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Excitation of convective motions in isotropic

and anisotropic liquids by light

R.S. Akopyan, R.B. Alaverdyan, L.Kh. Muradyan, G.E. Seferyan, Yu.S. Chilingaryan

Abstract. The possibility of excitation of convective motions
of the Rayleigh—Benard and Marangoni type in isotropic
liquids and nematic liquid crystals upon absorption of light
with a spatially periodic intensity distribution is demonstrated
theoretically and experimentally. It is shown that gravita-
tional and thermocapillary surface hydrodynamic waves are
observed in the case of a running interference pattern. The
possibility of control and the stability of convective motions
are investigated. Benard cells become unstable when the light
intensity is high. These instabilities are of thermal origin
because the Prandtl number for the medium under inves-
tigation is considerably larger than unity. The competition
between the gravitational and thermocapillary mechanisms of
photohydrodynamic reorientation of the nematic liquid crystal
director is also studied. The effect of convective motions on
the thermodynamic phase transition is observed and
explained.
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1. Introduction

Convection in a layer of liquid heated from below is of
considerable interest because convection is a simple
example of motion caused by the ground-state instability.
This instability appears when the Rayleigh number R
characterising the equilibrium between the potential energy
and the loss energy due to dissipation exceeds a certain
critical value R.. Various aspects of stability of a
horizontal layer of a liquid heated from below were
investigated by many authors [1-3]. These effects are
well known as the Rayleigh—Benard and Marangoni
convective motions [4, 5]. An analysis of the peculiarities
of thermal convection in nematic liquid crystals (NLCs) is
of considerable importance because of their practical
applications. It should be noted that instability thresholds
in NLCs differ significantly from the instability threshold in
isotropic liquids [6]. Unlike isotropic liquids, the NLC
instability mechanism is governed by the director determin-
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ing the direction of preferred orientation of molecules. As a
result, steady-state convection occurs in a homotropically
oriented NLC (whose molecules are oriented perpendicu-
larly to the cell substrates) heated from above [7—9]. For
example, Hopf bifurcation was observed in Ref. [9] in a
homotropically oriented NLC in the case of Rayleigh-—
Benard convection.

The stability of regular convective motions is important
in connection with the application of NLCs in applied
physics problems. A transition from convective to absolute
instability in a Hele—Shaw cell in the case of an unstable
Kelvin—Helmholtz shift of the interface between two
parallel flows of liquids was studied experimentally in [10].

The application of laser radiation makes it possible not
only to achieve bulk heat release with almost any desirable
spatial distribution, but also to control the parameters of
this distribution. For example, the possibility of thermoca-
pillary excitation of hydrodynamic motions by a laser beam
was demonstrated experimentally for the first time in Refs
[11-13], and the possibility of exciting regular convective
motions in NLCs due to absorption of laser radiation with a
spatially periodic intensity structure was predicted earlier in
[14]. Tt was also shown that hydrodynamic flows lead to
reorientation of the director and, hence, to a modulation of
the permittivity of a NLC. The theory describing the strong
orientation-convection-thermal nonlinearity predicted in
Ref. [14] is given in [15].

The contribution of the above mechanism of optical
nonlinearity to self-focussing of light in NLCs was observed
for the first time in Ref. [16]. The NLC cell was closed on
both sides so that only the gravitational mechanism of
convection induced by the thermal expansion of the liquid
was possible. Excitation of regular convective motions in an
isotropic liquid with a single open surface was analysed
theoretically [17] for the case when the liquid absorbed light
with a spatially periodic structure of the intensity distribu-
tion. Convection was caused by the temperature dependence
of the surface tension of the liquid (Marangoni thermoca-
pillary mechanism). Forced convection and optical
hydrodynamic reorientation of molecules in NLCs with a
single free surface was investigated theoretically [18]. In the
same paper, the competition between the gravitational and
thermocapillary mechanisms was discussed and the con-
ditions under which one of these mechanisms makes the
main contribution to the convective motions were deter-
mined.

In this work, the gravitational and thermocapillary
mechanisms of excitation of hydrodynamic convection in
isotropic and anisotropic liquids, which is caused by
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absorption of light with spatially periodic intensity distri-
bution, were observed experimentally and studied theore-
tically. When a running periodic structure was produced,
surface hydrodynamic waves were generated, whose prop-
agation velocity coincided with the propagation velocity of
the periodic structure. The stability of convective cells and
surface hydrodynamic waves was studied and the possibility
of the stability control was analysed.

2. Excitation of convective motions
by a spatially periodic structure of a light wave

Consider a horizontal layer (z =0, L) of a light-absorbing
liquid or a liquid crystal with a free upper boundary (z = L)
(Fig. 1). The layer is in the gravitational field with g = —ge.
and absorbs light incident from above. We assume that two
coherent plane light beams are incident on the free surface
and form a spatially periodic pattern of the intensity
distribution with period A. Weak absorption leads to a
periodic heat release Q = aly[l + cos (kx)], where o is the
light absorption coefficient; [ is the average total intensity
of light; k = 2n(sinoy — sina,)/A is the wave number; o
and o, are the angles of incidence of the light beams on the
liquid surface; and A is the wavelength of light waves in
vacuum.

We assume that heat is released symmetrically with
respect to the coordinate y, so that 9/0y =0 and v, =0
(v is the velocity of hydrodynamic motions) everywhere.
Hydrodynamic motions being excited are described by a
system of equations of state, Navier — Stokes equations, and
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Figure 1. Schematic of the experimental setup: (/) cell with a liquid
crystal; (2) polarisers; (3) light source (200-W halogen lamp); (4)
condenser; (5) amplitude grating; (6) circulating water; ( 7) microscope;
(8) optical fibre; (9) photodetector; ( /0) He—Ne laser.

the equations of incompressibility and thermal conductivity
for the hydrodynamic density p, pressure p, velocity v, and
temperature 7. We write these variables in the form
T=Ty+T', p=py+p', p=po(1 = pT"), where T, py,
and p, are the unperturbed temperature, pressure
(po = —pogz + const), and density; T’, p', v are perturba-
tions, and f is the volume expansion coefficient of the liquid.
We will write the system of equations for the quantities T,
p’, v in the dimensionless form. A passage to dimensionless
variables can be made in several ways. We will use the
following most common procedure. We choose the layer
thickness L as the unit of length, the time L?/v of vertical
thermal diffusion as the unit of time, y/L as the unit of
velocity, pov;(/L2 as the unit of pressure, and chZIO/(pOcp;{)
as the unit of temperature, where y is the thermal diffusivity;
v=1n/p, is the kinematic viscosity; n is the viscosity
coefficient; and ¢, is the specific heat. In this case, the
above-mentioned equations in the Boussinesq approxima-
tion can be written in the dimensionless form:

ov 1

a + E(UV)U = —gradp + Av + RTe.,
Praa—tTJr vVT = AT + 1 + cos(kx), (1)
divo =0,

where Pr=v/y is the Prandtl number and R =

gﬁ]o(aL)L4/(vpochZ) is the Rayleigh number for the
heat source, which is associated with light absorption;
for the sake of simplicity, we omit primes on the quantities.
The equations for the z component of velocity and
temperature in the steady-state regime of convective
motions in the linear approximation have the form

AAv. + RA, T, = 0,
2

AT+ 1 + cos(kx) = 0,

where A, = &° / 0x2. We assume that, at the rigid boundary
z =0, temperature 7T, is maintained and the boundary
conditions for adhesion of the liquid are specified so that,
for z =0, we have

Ovg. (x, 2)
ST Y TS(X,Z = 0) = 0. (3)

The boundary condition at the open surface z =1 for
the perturbation of temperature 7, correspond to linear heat
removal in accordance with the Biot law [1] (we assume that
heat removal is simply absent):

oT,
0z

=0. @)
z=1
The tangential force per unit area of the flat surface, which
is associated with nonuniformity of the surface tension g, is
f=Vo; consequently, the boundary condition for the
velocity taking into account the thermocapillary force
can be written as

2
a USZ
0z?2

~ M?’T,
z=1 a ax2

veo(x,z=1) =0,

©)

z=1
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where M = al(ocL)LZIO/(vxpoch) is the Marangoni number
and o) = —00/0T. We must solve the system of equations
(2) with the boundary conditions (3)—(5). The solution can
be written in the form v,, = V(z) cos (kx), Ty = 0,(z) + 0,(2)
x cos (kx).

The x component of the velocity can easily be measured
in experiment. The boundary conditions for this component
can be written in the form

v,
Oz

MOT,

z=1 ox

Ve (x,2=0) =0, (6)

z=1

The solution for the velocity component vy, can be written
as U (x,z) = —(1/k)(0V/0z)sin (kx). Fig.2 shows the
dependence of the x and z velocity component on z. The
calculations were made for the following parameters of the
medium: p, =1.042 gem ™, p =1.25P, y =10"* cm?s™",
B=53x10*K", I,=6Wem™>2, o=50cm™', L=
I mm, pc,= 1J em P K", ¢, =102 dyne em ' K7,
R=127x10°, M =24x 10",
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Figure 2. Dependences of the amplitudes of the x and z velocity
components on the normalised coordinate z/L for the intensity
I, =6 W em ™2, cell thickness L =1 mm, and the period of intensity
distribution 4 = 2 mm.

3. Excitation of hydrodynamic surface waves

Let two monochromatic waves with shifted frequencies w;
and w, be incident on a horizontal layer of a liquid with the
free surface z = 0, forming a running interference intensity
pattern. In this case, the heat release can be written in a
different form Q = aly[1 + 0.5exp (ikx — iw?) +c.c.], where
w = w; — w,, and the experimental geometry is chosen so
that the interference fringes are parallel to the y axis. The
running interference pattern results in a running periodic
heat release. The latter, in turn, leads to the appearance of
convective rollers with the axes parallel to the direction of
the interference fringes. These convective cylinders (rollers)
move at right angles to this direction at a velocity w/k.

In our analysis, it is important to take into account the z
component of the velocity of the liquid v.(z = 0) # 0 on the
free surface. The nonzero velocity exists because the
assending regions of the liquid leave the plane z =0 by
inertia. This gives rise to the surface hydrodynamic waves of
length 2n/k and velocity w/k.

To solve the problem formulated above, we should
modify the boundary conditions for v.(z =0). This can

be done proceeding from the following considerations. First,
the deformation of the free surface of the liquid generates
the Laplace force a(@zé/axz), where &(x, ¢) is the displace-
ment in the vertical direction from the unperturbed level of
the surface z =0. This force is balanced by the normal
component of the viscous force o.. (g is the tensor of
viscous stresses). Second, the tangential viscous forces are
balanced by thermocapillary forces. The third boundary
condition will be left unchanged (see Section 2). Thus, three
boundary conditions for z =0 can be written in the form
dv. 8%

Y
O = PTG =05

()

=3 P

v, au:> GG oT

Oxz = Ozy Iﬂ(g"‘a

Considering that v.(z=0)=0£/0f, we can write the

solutions to the system of equations (1) (disregarding
nonlinear terms) in the form

Uy, = Vy.(z) exp(ikx — iwf) +c.c.,

p = P(z) exp(ikx — iwt) — pygz +c.c., (8)

T = O(z) exp(ikx — iwt) +c.c.

By omitting the details of mathematical calculations, we
write directly the expressions obtained for the temperature
distribution on the liquid surface and the amplitude of
capillary waves:

—yo_ o
@(Z*O) 7pcp(xk2_iw)’ (9)
fo o1 O(z=0) exp(ikx — iwt)+c.c.  (10)

_lﬁwgk—l— ak3/p — 2ivkw

In order to obtain numerical estimates, we use the values of
parameters close to those typical of liquid crystals (e.g.,
MBBA) given in Section 2. Assuming, in addition, that
o =10dyne cm™!, in the optical frequency range (k ~
10> — 10° cm™'), we obtain ok*/p ~ 10" —10'7. On the
other hand, to excite surface waves, the displacement of the
interference pattern should occur slower than the stabilisa-
tion of temperature and hydrodynamic velocity, i.e.,
o < yk* < vk? Under these conditions, expression (10)
can be written in a simplified form:

ool
Ex,t) =

= Ynoc, ik sin(kx — wt).
pA

(11)

To obtain a wave with amplitude & = 1 um, the intensity
of light waves must be I, = 11.7 W cm™>; i.e., we deal with
comparatively moderate powers. In this case, the maximum
temperature of the medium is @, (z=0)~ 6.5 x 10° K,
which is due to the absence of heat transfer. When the latter
is taken into account, formula (9) is supplemented with the
factor 1/[1 + b/(ykpc,)], and the temperature of the liquid is
two orders of magnitude lower (depending on the Biot
number b).
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Thus, an analysis of a semiinfinite light-absorbing liquid
allows us to obtain a simple analytic solution of the problem
in the form of a wave of the thermocapillary perturbation of
the free surface of the liquid.

4. Stability of steady-state convective structures

Consider now the stability of steady-state convective
Rayleigh — Benard cells. The stability of ordered convective
structures for a fixed thickness of the cell depends strongly
on the light intensity and on the period of an interference
pattern.

Let the perturbed quantities in system (1) of dimension-
less equations of thermal convection in the Boussinesq
approximation have the form v, + v, p, + p, T, + T. Below
we will assume that Pr> 1. In this case, we obtain the
following scalar equations for v, p, and T:

v, Op

B o A
ov.  Op

or o + Av, + RT,

(12)

p 0T, T OT 0T o, .
or T Usax T ey Ty T T 00

Oov, Ouv.
=+

ox ta:

We now introduce the so-called stream function y(x, z, ?):

W oy

= =X, 13

T T T o (13)

Then, the equations for the stream function and tempera-
ture perturbation takes the form:

Y oT
= AA R—,
o MV AHRA
(14)
oT oT ~ OT 0ydT, dYoT,
P oyt ey "o T e AT

We will seek the solutions to Eqns (14) in the form
V(x,z,t) = og(z) cos (kx)exp (p1), T(x,z,t) = Oy(z)sin (kx)exp (y?),
where y is the logarithmic decrement of the stream function.
Eliminating 7(x,z,f) from the system of equations and
performing some transformations, we obtain the sixth-order
differential equation for og(z):

d®x 2 d*a 4, 4, 2 4 0

56 — (3k* +yPr) — = + (3k* + 29k *Pr + y°Pr) i

1
—[kf’+yk4pr+k2<yzpr+§R>}%:o. (15)

The boundary conditions for the amplitude oy(z) of
perturbations can be written in the form

dog(0) [da 2, |
dz =0 [dz — (k) z2 _7:0_0’

[o%)) (0) = 0,

d4OCO 2 R d2a0
op(1) =0, {—f <2k +y——>—” =0, (16)
dz* M) dz? ||,
dSOC() (2k2 )d;a0+k2(k2+«)d% —0
dzs dz3 )4z -
The form of the stream function (x,z,7) =

og(z) cos (kx) exp (yt) implies that the velocity perturbation
increases for y > 0, decays for y < 0, and perturbations are
stationary for y = 0. We should find the range of Rayleigh
numbers (or light intensity) and the wave numbers of the
interference pattern, in which regular convective structures
are stable. For this purpose, we seek the solution for a
neutral perturbation &, = acg:o(z) in the form &, ~ exp (9z).
In this case, Eqn (15) leads to

0% —3k25% +3k*52 — (k6 +1Rk2> =

: i)

This equation has six solutions:

51 :f(k7 R)a 0y = f/‘(kv R)’ (33 = a(ka R) + lb(k7 R)a
54 = —a(k,R) —ib(k,R), 65 = a(k,R) —ib(k,R), (18)
5 = —a(k, R) +ib(k, R),

where f(k,R), a(k,R), and b(k,R) are certain functions of
the wave number and the Rayleigh number. It can easily be
shown that

8y = ¢; exp(fz) + ¢ exp(—fz) + ¢3 exp(az) cos(bz)
+ ¢y exp(az) sin(bz) + ¢s exp(—az) cos(bz)

(19)

Here, ¢; — ¢4 are the constants that should be determined
from the boundary conditions (16). Thus, we obtain a
system of algebraic equations for constants c¢; — ¢g4:

+ ¢ exp(—az) sin(bz).

where a; = a;(k,R) (i, j=1-6) are some functions
constructed on the basis of the functions f(k,R), a(k,R)
and b(k,R). The system of equations has nontrivial
solutions only if the determinant of the matrix a; is
equal to zero. We use this condition to determine the
required region of stability for system (20) in the form of
the function R = R(k).

5. Experimental results of excitation
of convective flows

We used in our experiments horizontal cells with isotropic
liquid (NLC 5TsV and MBBA) (see Fig. 1). The upper
boundary of the cells was open, and a homotropic
boundary condition was specified on the lower substrate
of the cell with the NLC. The cells were placed between
crossed polarisers and illuminated in two ways. For thin
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cells, two beams from a 1.06-pum Nd*':YAG laser were
incident on the NLC at small angles so that the angle
between them was 2 x 107> rad. Thick cells were illumi-
nated with the help of an incandescent lamp whose power
was varied from zero to 200 W. In order to obtain a
periodic intensity distribution, an absorption-transmission
grating with a period A4 ~ 2 mm was mounted between the
condenser and the cell. The temperature at the lower
boundary of the cell was maintained constant (293 £ 0.3 K)
with the help of circulating water from a controlled
thermostat. The upper (free) boundary of the liquid was
in contact with air at room temperature (293 K). Hydro-
dynamic motions of the NLC were observed through a
microscope equipped with a photographic camera. Hydro-
dynamic motions were visualised by adding aluminium
powder with the weight concentration 107> % to the liquid.
We used 5TsB and MBBA NLCs into which a specially
selected dye was added to provide the strong optical
absorption of this complex (a ~ 50 cm™' for A ~ 500 nm).
When necessary, the cell was additionally illuminated from
above by radiation from a ~ 3-mW He—Ne laser.

The exposure of the sample to radiation with spatially
periodic intensity distribution resulted in hydrodynamic
motions, which could be clearly seen through the micro-
scope. Under certain experimental conditions (depending on
intensity /, and ratio 2L/A), such hydrodynamic motions
are transformed into convective motions with a regular
roller structure. These regular convective motions lead to a
periodic distribution of the NLC director, which could be
clearly seen through a polarisation microscope. After the
removal of the grating (i.e., after the instantaneous replace-
ment of the periodic intensity distribution by a uniform
distribution), the periodic distribution of the director
persisted for a certain time and then gradually disappeared.
This is associated with the disappearance of the roller
structure of convective motions (as can be seen clearly
through the microscope). The period of the director
distribution is equal to half the period of intensity dis-
tribution of incident light. The period of hydrodynamic
motions coincided with the period of the intensity distri-
bution.

Our observations proved that the roller structure was
formed most clearly and rapidly when the layer thickness L
was equal to half the period of the intensity distribution. For
L < 0.5 mm, the periodic structure of the director distri-
bution was formed almost instantaneously. When the
grating was set in motion in the direction of the x axis
for such thicknesses, the particles located on the surface of
the liquid crystal were drawn in the same direction. This
indicates that the dominating mechanism of the emergence
of regular convective instability in this case is the action of
surface forces (due to the temperature dependence of the
surface tension coefficient). For L > 0.75 mm, such surface
phenomena were not observed, the regular convective
structure was apparently formed mainly due to bulk forces
(due to the temperature dependence of the liquid crystal
density), while regular convective movements (roller struc-
ture) became chaotic for L > 1.75 mm.

In our experiments, we measured the time-averaged
maximum velocity component vy of convective flows.
Fig. 3 shows the dependence of vy™* on the thickness of the
layer of a liquid crystal for different average intensities I, of
incident radiation. One can see that vy"** has a maximum at
L~ 1mm, ie., at L ~ A/2. The asterisks on the curves
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Figure 3. Time-averaged maximum velocity component v of convec-

tive motions as a function of the layer thickness of a liquid crystal for
different intensities / of incident radiation.

correspond to maximal and minimal thicknesses of the
layer, between which regular convective motions of the
roller type exist for the given intensity of incident radiation.
We also studied the time evolution of the emerging
convective motions. Although a quantitative analysis is
difficult (in view of subjective perception of patterns
observed through the microscope), we can assume that
convective motions are stabilised 150-200 s after the
beginning of irradiation. It can be stated that the time of
stabilisation of convection decreases as L approaches A/2
(when L > 0.5 cm). A considerable decrease in this time is
also observed upon an increase in the intensity of incident
radiation. Fig. 4 shows the intensity dependence of vy*™** for
L~1mm and A4 =2 mm. This dependence is approxi-
mately linear to within the experimental error, which is
in accord with the theoretical results.

max 1

o™ /um s~
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400 - é
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Figure 4. Experimental (circles) and theoretical (straight line) dependen-
ces of the x component of velocity on the light intensity /, for L = 1 mm
and 4 =2 mm.
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For very small and very large parameters 2L/ A and light
intensity, convective roller structures become unstable. In
this case, secondary thermal instabilities come into play. The
experimentally observed stability regions for regular con-
vective cells are shown on the phase diagram in Fig. 5. The
dashed curves correspond to theoretical calculations. The
dot-and-dash curve separates the isotropic (above the curve)
and nematic (below the curve) phases of the liquid crystal.
The local maximum on the dot-and-dash curve indicates
that convective motions hamper the phase transition of the
NLC into the isotropic phase due to efficient heat transfer
for thicknesses L ~ A/2.

Iy/W cm™
12t |
\
\
10 |- \ Isotropic phase
\
8 \
A -
\ f \
6 | ' N
~
\
4 L
RN
N
//
2 b >
>>/ Nematic phase _
/ =" -7
il | 1 1 1 1
0 0.5 1.0 1.5 2.0 2L/A

Figure 5. Phase diagram of stability of regular roller convective motions
and surface hydrodynamic waves. Dashed curves correspond to theore-
tical calculations.

6. Observation of hydrodynamic surface waves

Because the upper surface of the liquid layer is open, it is
deformed during convective motions (because the z
component of velocity is nonzero on the free surface). If
the interfering beams have shifted frequencies or if the
grating moves at velocity W, a running pattern of the
intensity distribution will be observed. Convective motions
and deformation of the surface result in the emergence of
gravity and capillary surface waves induced by light. The
stability region for photoinduced hydrodynamic waves is
shown on the phase plane (Fig. 5, doubly hatched region).

The experimental setup shown schematically in Fig. 6
was assembled to study the perturbation of the free surface
of a liquid. It is well known that most optical surfaces are
controlled with the help of test glasses. However, this
method presumes direct contact between the standard
surface and the surface being controlled, which is inadmis-
sible in the present case. The perturbation of the liquid
surface by a contactless method was investigated exper-
imentally on a Fizeau laser interferometer [19]. A variable-
width diaphragm (3) located in the focal plane of objective
(4) is illuminated by monochromatic radiation emitted by a

7
4
——3

’ %\%O’>
|\

& | P
(// 2
[[k\/\fvvﬂd/lf
/\/\/\/\/\8
(N B |

Figure 6. (a) Schematic of interferometer for observing equal-thickness
fringes and (b) diagram of the experiment explaining the method of
measurement of the amplitude of surface liquid vibrations: (/) liquid or
liquid crystal under study; (2) standard surface; (3) diaphragm; (4)
lens; (5) beamsplitter; (6) objective; (7) He—Ne laser; (&) incident
spatially modulated wave; (9) output diaphragm.

0.63-um He—Ne laser. The beams passing through the
diaphragm and a beamsplitter (5) are directed to objective
(6) forming a parallel beam incident on a wedge standard
plate (2) and on the surface of a liquid or liquid crystal (7).
The beams reflected from the surfaces of the liquid and the
sample produce interference fringes reproducing the relief of
the liquid surface being investigated. The wedge shape of the
standard plate is required for deflecting the beams reflected
by the upper (nonworking) surface, which may fall on the
orifice of the output diaphragm (9) and reduce the contrast
of fringes. The amplitude ¢ of the surface perturbation is
related to the path difference 4 of the beams by the
expression

A =2&Ecos ¢ +%,
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where ¢, is the angle of incidence of the beam. For ¢, =~ 0,
we obtain
mi 2

E=—+g
where m is the maximal interference order within a period
of the intensity distribution of exciting radiation (8).

Thermocapillary waves on the liquid surface were also
investigated with the help of a narrow (diameter ~ 0.1 mm)
He—Ne laser beam reflected from this surface. Fig. 6b
shows schematically the experimental setup explaining the
measuring method for the amplitude of liquid surface
vibrations.

Let a sinusoidal surface wave propagate over the liquid
surface. Then, the perturbation of the free surface of the
liquid can be described by the equation

Esin 2nx wt
z = —X —
A b

where A is the wavelength of the surface wave and o is its
cyclic frequency. In this case, the maximum deflection of
the reflected beam from the unperturbed direction (angle
2¢) is related to the wave amplitude ¢ by the expression

_oe4
67271:'

e2y)

(22)

In our experiments, we used a cell filled either with an
isotropic liquid (diffuse oil), or with a NLC (MBBA) with a
single (upper) free surface. A homotropic boundary con-
dition was specified at the lower boundary (in the case of
NLC). Such a cell was illuminated from below by an
incandescent lamp whose power was varied from zero to
200 W. In order to obtain a periodic intensity distribution, a
grating with period 4 ~ 2 mm was mounted between the
condenser and the cell. The temperature at the lower
boundary of the cell was maintained constant (293+
0.3 K) with the help of circulating water from a controlled
thermostat. The upper free boundary of the liquid was in
contact with air at room temperature (~ 293 K).

When radiation with the spatially periodic intensity
distribution acted on the sample, the interference pattern
in the form of equal-thickness fringes in the direction
perpendicular to the wave vector of the grating was formed
in the field of vision of the interferometer. These fringes
indicate that the liquid surface was deformed. It acquired
indentations and protrusions corresponding to the maxima
and minima in the intensity distribution of the exciting
radiation. Fig. 7a shows the dependence of the coordinate z
of the liquid surface on the coordinate x for the sample
exposed to radiation with a spatially periodic intensity
distribution (the x axis is directed along the wave vector
of the grating, and the plane z =0 corresponds to the
unperturbed free horizontal surface of the liquid). The
intensity at the maximum of the distribution of exciting
radiation is , = 8 W cm 2. The maxima of z for x = +1
mm in the intensity distribution of exciting radiation
corresponded to the minima; i.e., indentations were formed
in the illuminated regions of the surface. Experiments show
that the amplitude & of the surface perturbation depends on
the intensity in the region 2 Wem ™2 < Iy <8 W cm ™
almost linearly within the experimental error (Fig. 7b).

If the periodic structure of the intensity distribution was
set in motion in the direction of the wave vector of the
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Figure 7. Dependences of the coordinate z of the liquid surface of the
sample on the coordinate x under the action of radiation with a spatially
periodic intensity distribution (a) and of the amplitude ¢ of the surface
perturbation on the intensity 7, (b).
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grating (in the direction of the x axis), a surface wave
propagating in the direction of motion of the grating was
generated on the liquid surface. The velocity of this wave
corresponded to the velocity W < 10 mm s~ of the grating.
For a constant intensity of incident radiation, the amplitude
of this wave depended on the layer thickness and on the
velocity of the grating. Fig. 8a shows the dependence of the
amplitude of the surface wave on the liquid layer thickness.
A typical feature of this dependence is the existence of a
maximum. As the layer thickness increases, the amplitude of
thermocapillary waves decreases, indicating that the con-
tribution of the gravitational mechanism (Rayleigh — Benard
convection) dominates in convection. A decrease in the
amplitude of capillary waves upon a decrease in the layer
thickness L < 0.1 mm) is apparently associated with the
interaction of ‘surface’ molecules of the liquid with the solid
substrate. The reasons for such a dependence £(L) for small
L are not completely clear and require additional exper-
imental investigations. In particular, a considerable advance
in this direction can be achieved in experiments with solid
substrates.

Fig. 8b shows the dependence of the amplitude of
thermocapillary waves on the grating velocity (on the
velocity of a thermocapillary wave) for a constant intensity
I, of exciting radiation. One can see that the amplitude of
capillary waves depends on the velocity only slightly for not
very high grating velocities W <4 mm s”!.  For
W >=5mms ', a further increase in the velocity leads to
a decrease in the amplitude of capillary waves. The velocity
for which the amplitude of capillary waves decreases by half
is determined by the intensity of exciting light (Fig. 9).
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Figure 9. Velocity W, of the grating at which the amplitude of capillary
waves decreases by half as a function of the intensity /, of exciting
radiation.

7. Discussion and conclusions

We have demonstrated theoretically and experimentally the
possibility of exciting regular convective motions and
surface gravitational and thermocapillary waves in isotropic
liquids and liquid crystals. These effects are induced by light
with a spatially periodic structure of the intensity. The
hydrodynamic effects excited by light are interesting in view
of the possibility to induce roller structures with desirable
dislocations. The latter can be ensured by the interference
of a plane light wave with another wave with a wave front
dislocation. Ring-type roller structures can be produced
upon the interference of a plane light wave with a wave

having a conical front. The interference of three, four, and
larger number of waves makes it possible to obtain cells
with hexagonal, cubic, and other structures; in this case,
defects can be purposefully introduced into such structures.
In addition, it can be expected that, when the threshold is
exceeded slightly, the light interference pattern may ‘impo-
se’ its own period and phase on the steady-state pattern of
rollers or cells. In our opinion, such a possibility of con-
trolling spatial structures is quite interesting not only for
liquid crystals, but also for any systems displaying insta-
bility with a finite wave number 1 ecm™!' < K < 10° cm™! of
the grating in the transverse plane.

As for surface hydrodynamic waves excited by light, it is
important that the wavelength, frequency, and amplitude of
these waves can be controlled easily with the help of
extrinsic parameters such as the frequency shift, intensities,
and angles of incidence of light beams. The existence of
several control parameters suggests manifestations of var-
ious excitations modes for surface waves, accompanied by
bifurcation and hysteresis behaviour.

We also proved that for high and low intensities of light
and the ratios of the period of the interference pattern to the
cell thickness, the two-dimensional roller structure becomes
unstable and is gradually transformed into a chaotic state.
Because white noise enhancement in conventional experi-
ments on turbulence masks qualitative difference in
turbulent flows in various regions of extrinsic parameters,
the experiments with controllable excitation are of special
importance. We believe that the experiments described by us
here may serve as a model in the above-mentioned sense for
solving the turbulence problem in general. By separating the
properties of discrete effects from the properties of stochas-
tic noise, we have demonstrated the importance of both
effects in the case of moderately turbulent convection in the
general case. Moreover, the results described here together
with the evidence of discrete transitions in turbulent heat
transfer suggest that both effects are comparable in signifi-
cance in the general case of turbulence. While convection
can be studied by comparatively simple experimental
methods, new methods may demonstrate qualitatively the
interaction of two elements of turbulent flow in other cases
of turbulence.
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