovaya Eleicriron., 30, 659 (2000) [ Quantum

Electron., 30, 659 (2000)].

3. Kryukov P.G., Letokhov V.S. Usp. Fiz. Nauk, 99, 169 (1969).

4.  Agrawal G.P. Nonlinear Fiber Optics (New York: Academic,
1990; Moscow: Mir, 1996).

Kryukov P.G. Kvantovaya Elekiron., 31, 95 (2001) [ Quantum
Electron., 31, 95 (2001)].
Dianov E.M., Kryukov P.G. Kvaniovaya Elektron , 31, 877 (2001)

[ Quantum Electron.. 31, 877 (2001)].
7.  Blow K.J., Doran N.J., Wood D. Opt. Lett., 12, 1011 (1987).
8. Zakharov V.E., Shabat A.B. Zh. Eksp. Teor. Fiz., 61, 118 (1971)
[Sov. JETP, 34, 62 (1972)].
9. Moores J.D. Opt. Lett., 21, 555 (1996).
10. Khasilev V.Y. Proc. SPIE. Int. Soc. Opt. Eng., 2919, 177 (1996).
11.  Khasilev V.Y., Malomed B.A., Serkin V.N. Proc. SPIE. Int. Soc.
Opt. Eng., 3847, 224 (1999).
Serkin V.N., Fascgawa A. Phys. Rev. Lett., 85, 4502 (2000);
Proc. SPIE. Int. Soc. Opt. Eng., 3927, 302 (2000); Serkin V.N.,
Hasegawa A. Pis’'ma Zh. Eksp. Teor. Fiz., 72, 89 (2000) [JETP
Lett., 72, §9 (2000)].
Kumar S., Hasegawa A. Opt. Leit,
Physica D, 123, 267 (1998).

2, 372 (1997); Hasegawa A.

Serkin V.N., Belyaeva T.L. Kvan‘ovaya Elektron , 31, 1007 (2001)

[ Quantum Electron., 31, 1007 (2001)]; Pis'ma Zh. Elksp. Teor.

Fiz., 74, 649 (2001) [JETP Lett., 74, 573 (2001)]; Serkin V.N.,

Belyaeva T.L. Proc. SPIE Int. Soc. Opt. Eng., 4271, 323 (2001).

Serkin V.N., Hasegawa A. IEEE J. Sel. Top. Quentum Electron.,

8, 418 (2002).

Balakrishman R. Phys. Rev. A, 32, 1144 (1985); Burtsev S.P.,

Zakharov V.E., Mikhailov A.V. Theor. Math. Phys., 70, 227

(1987).

17. Dianov E.M., Grudinin A.B., Prokhorov A.M., Serkin V.N., in
Optical Solitons-Theory and Experiment. Ed. by J.R. Taylor
(Cambridge: Cambridge University Press, 1992) Ch.7, p.197—
265.

18. Masataka Nakazawa, in Optical Solitons-Theory and Experiment.
Ed. by J.R. Taylor (Cambridge: Cambridge University Press,
1992) Ch. 6, pp 152 -196.

19. Mollenauer L.F., Stolen R.H., Islam M.N. Opt. Lett., 10, 229
(1985).

20. Dianov E.M., Nikonova Z.S., Prokhorov A.M., Serkin V.N. Dokl.
Akad. Nauk SSSR, 283, 1342 (1985) [ Sov. Phys. Dokl., 30, 689
(1985)].

21.  Karpman V.1, Maslov EM. Zh. Eksp. Teor. Fiz., 75, 504 (1978)
[Sov. Phys. JETP, 48, 252 (1978)]; Karpman V.1, Solov’ev V.V.
Physica D, 3, 483 (1981).

22. Afanas’ev V.V., Dianov E.M., Prokhorov A.M., Serkin V.N.
Pis’'ma Zh. Eksp. Teor. Fiz., 16, 67 (1990) [ Sov. Tech. Phys.
Lett., 16, 711 (1990)].

