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Four-wave interactions in an active XeCl plasma

Yu.K. Verevkin, E.Ya. Daume, V.N. Petryakov

Abstract. A problem of the four-wave interaction of radiation
in a three-level medium, where the lower working level is a
repulsive one, is solved. This situation is characteristic of UV-
active excimer molecules. The solution to this problem is
compared to the results obtained for a two-level model. The
coefficient of reflection into a conjugate wave is measured as
a function of the small-signal gain in an active XeCl excimer
plasma. An influence of the four-wave interaction on the
characteristics of optical amplifiers and master oscillators
operating with narrow-band radiation is observed.

Keywords: three-level model, nondegenerate interaction of counter-
propagating waves, reflection efficiency of the probe radiation.

1. Introduction

Four-wave interactions in resonance media are of interest
for spectroscopy and optimisation of high-power laser
systems [1—6]. For the purpose of spectroscopy, it is
sufficient to solve this problem in the approximation of
expansion of the polarisation at the frequencies of strong
waves in powers of the saturating field. In this case, the
population difference must be close to an equilibrium value
[1, 2]. In order to optimise laser systems, it is necessary to
solve the problem of the influence of the strong-wave
amplitudes on the character of resonance-medium satura-
tion as exactly as possible [7]. In the first case, the problems
of wave interaction have been solved for both the two-level
and multilevel models. Note that, in many works and
spectroscopic problems, strong fields are exactly taken into
account in the first-order solution in terms of a weak field.
Using such an approach, a number of interesting effects,
such as line broadening and the appearance of several
peaks, which depend on the interaction coefficient of the
waves and their frequencies and intensities, have been
revealed [8, 9].

In the second case, degenerate and nondegenerate four-
wave interactions were considered theoretically in a two-
level resonance medium [3, 4, 6, 7], where the frequencies of
two (strong) waves were assumed equal (w;). Upon the
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nondegenerate interaction, the frequency w3, amplitude, and
propagation direction of the third (weak) wave are also
specified, and the conditions for the appearance of the
fourth wave with a frequency wy = 2w; — w3 are analysed.
However, the lower working state of UV-active excimer
molecules (XeF, XeCl, etc.) is repulsive or weakly bound
[10]; therefore, it is interesting to elucidate the effect of this
feature on four-wave interactions. This feature can be
described in the simplest form within the framework of a
three-level model.

In this paper, we extend the problem of four-wave
interaction to the case of a three-level medium taking
into account changes in the amplitudes of strong waves.

2. Features of the three-level model
of four-wave interactions

The diagram of the energy levels and relaxation processes
analysed in this paper is shown in Fig. 1. Levels 2 and 3
correspond to an active resonance transition on which all of
the waves of interest operate. Level 1 corresponds to the
ground state, the parameters w,; and ws;, characterise the
population relaxation of the working transition, wi;
determines the repulsive behaviour of the lower working
level, and w,; simulates the effect of various factors [11]
leading to excitation of the upper level. The equations
describing the interaction of waves with such an atomic
system can be written in the form (e.g., [12])

d . V.
(& - 1<023)P32 = —732Pn +7312 4,
dpy; _ dp3,
dr dr”’
d4 0 1
dr ~Wi(ps - sz)) - | )(A —4")
M
2
+ E(stpn - V),

dp 0 1
—diz = —W2(Pzz - ,05 )) - Wl( )(A - A(O))

1
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where p,,, are the elements of the density matrix; 4 =
Fy — P33; P, and A are the steady-state (in the absence
of external fields) values of these quantities; V3 = Vi =
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— U [Eyexp (—iw 1) + Eyexp (— iw;1)] are the matrix ele-
ments of the interaction operator in the rotating-wave
approximation; E;=A; exp (ikr +1i¢,)+ A4, exp (ikor + ip,)
is the complex amplitude of the strong field formed by
counterpropagating waves at the frequency w;; E; = A3X%
exp (ikzr) is the complex amplitude of a weak wave at the
frequency ws; py; is the matrix element of the dipole
operator for levels 2 and 3; W, = —w; + 2(wy — wy
—l—u()%%); Wl(l = w3 — Wy + 2wa3; Wy = 2wy — wa3 + wa;
W, = —wy + Wy3; Wy, are the phenomenological factors
determining the rates of transitions from the state n to the
state m in the absence of external fields; and y;, is the decay
constant of nondiagonal matrix elements for levels 3 and 2.
The frequencies w; and w3 of the considered fields are close
to the resonance with the 2 < 3 transition.
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Figure 1. Three-level diagram of the medium used for the description of
a four-wave interaction.

The solution to system (1) for steady-state conditions in
a linear weak-field approximation shows that, if strong
counterpropagating waves at the frequency w; and a weak
wave at w; are specified, a weak wave at the frequency
w4 = 2w — w; is generated in the medium. If a weak wave
at the frequency w, exists, then a wave at the frequency
w3 = 2w; — w, appears.

The system of algebraic equations determining the
components of the density matrix elements at the above
frequencies has the form

h(ws — wy3 + iV32)P§13) (w3) — /123E1A(1)(w3 —w)

= 153 E,49(0),

. 1
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is the steady-state value of A taking into account a
saturation caused by the wave E; (E; = 0);

wow) —wVw,

®=2 ;
W, —2W,

and A(1>(w3 — ;) is the frequency component of the
population difference. Using the system of Eqgs (2), we
find the frequency components of the elements p,; and ps,
at the frequencies w; and 2w; — ws, respectively:
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The obtained values pg; (w3) and pgl; (w3 — 2my) allow us
to determine the polarisation at the frequencies w; and wy,
which are the excitation sources of the corresponding waves.
Expressions (3) are similar to formulas (8) from [9]. The
relations obtained can be adapted to a two-level scheme by
tending w;; to zero. In this case, the quantities @ and
W, ® (w3 — w;) + Wl(l) transform into the sum w3 + wss.

Let us compare spectral and nonlinear-optical differen-
ces in the behaviour of the matrix element ps,(w; — 2w;) for
a frequency-nondegenerate (w; # ws) four-wave interaction
for two- and three-level models. The characteristics of the
fourth wave w, = 2w, — ws are determined, in particular, by
the matrix element p;,. Consider the case of the exact
resonance @; = w,3 under the condition that T, =
y3_21 < wy,', wy', wy, which is valid for the active tran-
sitions of excimer molecules. We can then select fast and
slow terms dependent on ws in the expression for | pglz)(w3—
2m)| and replace the slow terms by their values at the
maximum of the transition band. This allows us to derive
the analytic expression for the spectral width Aw, s of the
effective four-wave interaction. Taking into account that,
for a two-level model, w3 < ws,, Wy, Wy, We obtain

Ay s = 23 (w3 + wy) (1 + 1),
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where

2 2
7O _ 4" E|
13 (wa3 + wsy)

For w3 > w3,, wys, wyy, we have
Awgs = 2v/3(wy; + wy) (1 +11),
where

2 2
700 _ 2| 5|7 B |
1y (way + wsy)

As a rule, wy; < w3, &~ wys; therefore, the width of the
interaction in the three-level model is smaller than that in
the two-level model (at M zl(“)). Fig. 2 shows the
spectral dependence |pg12)(a)3—2co1)| for some relations
between the parameters of the transitions. Curve (/)
corresponds virtually to a two-level model, when w3 is
much lower than the other transition probabilities in the
system. Curves (2—4) characterise a three-level model (w3
is large compared to other transition probabilities). The
interaction bandwidth for curve (2) is approximately two
times smaller than that in the two-level model. As w,;
increases, the interaction bandwidth increases in accordance
with the above approximate formula.

103 (w3 — 20,)| (rel. units)
0.25 |
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Figure 2. Spectral dependences |p3(5)(w3 — 2my)| in an almost two-level
model at wy; =2 x 10*° s7!, wy; = 107 57! (1) and a three-level model
at w3 =2 x 102 571w, =107 (2), 10° (3), and 10°* s~ (4) for
Wy = Wy = 0.5 x 10° s71, 33, = 1012 571, w, = w3, and I/ 1, = 1.

The presence of the third level also affects the saturation
intensity, which can be determined from formulas (2):

¢ hz%z‘p

A 4P

sat
For the two-level model (for wy;; — 0),

_i’h27’32(23+32)
sat — 2
a4,

and for the three-level model (for w3 > 1/T)),

_ ¢ 1773 (w1 + wy)
sat — 2
4n 2|z

At wy3 ™~ w3, ~ Wiy, these saturation intensities differ by a
factor of ~ 2. If wy; < w3, and wy3 & w;,, they are virtually
equal for both models.

3. Nondegenerate four-wave interaction
in a medium with a large gain
(absorption coefficient)

The small-signal gain in an active XeCl plasma is usually
~e® — e per pass in an amplifier. This means that, when
analysing four-wave interactions in such a medium, it is
necessary to take into account changes in the amplitudes of
strong waves along the medium.

The results obtained above make it possible to write
equations for complex amplitudes of weak waves E; and E,
and simultaneously take into account the changes in the
amplitudes and phases of the strong waves. According to [9],
we obtain truncated equations for the weak waves E; =
A;exp (ik;r) (j=3, 4):

. dds a3 N(w3) + 234, 4,
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Eqns (4) and (5) have the following notation:
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Here, Ak. is the z component of the mismatch vector Ak =
k| + ky, — k3 — k4, and N, is the atomic density. The expre-
sions for the coefficients oy, o}, kio)*, and functions
D" (w,) and N*(w,) are obtained when index 3 is replaced
by 4 in the formulas for the corresponding coefficients and
the complex conjugate values are taken. All the coefficients
in (4) and (5) for the degenerate regime (w; = w;) remain
unaltered regardless of the two- or three-level atomic model
adopted. The only difference is the expressions for the
saturation intensities. The amplitude distributions for the
strong waves along their propagation direction (A4;(z) and
A,(z)) were found from the solution to the problem of the
amplification of two counterpropagating waves in the active
medium.

The geometrical arrangement of the wave vectors of the
interacting waves is shown in Fig. 3. All the angles are
considered small for the electromagnetic field to be
described by a one-dimensional wave equation. An approxi-
mate formula can be written for the z component of the
mismatch vector:

Ak 2 2| ks| — ki | + [kes|0" (0" + 0" — 0,)]. ©)

According to Fig. 3, the wave-vector components in Eqns
(4) and (5) are k3, < 0 and k4. > 0.

An interesting parameter that can be found from the
solution to Eqns (4) and (5) is the reflection coefficient

k

207 ks

key

Figure 3.
k1| = [kol.

Diagram of the wave vectors of the interacting waves;

R = |45(0)/45(0)]* provided that the amplitude A4 at the
exit from the active medium (A43(L) =0, where L is the
active-medium length). Fig. 4 presents R as a function of the
intensity of the strong waves at the entrance to the active
medium for various gains K of the weak-signal intensity. If
a theory neglecting a change in the strong waves during their
propagation in the active medium is used (see formula (20)
in [7]), the coefficient R tends to infinity already at K, ~ ¢*”.
If this change is taken into account, the maximum R value is
~ 20. Note that, in the first case at K, ~ e® the dependence
of R on the normalised intensity has two points at which R
becomes infinitely large: at I/, ~ 0.1 and ~ 1. In the
second case, R has only one peak at I/l < 1073, Such
differences between the two models can be understood if we
pay attention to the dependence of the gain K of the
counterpropagating waves on their intensity at the entrance
to the active medium (Fig. 5). In the approximation used in
[7], it is assumed that this gain is independent of the waves’
intensity at the entrance. However, Fig. 5 shows that, at
optimal intensities of the strong waves, their gain changes by
several tens of times. It is the amplification saturation effect
that leads to a significant reduction in the reflection
coefficient R.

Figure 4. Coefficient of reflection R into the conjugate wave as a
function of the intensity of strong waves at the entrance to the active
medium for various small-signal intensity gains at w; = @ = w,3.

K L

1000

500

Figure 5. Intensity gain K for counterpropagating waves as a function of
their intensity at the entrance to the active medium for various small-
signal intensity gains at @; = wy;.
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4. Experimental setup and reflection-coefficient
measurements

A schematic of the experimental setup for investigating the
four-wave interaction in an active XeCl plasma is shown in
Fig. 6. A standard optical scheme for measuring the inten-
sities of two strong (/; and 1,), probing (/;), and reflected
(I3) waves is used. Its specific feature is that, in order to
measure the small-signal gain, we utilised the spontaneous
emission on the working transition, whose intensity was
recorded by a photodetector (7) at a small (~ 1°) angle to
the amplifier axis. A correlation between the spontaneous-
emission intensity and the small-signal gain was prelimi-
narily established using a single wave of the probe
radiation. The experimental gain was varied between 50
and 600 through changes in the high voltage across storage
capacitors and due to a mutual synchronisation of the
probe radiation source with the plasma discharge in the
amplifier studied.

; AN

Figure 6. Schematic of the experimental setup: (/) narrowband master
oscillator; (2) dielectric mirrors with a reflectivity r = 50 %; (3) dielect-
ric mirrors with r = 98 %; (4—7) photodetectors; (&) focusing lens; and
(9) active medium under study.

A two-stage XeCl laser with a diffraction-limited diver-
gence, a pulse duration of ~ 10 ns, a spectral width of
~0.03 cm™', and a pulse energy of <10 mJ served as a
probe radiation source. The intensity of the strong waves
was usually ~ 1 % of the saturation intensity, and the probe
wave intensity was ~10 times lower. The minimum intensity
of the probe waves was determined by the sensitivity of the
recording instruments. The probe wave was directed into the
active medium at an angle of ~ 10 — 30’ to the propagation
direction of the strong waves. The diameter of all the beams
used in the experiment was ~ 6 mm.

Fig. 7 shows the coefficient of reflection into the conju-
gate wave measured as a function of the small-signal gain.
Due to the short pulse duration of the probe radiation and a
short time of the existence of a uniform plasma-discharge
stage, the experimental conditions differ from the steady-
state conditions considered theoretically. When comparing
such measurements with calculations (Fig. 4), only a qual-
itative agreement between them can be expected. A
quantitative comparison requires a narrower spectrum of
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Figure 7. Experimental dependences of the coefficient of reflection R into
the conjugate wave on the small-signal gain K.

the probe waves or a shorter length of the active medium
(9) (Fig. 6). Such experiments are planned for the future.

5. Conclusions

The theoretical and experimental investigations performed
have shown the possibility of obtaining a high-efficiency
phase conjugation for weak signals in an active XeCl
plasma. Note also that four-wave interactions in this
plasma result in a spurious generation and an increase in
the intensity of the amplified spontaneous emission inside
the resonator of the narrow-band master oscillator and in
multipass optical amplifiers.
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