23.  Dianov E.M, Nikonova Z.S., Serkin V.N. Kvantovaya Elektron.,
13, 1740 (1986) [ Sov. J. Quantum Electron., 16, 1148 (1986)].

24. Katys G.P.,, Kravtsov N.V., Chirkov L.E., Konovalov M.M.
Modulatsiya i otklonenie opticheskogo izlucheniya (Modulation
and Deflection of Optical Radiation) (Moscow: Nauka, 1967).

25.  Mustel’ E.P., Parygin V.N. Metody modulyatsii i skanirovaniya
sveta (Methods for Light Modulation and Scanning) (Moscow:
Nauka, 1970).

26. Lenz G., Eggleton B.J. J. Opt. Soc. Am. B, 15, 2979 (1998);
McKinnon K.I.M., Smyth N.F., Worthy A.L. J. Opt. Soc. Am.
B, 16, 441 (1999).

27.  Dianov E.M., Prokhorov A.M., Serkin V.N. Dokl. Akad. Nauk
SSSR, 273, 1112 (1983) [ Sov. Phys. Dokl., 28, 1036 (1983)].

28. Dianov E.M., Prokhorov A.M., Serkin V.N. Opt. Lett., 11, 168
(1986); Dianov E.M., Karasik A.Ya., Prokhorov A.M., Serkin
V.N. Izv. Akad. Nauk SSSR. Ser. Fiz., 50, 1042 (1986) [ Bull.
Acad. Sci., Phys. Ser., 50, 1 (1986)].

29. Mollenauer L.F., Stolen R.H., Gordon J.P., Tomlinson W.L. Opt.
Lett., 8, 289 (1983); Dianov E.M., Nikonova Z.S., Prokhorov
A.M., Serkin V.N. Pis’'ma Zh. Eksp. Teor. Fiz., 12, 756 (1986)
[Sov. Tech. Phys. Lett., 12, 311 (1986)].

30. Semenov V.A., Belov A.V., Dianov EM., Abramov A.A., Bubnov
M.M., Semjonov S.L., Shchebunjaev A.S., Khopin V.F., Gurya-
nov A.N., Vechkanov N.N. Appl. Opt., 34, 5331 (1995); Bogaty-

rjov V.A., Bubnov M.M., Dianov E.M., Sysoliatin A.A. Pure
Appl. Opt., 4, 345 (1995); Richardson D.J.. Chamberlin R.P.,
Dong L., Pane D.N. Electron. Lett., 31, 1681 (1995).

31.  Birks T.A., Wadsworth W.J., Russel P.St.J. Opt. Lett., 25, 1415
(2000); Liu X., Xu C., Knox W.H., Chandalia J.K., Eggleton B.J.,
Kosinski S.G., Windeler R.S. Opt. Lett., 26, 358 (2001); Knight
J.C., Birks T.A., Russel P.St.J., Atkin D.M. Opt. Lett., 21, 1547
(1996).

32.  Boyer G. Opt. Lett., 25, 601 (2000); Serkin V.N., Belyaeva T.L.,
Alexandrov L.V., Melo Melchor G. Proc. SPIE Int. Soc. Opt.
Eng., 4271, 292 (2001).

33, Yong-Xin Yan, Ciaumble E.B., Nelson K.A. J. Chem. Phys., 83,

5391 (1985); Mitchke F.M., Mollenauer L.F. Opt. Lett., 11, 659
(1986); Serkin V.N., Belyaeva T.L. Proc. SPIE Int. Soc. Opt.
Eng., 4271, 280 (2001).

34.  Chen Y., Kartner F.X., Morgner U., Cho S.H., Haus H.A., Ippen

E.P., Fujimoto J.G. J. Opt. Soc. Am. B, 16, 199 (1999); Serkin
& V.N., Belyacva T.L. Kvantovaya Elektron , 31, 1016 (2001)

[ Quantum Electron., 31, 1016 (2001)]; Serkin V.N., Belyaeva T.L.,

Alexandrov L.V., Melo Melchor G. Proc. SPIE Int. Soc. Opt.

Eng., 4271, 303 (2001); Serkin V.N., Maisumoto M., Belyaeva
& T.L. Pis'ma Zh. Eksp. Teor. Fiz, 73,64 (2001) [JETP Lett., 73,


http://dx.doi.org/10.1103/PhysRevLett.85.4502
ivs
�	
2+� 7�:�*  "�	�"#" �� .��	� ˆ
�� ,
���* .+* 
�˘� $�˘˘˘&>

http://dx.doi.org/10.1134/1.1312019
http://dx.doi.org/10.1134/1.1312019
http://dx.doi.org/10.1134/1.1312019
ivs
�	
2+� 7�:�*

ivs
 "�	�"#" �� .�	0�� ˚�� ��	�� ˜
��� !�(�� -%* 8. $�˘˘˘& / -�˜.

ivs
,
��˝ˇ -%* 8. $�˘˘˘&0�

http://dx.doi.org/10.1016/S0167-2789(98)00126-2
ivs
'��"
 ��*  "�	�"#" �� +��� ,
���* %%* ˚ˇ� $�..ˇ&>  "�	�"#" �

ivs
.��	��� %* ˝%$* ��ˇ $�..8&�

http://dx.doi.org/10.1134/1.1455063
http://dx.doi.org/10.1134/1.1455063
ivs
.�	0�� ˚�� ��	�� ˜
���

ivs
!�(�* -** �
. $�˘˘�& / -�˜. ,
��˝ˇ -** �ˇ˚ $�˘˘�&0>

http://dx.doi.org/10.1109/JSTQE.2002.1016344
ivs
�	
2+� 7�:�*  "�	�"#" �� ˛��� -� ˘
�� ˜��� ˝��
��� ��
����
��

ivs
.* 
�8 $�˘˘�&�

http://dx.doi.org/10.1103/PhysRevA.32.1144
ivs
˜"("2
+�6�"� ?� .��	� ˆ
�� ˙* $%* ��

 $�.8�&>

http://dx.doi.org/10.1088/0963-9659/4/4/009
http://dx.doi.org/10.1088/0963-9659/4/4/009
http://dx.doi.org/10.1088/0963-9659/4/4/009
ivs
˜,�"51H

ivs

G,˛ 7���* ˜���,˛ -�-�* �+"�,˛ ˝�-�* �1�,(+"5+� ���� .��


ivs
���� +���* ** ˚
� $�..�&>

http://dx.doi.org/10.1049/el:19951144
http://dx.doi.org/10.1049/el:19951144
ivs
?+)6"
%�,� ��9�* �6"��	
(+� ?���*

ivs
�,�� 4�* �"�	 ��:� ��
����
� ,
���* $˝* ��8� $�..�&�

http://dx.doi.org/10.1063/1.449708
ivs
=,��HI+� ="�* 3"��(	 ˝�˜�* :	(�,� '��� -� "�
�� .��	�* .$

ivs
�˚.� $�.8�&>

http://dx.doi.org/10.1063/1.449708
http://dx.doi.org/10.1134/1.1358419
http://dx.doi.org/10.1134/1.1358419
ivs
�	
2+� 7�:�* -"5���,5, -�* ˜	(1"	˛"

ivs
��4� .�	0�� ˚�� ��	�� ˜
��� !�(�ˇ -$* �
 $�˘˘�& / -�˜. ,
���� -$

http://dx.doi.org/10.1070/qe2000v030n08ABEH001786
ivs
�+"�,˛ ˝�-� ���
������ ��
�����
�* $0* ��. $�˘˘˘& / ˝��
���

ivs
��
����
�* $0* ��. $�˘˘˘&0�

http://dx.doi.org/10.1070/qe2001v031n02ABEH001906
ivs
'
1�2,˛ ��3� ���
������ ��
����
�* $˝* .� $�˘˘�& / ˝��
���

ivs
��
����
�* $˝* .� $�˘˘�&0�

http://dx.doi.org/10.1070/QE2001v031n10ABEH002068
ivs
�+"�,˛ ˝�-�* '
1�2,˛ ��3� ���
������ ��
����
�* $˝* 8ˇˇ $�˘˘�&

ivs
/ ˝��
��� ��
����
�* $˝* 8ˇˇ $�˘˘�&0�

http://dx.doi.org/10.1070/QE2001v031n11ABEH002093
ivs
�	
2+� 7�:�* ˜	(1"	˛" ��4� ���
������ ��
����
�* $˝* �˘˘ˇ $�˘˘�&

http://dx.doi.org/10.1070/QE2001v031n11ABEH002093
ivs
/ ˝��
��� ��
����
�� $˝* �˘˘ˇ $�˘˘�&0>

http://dx.doi.org/10.1070/QE2001v031n11ABEH002094
http://dx.doi.org/10.1070/QE2001v031n11ABEH002094
http://dx.doi.org/10.1070/QE2001v031n11ABEH002094
ivs
�	
2+�

ivs
7�:�* ˜	(1"	˛" ��4� ���
������ ��
����
�� $˝* �˘�� $�˘˘�&

ivs
/ ˝��
��� ��
����
�� $˝* �˘�� $�˘˘�&0>


1028 G. Melo Melchor, M. Agiiero Granados, G.H. Corro

59 (2001)]; Serkin V.N., Matsumoto M., Belyaeva T.L. Opt.
Commun., 190, 159 (2001).
35.  Lariontsev E.G., Serkin V.N. Kvantovaya Elektron., 2, 1481
(1975) [ Sov. J. Quantum Electron., 5, 796 (1975)].
[E36. French PM.W. Reports on Progress in Physics, 58, 169 (1995).
37.  Serkin V.N., Schmidt E.M., Samarina E.V., Belyaeva T.L. Proc.
SPIE Int. Soc. Opt. Eng., 2800, 310 (1996); Serkin V.N., Schmidt
E.M., Belyaeva T.L. Proc. SPIE Int. Soc. Opt. Eng., 3927, 323
(2000); Serkin V.N., Schmidt E.M., Belyaeva T.L., Khotyaintsev
S.N. Dokl. Ross. Akad. Nauk, 359, 760 (1998) [ Dokl. Phys, 43,
206 (1998)].
38. Bespalov V.G., Krylov V.N., Seyfang G., Staselko D.I., Kozlov
S.A., Shpolyansky Yu.A., Rebane A. Proc. SPIE Int. Soc. Opt.
Eng., 4271, 159 (2001).
39.  Krumhansl J.A. Phys. Today, 3, 33 (1991).
40. Segev M., Stegeman G. Phys. Today, 8, 42 (1998).
[E41. Gatz S., Herrman I. IEEE J. Quantum Electron , 28, 1732 (1992).
42. Zakharov V.E., Pushkarev A.N., Shvets V.F. Pis'ma Zh. Eksp.
Teor. Fiz., 48, 79 (1988) [JETP Lett., 48, 83 (1988)].
43.  Nikonova Z.S., Serkin V.N. Trudy IOFAN, 23, 39 (1990).


ivs
�. $�˘˘�&0>

http://dx.doi.org/10.1134/1.1358419
http://dx.doi.org/10.1016/S0030-4018(01)01365-7
http://dx.doi.org/10.1016/S0030-4018(01)01365-7
ivs
�	
2+� 7�:�* -"5���,5, -�* ˜	(1"	˛" ��4� +���

ivs
"����
�* ˝1,* ��. $�˘˘�&�

http://dx.doi.org/10.1088/0034-4885/58/2/001
ivs
D
	�)6 ��-�;� ˆ
����	 �
 .��/�
		 �
 .��	��	* +.* ��. $�..�&�

http://dx.doi.org/10.1109/3.142561
ivs
3"5C ��*  	

�"� 9� ˛��� -� ˝��
��� ��
����
�* %.* �ˇ˚� $�..�&�


