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Abstract. A spatially infinite plane wave, as one of the
possible solutions of Maxwell’s equations, is a mathemati-
cally correct but physically empty image. It is pointed out
that physically realised solutions in the form of nonplane
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waves are not strictly transverse waves outside a material
medium and are characterised by three polarisation compo-
nents, the superluminal phase and subluminal group velocities,
the dispersion, the necessary presence of the fragments of a
standing wave (‘stopped light’), and the existence of a mass-
like quantity, which can be defined as a finite observable (but
not immanent) inertial and gravitational photon rest mass.
This mass cannot be distinguished in a number of thought
(‘gedanken’) experiments from the rest mass in a standard
treatment.

Keywords: standing wave, photon rest mass.
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1. Introduction

Electromagnetic waves in vacuum are strictly transverse
and have only two possible polarisations, their phase and
group velocities are identical and equal to ¢, and they have
no dispersion. This means in the language of quantum
mechanics that the rest mass of photons represented by
such waves is zero [1]. These absolutely indisputable
fundamental concepts of classical electrodynamics are
obviously demonstrated, for example, upon a consideration
of a plane electromagnetic wave.

At the same time, there exist a number of quite obvious
phenomena in physically realisable fields that contradict, at
the first glance, to these fundamental concepts, although
these phenomena are considered below strictly within the
framework of Maxwell’s electrodynamics without the use of
any additional hypotheses. These phenomena include the
superluminal and subluminal propagation and dispersion of
electromagnetic waves outside a material medium, the
necessary presence of the longitudinal components and
the third component of polarisation in any electromagnetic
fields in free space, which violate a strictly transverse nature
of the electromagnetic wave, as well as the presence of an
immobile component in the form of the fragments of a
standing wave (‘stopped light’). The latter results in the
existence of a finite mass-like quantity, which can be
interpreted as the rest mass of photons filling the modes
of a free space. Although it is impossible to distinguish this
mass-like quantity in thought experiments from the nonzero
inertial and gravitational rest mass of a heavy particle in a
standard treatment, this quantity is not, of course, an
immanent characteristic of a photon as, for example, proton
or electron rest masses. Therefore, as distinct from the real
rest mass, we will call this quantity the observable photon rest
mass.

The starting point of our analysis is the often-ignored
fact of a physical emptiness of the concept of an ideal
spatially infinite plane wave. The abandonment of the
concept of a plane wave as a physical reality transforms
all the solutions of electrodynamic equations to spatially
limited solutions, which therefore satisfy the known corol-
laries of the Fourier theorem, which are treated as the
‘classical uncertainty relation’. The interrelated properties of
physically realisable wave fields in a free space listed above
follow directly in essence from the latter statement.

Thus, the consequence of the spatial restriction of the
fields over the transverse coordinates with respect to the
main propagation direction of the wave is the necessary
presence of the fragments of a standing wave in the wave. It
is this so-called stopped light that gives rise to the nonzero
observable inertial and gravitational photon rest mass.

For analysis presented below, the advice of L.I. Man-
delstam concerning the approach to the study of
complicated electromagnetic phenomena is exclusively pro-
ductive. He said: ‘I believe that the following approach is
proper: to consider a simple case of the propagation of
electromagnetic waves, which can be really accurately and
rigorously studied, — to investigate this case and understand
what is behind it’ [2].

Following this advice, the main attention in this paper is
paid to the most expressive and physically clear example of a
spatial restriction of the wave fields — the fields located in an
infinitely deep potential well for photons. To this limiting
case of spatially restricted wave fields, the fields of the

modes of an ideal hollow metal waveguide correspond,
which are used below as a basic model for phenomena under
study. To construct the basic model, the principal diffe-
rences between the fields of other physically realisable
nonplane waves and the idealised field of a plane wave
are preliminary considered. Several typical examples of the
waves in a free space are considered, such as the radiation
field of a harmonic electric dipole — a test object in the sense
of Mandelstam’s advice, etc. It is found that these fields, as
almost all other fields that can be represented in the form of
analytic solutions, can be topologically continuously trans-
formed to the fields of the modes of hollow metal
waveguides. This is an additional motivation for using
the waveguide modes as a basic model for studying the
problems considered here.

A number of thought kinematic and dynamic experi-
ments show that the behaviour of the observable inertial and
gravitational photon rest mass in a waveguide is indistin-
guishable from that of usual heavy particles under similar
conditions.

The facts studied in the paper, which reveal more clearly
some laws of classical electrodynamics, are also of heuristic
interest because they make it possible to observe the
continuos transformation of photons of the massless
wave field to quanta having the nonzero inertial and
gravitational rest mass. It is found that a typical massless
field is capable, under certain conditions, of producing the
field of massive particles.

1.1 A plane wave as a trivial but physically nonexistent
solution of electrodynamic equations

‘... and God divided the light from the darkness’ (Genesis 1:4)
As pointed out above, all the above statements do not
assume the revision of the foundations of Maxwell’s
electrodynamics, i.e., the equations relating the field vectors
E, H, D, and B to the volume charge density p and the
conduction current density j:

rotE:—aa—l:, (1.1)
roth = %0 1 (12)
divD = p, (1.3)
divB =0, (1.4)
D = ¢yeE, (1.5)
B = pyuH, (1.6)

where ¢, and g, are the electric and magnetic constants of
vacuum, respectively, and ¢ and p are permitivity and
permeability for a substance; and ¢ is time. Below, it is
assumed that ¢ = ¢ =1 in most cases.

A spatially infinite plane wave, which is invariable over
the transverse spatial coordinates x and y and is propagating
with the frequency o and the wave vector k (k| =
w(s,u)l/z/c) along the coordinate z

E(z,t) = Eycos(wt — kz), (1.7)
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H(z,t) = Hycos(wt — kz) (1.8)

(Ey = const and H, = const are amplitude factors) is one of
the possible solutions of the wave equations

2
e O°F
VE-5—S=0 1.9
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which are direct corollaries of Maxwell’s equations in the
absence of field sources (p =0 and j = 0).

Of course, a plane wave (1.7), (1.8) is a perfect
mathematical tool of Maxwell’s electrodynamics. However,
it is well known that an attempt to assign the physical
meaning to this idealised concept leads at once to the
conclusion that such a solution of the wave equation is
trivial and a real single plane wave cannot exist. It is
sufficient to refer to a direct corollary of the integral
Poynting theorem according to which the propagation of
a plane wave with the finite field vectors should be
accompanied by transfer of an infinitely large integrated
energy flux and, vice versa, when the energy flux is finite, the
amplitudes of the field vectors should be inevitably zero. It is
clear that both these cases are physically unacceptable.

Certainly, this concerns only a single isolated plane
wave. It is obvious that a superposition of many plane
waves can represent any real wave field and, vice versa, the
latter can be always expanded in a system of plane waves
with different wave vectors. However, such partial plane
waves do not exist independently beyond their superposition
representing a real wave field, which is, naturally, not a
plane wave.

Therefore, it is clear that any physically realised wave
fields are spatially limited and differ to some extent from the
concept of a perfect plane wave.

Note, however, that the epigraph implies that a funda-
mental fact of the finiteness of the space occupied by any
electromagnetic field was understood even in quite ancient
times. Indeed, one of the main acts during the first creation
day was the spatial localisation of the primary electro-
magnetic field.

1.2 The observable photon rest mass as a result
of the presence of fragments of a standing wave
in the field. The momentum defect

We should discuss especially the fact of the inevitable
presence of the fragments of a standing wave (stopped light)
in any real wave field. The term stopped light sounds as an
absolute oxymoron because an electromagnetic wave exists
only during its propagation. Nevertheless, people could
‘stop’ light long ago. ‘If you place a light source at night
between two smooth mirrors separated by a distance of
cubit, you will see the infinite reflections of light, each next
reflection being smaller than the previous one. And in this
way they go away to infinity, as if each mirror contains an
infinite number of other mirrors’. This description of a
device, which is now known as an open optical resonator,
belongs to Leonardo da Vinci and is presented in a
notebook, which was called later ‘The Atlantic Codex’.
Here, it is also pertinent to recall the answer of
Schrodinger to the question that he formulated himself
in paper [3]: “Whether the statements that a plane wave

cannot be transformed to rest and, hence, the photon rest
mass is zero are absolutely rigorous or only approximate?
The answer is that, when an attempt is made to stop a plane
wave, its field decreases to zero in the limit, i.e., the plane
wave ceases to exist’.

The spatial localisation of any physical wave field
requires the refinement of the statement that the photon
rest mass M is equal to zero [4]. Indeed, this standard
statement directly follows, strictly speaking, from the form
of the Hamiltonian for a free particle:

E? = (Mc?) + (clpl)*, (L.11)
where E = fiw is the total photon energy, if it is assumed, as
usual, that the photon momentum |p| is 7&w/c. This is
undoubtedly valid only for photons described by an infinite
plane wave, which, as mentioned above, does not have any
real physical meaning.

The presence of the fragments of a standing wave in real
wave fields drastically changes the situation. The partial
waves forming such a fragment have the counterpropagat-
ing components of the wave vectors Ak; and Ak, = —Ak;
with equal moduli, whose vector sum is Ak; + Ak, = 0.
Therefore, the quantity

8|p| = 2h|Ak,|, (1.12)
is subtracted from the modulus of the total photon
momentum represented by a real electromagnetic wave.
This quantity can be called the momentum defect, and
expression (1.11) for a photon belonging to the field
containing the fragment of a standing wave should be now
written as

2
E?=(Mc?* + (m?) — (c8]p))*. (1.13)

It is obvious from this modified expression that there
exists the nonzero mass-like quantity

M

:M, (1.14)

C

to which, as will be shown below, one can assign the
properties of the nonzero observable photon rest mass in a
standard treatment.

If the momentum defect becomes equal to d|p| = fiw/c (a
perfect standing wave), then the photon momentum proves
to be completely exhausted (|p| = 0), and the light is fully
stopped, while the observable photon rest mass M becomes
equal to fiw/c>.

All the above said is close to two statements: ‘Any real
light flux has the nonzero intrinsic mass. Only an infinite
plane wave, i.e., the flux of strictly collinear photons has the
intrinsic mass equal to zero. However, such a light flux can
be never produced because any real light flux is spatially
restricted, i.e., it is not an infinite plane wave’ [5] and ‘A
system of two photons will have a zero mass only when they
are propagating in the same direction’ [6]. Both these
statements were formulated only for light fluxes but not
for a single photon. The question arises of whether these
statements can be applied to the case of a standing wave
containing a single photon in a mode, to which a mass
should be assigned? It seems that the answer should be
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undoubtedly positive, as the answer to the question about
the exclusive possibility of observing interference from the
same single photon.

It is important to note that so far no experimental
methods are available for distinguishing the physical quan-
tity M from the corresponding quantity for usual massive
particles. At the same time, as mentioned above, this
nonzero observable photon rest mass (unlike, for example,
the proton and electron rest masses) is not an immanent
characteristic of the photon, but, always remaining finite,
varies depending on the structure of the wave representing
the photon.

It is appropriate here to make a comment concerning the
contemporary concept of a photon itself. It is reasonably
stated [7] that ‘a photon, as the elementary particle of an
optical field, does not have a reasonable and clear defini-
tion... Nevertheless, it helps... to predict qualitatively the
results of new experimental situations. Generally, the
abandonment of the axiomatic approach facilitates progress
at a certain stage of studies.” Without going into details of
this problem we will follow here such an approach.

Another comment concerns the terms used to denote the
mass. Of course, following the exhaustive analysis [6, 8, 9],
it would be desirable to avoid the use of the term ‘rest mass’
and call it the observable mass of the stopped light
corresponding to the rest energy of the light. However,
this can only encumber the text of the paper, which has a
predominantly methodological character. An additional
excuse can be the words of Einstein: "It is better not to
introduce any masses except the ‘rest mass™ [10].

1.3 Post-Maxwell electrodynamics admitting the existence
of a finite photon rest mass

As pointed out above, we perform our analysis within the
framework of Maxwell’s electrodynamics. Nevertheless, we
will mention here the attempts to modify Maxwell’s
equations (1.1)—(1.6) in order to take the finite photon
rest mass into account. These attempts were made many

Table 1. Estimates of the upper limit of the photon rest mass.

times by such physicists as Proca [11], Schrodinger [12], de
Broglie [13], Feynman [14], et al.

For example, the Maxwell —Proca equations [11] assum-
ing the presence of the nonzero photon rest mass contain in
(1.2) and (1.3), along with the field sources p and j, the
additional terms

oD 1 4
tH=—+j——— 1.15
ro ar T o A2 (1.15)
: ¢
leD:p—SOF, (1.16)
where

2
g (1.17)

Mc

is the Compton wavelength of a photon with the rest mass
M; A and ¢ are the vector and scalar potentials,
respectively. All these post-Maxwell versions are not the
object of our analysis.

The various theoretical, observational, and experimental
estimates of the upper limit of the photon rest mass based to
some extent on post-Maxwell concepts are also of interest
and are presented in Table 1.

1.4 Summary comments

Therefore, the abandonment of the physically empty
concept of a perfect plane wave leads to the inevitable
presence of the fragments of a standing wave (stopped light)
in any fields, resulting in the compensation of the
counterpropagating components of the momentum of a
photon represented by such a nonplane wave. This
compensation results in the appearance of the momen-
tum-defect term in the Hamiltonian, which gives rise to a
mass-like quantity to which the properties of the finite
observable photon rest mass can be assigned.

M/g Mc? [eV A/m Year, references  Estimate method
1074 6x 10712 2% 10° 1940, [15] Absence of a colour effect during the eclipse of binary stars
47 15 8 Possible deviation of the Earth magnetic field from
10 6% 10 2x 10 1943, [16] )
the Gaussian law
47 _is 8 Verification of the Coulomb law (geometry of concentric
10 6 x 10 2 x 10 1971, [17]
spheres)
2x 107 10710 10* 1971, [14] Laboratory measurements of light dispersion
8§x107% 5% 1071 2% 10° 1975, [18] Measurements of the Jupiter magnetic field
1074 6x 1071 2% 10° 1980, [19] Summary data base
—66 33 27 The smallest mass measured from the uncertainty relation
2x10 107 10 1984, [20] . 17
for the Universe age equal to 5x 10" s
107 5% 1078 2.5 % 10° 1992, [21] Low-temperature zero-test of the Ampere law
2x 10748 1071 2% 10° 1994, [22] Measurements of the Earth magnetic field
Effect of the cosmic vector potential (experiment
25100 —4x 10 1077 —2x 107 10" — 6 x 10° 1998, [23] : : veetorp (exp
with a torsion balance)
10~ 6x 10712 2% 10° 1999, [24] Dispersion of radiation from cosmic gamma ray bursts
_s1 _19 12 Effect of the cosmic vector potential (experiment with a torsion
10 7% 10 2x10°° 2003, [25]

pendulum)
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2. Details of the structure of the field
of nonplane waves

2.1 The field of a harmonic electric dipole oscillator

In any textbook on electrodynamics, an exact solution can
be found for the vectors of the radiation field of a harmonic
electric dipole in the form of its three nonzero components
in the spherical coordinate system (R, 0, ¢) with the polar
axis coinciding with the direction of the dipole moment
vector. The meridional component of the electric vector E
has the form

Ey = Eysin0[1 +ikR — (kR)*] exp(i®), 2.1)
the radial component E is
Er =2Ejcos0(1 + ikR) exp(i®) (2.2)

and the azimuthal component of the magnetic induction B
tangential to the parallels of the coordinate system has the
form

B, = iE, gkR sin 01 + ik R] exp(i®), (2.3)
where E, = p,/4me,eR>; p, is the dipole moment modulus;
® = wt — kR is the phase; k = wn/c is the wave number;
n= ('a,u)l/2 is the refractive index of the medium. Fig. 1
shows the known structure of the electric lines of force for
the field of a harmonic oscillator in the meridional plane of
the spherical coordinate system.

Figure 1.

It is important to note that field components (2.1)—(2.3)
for R = const have a character of a standing wave propa-
gating along the meridional line (R = const, ¢ = const) of
the coordinate system (~cosfexpiwt or ~sinfexpiwt). In
essence, these dependences are equivalent to the meridional
eigenfunctions (Legendre functions) of the wave equation in
spherical coordinates [26], which play the same role in the
field structure as, for example, the sinusoidal —cosinusoidal
transverse eigenfunctions of the problem on a rectangular
cross-section waveguide.

Expressions (2.1)—(2.3) have the following trigonometric
form

Ey = Eysin0[(1 — k*R?*) cos @ — kR sin @], 2.4)

Er = 2Eycos0[cos ® — kRsin @], (2.5)

B, = —E, " kRsin O[sin @ + kR cos @]. (2.6)
¢

If, as usual, in the far-field (wave) zone, where kR > 1, only
the terms with higher powers of (kR) are retained, then

Ey ~ —EO(kR)2 sin 0 cos @, 2.7

Ep =~ 2Ey(kR)cosfsin @, (2.8)
n 2 . n

B, =~ —Ey—(kR) sinfOcos ® = E,—. (2.9)
¢ ¢

Because |Eg|/|Ey| < 1, one can neglect the radial com-
ponent Eg, which leads to the popular approximation of a
purely transverse spherical wave with the mutually orthogo-
nal Ey, B, and k.

2.2 The superluminal phase velocity of a wave
in the field of a harmonic dipole oscillator

The asymptotics expressed by relations (2.7)—(2.9) and the
inequality |Er|/|Ey| < 1, which is convenient for numerous
practical problems, masks in fact the detailed structure of
the field of a harmonic dipole because, strictly speaking,
(kR)™ #£0 and Eg #0 even in the far-field wave zone
where kR > 1. The presence of a small but finite radial
component Er of the electric vector directly indicates that
the wave is not purely transverse (so that it should be
denoted in a standard notation as the TM wave rather than
the TEM wave) and that the wave vector k has the
meridional component ky, thereby losing the radial
directivity inherent in a spherical wave.

Therefore, because Er # 0, the square of the wave vector
k* =ki+ ki + k; has, along with the radial component
kg # 0, also the component ky # 0 (for k, = 0). As a result,
the radial phase velocity of the wave

) ¢/n

c
Uphzgzm>; (210)

proves to be superluminal in a free space (when the
refractive index of the medium n = 1). Because Ep and,
hence, k, depend on the meridional angle 6, the phase
velocity vy, also depends on 0, which again indicates to the
deviation of the phase front of the wave from a perfect
spherical shape.

2.3 Energy fluxes in the field of a harmonic dipole
oscillator

Along with a standard expression

B g0\
Pp=E,—% = Eg(ﬂ)
Holt Holt

1/2
=E <ﬁ> (kR)4 sin®6) cos’ @ (2.11)

Holt

for the radial component of the Poynting vector, in the far-
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field zone approximation [(kR)™' — 0] there exists although 5,.(R,0) = Pr _ c/n < ¢ (2.16)
a small but nonzero meridional component with the VgrlI, 1) = w(R,0) - | 2 = ’
instantaneous value + (kR) 2 an2 0

B, E?
Py=—Eg—2=-=2
Holt 2

1/2
<ﬁ> (kR)® sin 20sin 2. (2.12)
Holt

This meridional component of the Poynting vector
(unlike the radial component) changes its sign four times
during a period, so that its average value over the period is
zero, i.e., a constant transfer of energy along the meridian is
absent, as expected. However, alternating pulsations of P,
caused by the phase shift by n/2 between the electric (Eg)
and magnetic (B,) components once more confirms the
existence of the standing wave along the meridian of the
spherical coordinate system.

The presence of the pulsed meridional component of the
Poynting vector results in the deviation of the trajectory of
the electromagnetic energy flux from a strictly radial
direction. The hodograph of the Poynting vector in the
meridional plane has the form of a winding curve, with the
amplitude of the transverse deviation from a strict radial
direction being proportional to sin26. Due to such a
deviation from the rectilinear propagation of energy, the
radial velocity of the energy transport proves to be lower
than the speed of light.

2.4 The subluminal group velocity of a wave in the field
of a harmonic dipole oscillator

The local value of the radial group velocity at the point
(&, R, 0, ¢)

Pp
w(R,0)
can be determined as the ratio of the radial component Py
of the Poynting vector to the total field energy density

vg:(R, 0) = (2.13)

¢ Holt
5 () + ER) + =~ H,

w(R,0) = >

2

_ ¢ B,
2 —-(Ej + Eg) + 3

= geEG(kR)*
Kokt

2.14)

sin20cos’® + R)2 cos?0sin’d s

i.e.

<
el
5
-
=
)
=
Il
I Ia

———— < 2.15
2 tan’® ( )

(kR) tan2 0

The local group velocity (2.15) is not constant, oscillat-
ing upon variation of the phase @ from v,, = ¢/nat ® =0, n
to a full stop (vg, =0) at ® =m/2, 3n/2. In addition, it
varies from v, = 0 in the direction of the polar axis at 0 = 0
to the coincidence with the speed of light v, = ¢/n in the
equatorial plane at 0 = 7t/2. All this takes place even in the
far-field zone, where kR > 1, however, due to the smallness
of the parameter (kR)* these effects become significant
only near the values of ® = /2, 3n/2 and (or) 6 = 0.

Additional information on the behaviour of the local
group velocity is contained in its value averaged over the
period

which is equal to the ratio of the radial component of the
Poynting vector averaged over the period

AN
PR:—O(£> (kR)*sin?0

(2.17)
2 \pop

to the electromagnetic energy density averaged over the
period

Cv(Rﬁ)feO.sz (kR)* {sin26+( 2 cos?0). (2.18)

kR)?

The integral group velocity, as the total transport
velocity of the dipole radiation energy can be determined
from the ratio

*
* PR

=
g w*

(2.19)

of the total flux of the radial component of the Poynting
vector

&p&

Py = 2nJ PrR?sin0d6 = —E0 (
3 Hott

1/2
) (kR)*R? cos’ &
(2.20)

to the total electromagnetic energy in a spherical layer of
radius R

" . 8
w* = 27[[ wR? sin 0d0 = —nEgsos(kR)“Rz
0

3
x [cos2q'> i EZ‘;;}} (2.21)
i.e.
v = % < % (2.22)
TRy’

Let us introduce the integral group velocity averaged
over the period

_Pr (2.23)

as the ratio of the total flux of the radial component of the
Poynting vector averaged over the period

D * 4n 808 172 452
to the total electromagnetic energy in a spherical layer
averaged over the period

w' = T Efege(kR) R + (kR) 2] (2.25)

We obtain
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¢
Ugy [T (kR < (2.26)

According to both above definitions, the group velocity
proves to be subluminal. The curves describing the depen-
dences of Dy (R0) on the angle 0 (2.16) and of v, on the
phase @ (2.22) have narrow holes where the group velocity
vanishes and the radial movement of the wave stops. The
widths of these holes are

2
A0 =~ R <1, (2.27)
and
AP 2 <1 (2.28)
N— <L .
kR ’

respectively, and their decrease inversely proportional to the
distance R. Therefore, at a considerable distance from the
emitting dipole, the group velocities determined by these
two different methods only slightly differ from c¢/n,
remaining subluminal [except narrow intervals A6 (2.27)
and A® (2.28)].

2.5 Dispersion of a wave in the field of a harmonic dipole

The behaviour of the phase and group velocities considered
above is determined by the parameter kR = wnR/c, i.e., by
the wave frequency w at a given R. In other words, there
exists normal frequency dispersion of phase and group
velocities of a wave outside a material medium.

To crown it all, it is possible to assert that the properties
of nonplane electromagnetic waves mentioned in Introduc-
tion are found in the structure of the radiation field of a
harmonic electric dipole oscillator, which is considered as a
typical example of a wave field in free space.

2.6 Topological unity of the structure of the fields

of a harmonic oscillator and a waveguide mode

As pointed out in Introduction, the main properties of real
nonplane waves, which differ from the notions neglecting
the physical emptiness of the concept of a plane wave, are
most distinctly manifested from the physical point of view
in the case of the mode fields in an ideal metal waveguide,
which are used below as a basic model. All these properties
have been also found for the radiation field of a harmonic
dipole oscillator, however, their mathematical description is
less descriptive than for the basic model considered below.
First of all, this concerns the absence of an exact
mathematical expression for the nonzero observable rest
mass of photons occupying a radiation mode of the
oscillator. This mass is produced by the stopped light,
which is found in the radiation field in the form of a
standing wave along the meridional coordinate (R = const,
¢ = const).

To find the way for passing from the radiation field of a
harmonic dipole to the basic model of the waveguide-mode
fields, which is studied below, and to reveal the topological
unity of these fields, it is useful to show how these fields can
be transformed to each other upon the topologically
continuous displacement of boundary conditions.

It is found that the radiation field of a harmonic electric
dipole in a free space can be represented as the result of a
continuous transformation of the 7M,; mode of a circular
cylindrical waveguide (Fig. 2a) upon continuous transfor-
mation of the waveguide to two circular conical waveguides
(Figs 2b, ¢ show the consecutive stages of this trans-
formation, but for simplicity, without the exact
reproduction of the shape of the lines of force in Fig. 1;
metal boundaries are shown by solid thick straight lines).
The common axis of the waveguides is directed along the
vector of the exciting dipole moment, while the apexes of the
cones coincide with the point of position of the latter. The
boundary conditions are transformed by increasing gradu-
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ally the cone angles and are completed by a full repro-
duction of the dipole field when the angles of the cones
achieve 180° and the generatrices of both cones prove to be
coincident (Fig. 2d). In this case, the wave field fills the
entire infinite space, which is divided by a metal boundary
over the equatorial plane of the spherical coordinate system
in which the dipole field is written. It is clear that such a
division does not distort the structure of the dipole field
because the tangential component of the electric vector in
the equatorial plane is zero, and equatorial metal planes
(former walls of the waveguides) can be removed at all after
the transformation completion (Fig. 2e). It is obvious that
the reverse sequence of transformations is also possible.
Therefore, we can say within the framework of the
picture outlined above that the field of a harmonic dipole is
nothing but the field of two coaxial circular conical wave-
guides with cone angles equal to 180° and vice versa.

2.7 Other simple examples of nonplane waves reduced
to the transformed fields of waveguide modes

The simplest and descriptive method to avoid the idealised
concept of a spatially infinite plane wave is to restrict its
propagation, for example, by reflecting the wave from a
plane mirror at an angle of . In this case, the wave field
acquires all the properties discussed above: it becomes
limited, occupying only the half-space from one side of the
mirror. It is no longer represented by a single plane wave
but is a result of the interference between the incident and
reflected waves. The immobile component (stopped light)
appears in the wave field in the form of a standing wave
directed normally to the mirror surface with the step
nc/wsind and the component running parallel to the
mirror at the phase velocity

Upp = ¢/sind > ¢ (2.29)

and the velocity of the electromagnetic energy transport

Vg = €SINY < c. (2.30)

g

Talking about the relation to the basic model considered
below, note that the interference field coincides in this case
with the field of the mode of a planar metal waveguide when
one of the waveguide walls is removed to infinity.

This example allows one to find easily the photon
momentum defect introduced in section 1.2. Each of the
interfering waves (incident and reflected) makes the same
contribution to the photon energy. The vector of the photon
momentum consists of four components belonging to the
normal and tangential components. For the incident wave,

/] ho .
Pin = —wcosﬂ, D= —wsmﬁ; (2.31)
2¢ 2¢
and for the reflected wave,
Do = —h—wcos 9, py = h—wsin 9. (2.32)
2¢ 2¢

The total normal and tangential components are

Pn = Din+ P2 =0, (2.33)

ho
Pt =Pt P ZTSmﬂ? (2.34)

respectively.

The corollary following from the Hamiltonian (see
section 1.2)

(Mc*)? = (ho)? — (hwsin¥)? = (fiw cos 9)? (2.35)
leads to a finite value of the observable rest mass of a

photon represented by the interference wave field under
study:

i/
My = 19 059 > 0.

— (2.36)

The observable photon rest mass is produced due a mutual
compensation of the normal components of the momentum
vector and is equal numerically to the quantity (divided by
¢), which can be identified with the momentum defect &p
introduced above:

op 1 hw
Mly :T:Z(p]" _pZn) :?00519 > 0.

(2.37)

One can see that, depending on the angle of incidence
of the wave on the mirror, the photon energy can be
transformed to its observable rest mass in the range
from zero to 7w.

For ¢ = m/2 (as in the rest of the cases of the realisation
of a standing wave), the light is completely stopped and the
photon momentum modulus is zero.

Another example is Fraunhofer diffraction from a slit,
which forms the field with a standing wave behind the slit in
the direction perpendicular to the axis of propagation of the
diffracted wave, having the electric-vector zeroes on the
surfaces that come from the slit at the angles depending on
the ratio of the wavelength to the slit width. The structure of
this field remains invariable if perfect metal boundaries are
made coincident with these surfaces. Such metal boundaries
form a waveguide with the one-dimensional restriction over
the transverse coordinate and with the cross section increas-
ing with distance from the slit. The field is characterised by
the superluminal phase and subluminal group velocities, the
frequency dispersion, and the standing wave (stopped light)
in the transverse direction. The stopped light can produce
the nonzero observable rest mass of a photon belonging to
the mode of the diffraction field.

2.8 Summary comments

It follows from the above discussion that the electro-
magnetic field that can be physically realised in a free space,
which is the solution of the wave equation, has the
properties of a spatially restricted nonplane wave, which
are listed in Introduction. In these fields, the surfaces can be
found where the electric vector vanishes. The disposition of
perfect metal boundaries on these surfaces does not perturb
the solution inside the latter and transforms the initially
arbitrary electrodynamic problem to the internal problem
with metal boundary conditions. Its solution can be treated
as the field of a mode of a perfect waveguide with a
complicated variable cross section. This circumstance serves
as the methodologic motivation and ground of the
possibility of using the basic waveguide model for studying
the most general properties of nonplane electromagnetic
waves.
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3. Basic waveguide model: the potential well
for photons

The basic model proposed in Refs [27, 28] is a limiting case
of the transverse spatial restriction of an electromagnetic
wave, when the field is located in the potential well for
photons with the two-dimensional restriction of its infinite
depth over transverse coordinates and the infinite propa-
gation over the third longitudinal coordinate. This
extremely simple model, which is not overloaded with
redundant calculations, makes it possible to investigate
clearly the above properties of the electromagnetic wave,
especially as the solutions for this model are well known
and coincide with those for the fields of the modes of an
ideal hollow metal waveguide. Because the waveguide is
used here only as a model, this term means hereafter the
potential well described above, while the question of to
what extent ideal metal boundary conditions can be realised
in different frequency regions is not considered.

A hollow metal waveguide, which is a customary tool of
modern experimental physics and applied radio engineering,
was not such a trivial device even about a century ago. In
1893, even such a penetrating physicist as Heaviside denied
the possibility of propagation of electromagnetic waves
through tubes [29]. However, only four years later Rayleigh
publishes the study ‘On the passage of electric waves
through tubes or the vibration of dielectric cylinders’ [30].

By the way, a variety of spatial periodic structures can be
used as model objects (see, for example, Ref. [31]): from
single crystals to artificial metal and dielectric microwave
gratings, which were used for the development of the so-
called photonic crystals.

3.1 The field of modes of a hollow metal waveguide

It is known [32] that the mode field of a metal waveguide of
an arbitrary cross section consists of two travelling waves
for the electric (E) and magnetic (B) vectors

E(x,y,z,t) = e(x,y) expli(wt — kz)], (3.1

H(x,y,z,t) = h(x,y) expli(wt — kz)] (3.2)

with the transverse eigenfunctions e(x, y) and A(x, y) and
the eigenvalues w,,, (critical frequencies) with the integer
subscripts n and m, where

w o 241)2
2]
c w

is the propagation constant and x and y are the transverse
coordinates. The existence of the eigenfunctions e and h
indicates to the presence of a standing wave in the
waveguide cross section.

The phase velocity of the wave along the longitudinal
axis z exceeds the speed of light,

o o \2171/2
_O o (P
o = { (w” >

and the group velocity of the electromagnetic energy
transport, which is equal to the velocity of the longitudinal
propagation of photons through the waveguide, is lower
than c,

(3.3)

(3.4)

(3.5)

do o \271/2
Ugrzazc[17<£”)} <ec.

Both vy, and v, depend explicitly on the frequency o,
confirming the existence of normal dispersion.

The eigenvalues w,,, and propagation constants k are
related to the wave frequency w by the dispersion relation

2 (3.6)

2 2

@ :w;11n+(0k) )
while the transverse components of the eigenfunctions e,,
e,, hy, and h, are expressed in terms of the spatial

derivatives of the longitudinal components e. and 4. as

2

M oc Oe. oh.
e, = —1<wnm) <k o + ,uowa), (3.7)
< > < Oe; wah5>, (3.8)

l‘ll”'l a‘x
1( ) ( Oh; _, wai) (3.9)

nm ay
( ) ( Oh: e 6‘33) (3.10)

VH’” 6x

In turn, the longitudinal components of the vectors e.
and /. are the solutions of the equations

2
Vie. + (“””) e. =0, (3.11)
- C
and
V2h + < C> h.=0 (3.12)

with metal boundary conditions (V.fy is the Laplace

operator over the transverse coordinates).

Depending on the direction of the polarisation vector,
two types of solutions exist: the TM type, when /4, = 0 and
the TE type, when e, = 0, to which the system (3.7)—(3.10)
with one-term right-hand sides corresponds.

The longitudinal Poynting vector directed along the z

axis is
(oY Lo (Ve )] ( Qe: O Qe.h
o2, dx 0y 0y ox
n & V27 o vgr Oe. + % :
Ho w%m 0x ay
1/2 2 2 2
Ko cw \ g | [ Oh. Oh, )
() G)E&) -G en
for the TM and TE polarisations

o= (2) () el
e.\* e: ’
&) G )

(3.14)

T

|
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o \*  (oh.\

? . 3.15
&) -E)] 619
As in the previous examples for the real wave fields (even
more clearly), the presence of the standing wave, the
longitudinal components of the field vectors, dispersion,

the superluminal and subluminal propagation of light, etc. is
well demonstrated here.

3.2 The de Broglie analogy: the waveguide dispersion
equation versus the Hamiltonian for a free particle

The structural similarity of expressions (1.11) and (3.6),
which has been pointed out many times, becomes especially
clear after the multiplication each term of the dispersion
relation (3.6) on the square of Plank’s constant /i which
gives

(h)* = (hw,y)* + (chk)?. (3.16)
One can juxtapose the total energies E and 7w, the energy
Mec? corresponding to the particle rest mass and the energy
hw,,, of a quantum of the critical frequency, and finally the
the momentum modulus |p| and the propagation constant
hik.

Pointing out this analogy, de Broglie [32] notes: ‘Every-
thing occurs so as if a photon has its own mass, which is
determined by the waveguide shape and the eigenvalue
considered; in a given waveguide, a photon can have a
series of own masses’. And further on: ‘Let us put aside
these considerations, which distract our attention from the
subject’. Feynman [33], making similar comparisons, follows
de Broglie, saying only: ‘It is interesting, isn’t it?’

Meanwhile, note in connection with this analogy that the
nature cannot be so wasteful for really incidental coinci-
dences to occur quite often in it. Each time when apparently
incidental analogies and coincidences are encountered, one
should try to understand what is behind them. It is sufficient
to recall here the result of the reflection about the apparently
‘groundless’ coincidence of the inertial and heavy masses of
a body.

The assumption about the physical meaning of the
analogy, according to which the observable rest mass of
a photon in a waveguide is
hwnm

e’

M,,, = (3.17)
requires the answer to two questions: (i) Whether the
product Aw,,, is a physically real energy (for example, the
energy accumulated in some observable process, which can
be transformed to other types of energy) and (ii) what is a
source of this energy (the energy origin)?

Note here that the critical wavelength 4,,, in the wave-
guide is simply equal to the Compton wavelength A (1.17)

2nec 2
_nL_nh_A

nm_w_—m— (318)

appearing in the Maxwell —Proca equations.

3.3 The time evolution of the mode field upon a change
in the waveguide cross section

To answer the questions posed above, we should consider

the evolution of the mode field with changing the cross
section of a waveguide of infinite length caused by the

movement of the waveguides walls parallel to themselves
and uniformly over the entire waveguide length [34].

If the cross section changes continuously and sufficiently
slow, so that both its shape and the field structure of the
observed mode are retained, then the behaviour of the wave
is determined by the fact that the propagation constant is
invariable (k = const), i.e., by the invariance of the phase
interval.

This means that the phase difference of the wave on a
fixed finite piece of the waveguide remains invariable when
its cross section is varied as described above. According to
(3.6), it follows from the invariance k = const that

(ck)2 =i —wko=w>—w?, = const, (3.19)
where w and w,,, are the current wave frequency and
critical mode frequency, respectively, and w, and w,,,, are
their initial values, respectively.

A special case of the phase invariance relation (3.19) is
the initial waveguide with infinitely separated walls, i.e., the
free space with w,,,,q = 0:

2 2 2
W~ = Wy + Oy

(3.20)

Such a situation can be considered as a starting one for
the construction of a waveguide with a finite cross section
from the free space by drawing together initially infinitely
separated waveguide walls. According to (3.20), the initial
field with the frequency w, gives rise to the wave in the
frequency o in the waveguide.

Of special attention is the limiting case of a vanishingly
low frequency of the initial field (w, — 0), when this field is
in fact purely static and

(3.21)

W = Wy

In this limiting case, the static initial field produces the wave
field with the critical frequency in the waveguide.

One can easily see that, because free space can be
considered as the limiting case of a waveguide with infinitely
separated walls, the zero initial frequency means the critical
frequency for free space. Indeed, the static field with oy — 0
has the main property of the critical-frequency field, namely,
the inability to propagate. In other words, in this latter
transformation, the field frequency remains equal to the
critical frequency.

In the opposite case, when the cross section of a critical
waveguide is increased from a finite size to infinite free
space, the wave field degrades to a purely static field.

The next fundamental invariant of the process of wave-
guide evolution is the photon occupation number of the
mode N = const, whose invariability is quite reasonable in
the absence of dissipation and nonlinearity. Along with this,
the energy of the mode field

W' =ho(N+1/2) (3.22)
depends on the frequency w (3.19). The term 1/2 in (3.22) is
the contribution from zero vacuum fluctuations.

The total energy of the electromagnetic field with a given

transverse structure and critical frequency is
W =ho(N+1). (3.23)

Here, the sum 1 =1/241/2 is the total energy of zero
fluctuations, which are inevitably present in the identical
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counterpropagating modes even when the second of these
modes does not contain real photons.

Therefore, the field energy W changes during the wave-
guide evolution in accordance with the adiabatic Manly —
Row invariant for the ratio of the oscillator energy to its
frequency:

W W
w (on

(3.24)

where W is the initial energy for o = wy.

The energy conservation law requires that an increase in
the field energy should occur due to the work of an external
force, which displaces the waveguide walls and reduces its
cross section. The source of this external force is unim-
portant within the framework of our treatment, only the fact
itself of accumulating of the energy in the waveguide mode
being significant. It is obvious that in the reverse process of
reducing the mode field energy with increasing waveguide
cross section, this energy is returned back to the external
source. We will show below by a simple example that a force
applied from inside to the waveguide walls in these processes
and counteracting to the external force is the light pressure
of the mode field.

Especially instructive is the case (3.21) of the waveguide
construction from free space with the zero critical frequency
@m0 = 0 which is occupied by a static field with @y — 0.
The wave field produced in this case has the critical
frequency w = w,,, corresponding to the achieved final
cross section of the waveguide with the quantum energy
(3.24)

w

— 3.25
N+1’ (3.25)

hwnm =
where the right-hand side is the work of the external force
spent to produce a photon.

It is essential that this process does not require any real
initial photons in the mode. When N = 0, the seeding role is
played by the always present energy fiwy(1/2 + 1/2) = hw,
of the zero fluctuations of vacuum, which have, moreover,
the zero frequency w, — 0 (something that is absolutely
imperceptible like the Cheshire cat smile!)

Returning to the definition of the observable photon rest
mass M,, in the waveguide (3.17) and to the questions
posed at the end of section 3.2, we note that the quantity
M,,,¢’ is equal to the work of an external force producing
the standing-wave field of one quantum with the critical
frequency. The energy that is equivalent to the observable
mass M, is taken from the external force source and can be
transformed to the energy of the external force during the
reverse process of increasing waveguide cross section until
its transformation to free space. Therefore, the definition
(3.17) is not purely formal but it has a real physical
meaning.

3.4 The mechanism of energy transformation
during the movement of waveguide walls

It is useful to study the details of the energy-transformation
processes during the movement of the waveguide walls for a
simple planar waveguide [34] formed by two parallel metal
planes separated by the distance a. In this case, the critical
frequency of polarisation modes TE,, (n =1, 2, ..., m =0)
and TM,; n=0, 1, 2,..., m=0) is

W, = Ten/a. (3.26)

The field of the planar waveguide mode can be repre-
sented as the result of the interference of two partial plane
waves incident on the waveguide walls at an angle of o
satisfying the relation

cost = /. (3.27)

The variation in the parameters of these waves upon
approaching (or removing) the waveguide walls with respect
to the symmetry plane of the waveguide at the velocity ¢ff
consists in the relativistic changes in the frequency (caused
by the Doppler effect) and in the angle of reflection in each
reflection event (f >0 and f <0 upon approaching or
removing, respectively):

2
o' :ww’ (3.28)

1-p°
1+28/cos? +

cos?’ = cos® -
1 +2Bcosd+f

(3.29)

It follows from this that, during the passage of a partial
wave from one waveguide wall to another, the waveguide
gap a increases by

1+ 2Bcosd + f>

Aa = —2ap N
(14+3B)cos?+ B3+ B°)

(3.30)

while the corresponding increments of the frequency and
the angle of incidence are

B(1 + cos® ) + 2cos ¥

Ao = s 3.31
B e (3.31)
and
.2
Acos ) = M, (3.32)
1 +2Bcosd+f
respectively.

The passage from finite differences to differentials leads
to the system of differential equations governing variations
in the frequency and the angle of incidence depending on a:

do  wp(l + cos? ) + 2 cos

da~  2a 1-p°
2
3B +cosd + BB +3260519)7 (3.33)
1 +2Bcostd+ B
. 2
di _sind 3 +cosd + f(F* +3cosd) (3.34)

da a (1+2Bcos® + )
The integration of this system over many reflection
events for <1 gives the following relations for the

frequency and the angle of reflection:

sin ¥ agp cos
— 0 — 2 3.35
e ) %a cosV’ (3.35)
a
tan ¥ = —tany, (3.36)

d
where the zero subscript denotes initial values.
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It should be emphasised that the frequency and the angle
of incidence depend on a even for f — 0. During a slow
motion with f < 1, the condition (3.27) remains valid,
indicating that the structure of the field of the mode
observed is invariable — the radiation frequency and the
angle of incidence are continuously tuned to the stationary
interference pattern of the mode. And vice versa, the
interference pattern disappears at large values of 5, which
is accompanied by scattering of photons from one mode to
another.

By excluding the angle of reflection 9 from system (3.35),
(3.36), we obtain the invariant (3.19), which was derived
earlier for the general case.

For a planar waveguide under study, we can directly
calculate the work performed against the light pressure force
of the mode field

F, = %/coszﬂ, (3.37)
where W is the mode field energy, and the work performed
during a change in the gap by Aa is

W cos?o

AW = ——Aa.
a

(3.38)

The passage from finite differences to differentials taking
into account invariant (3.19) leads to the differential

equation
W/a

dw =— 5 5 . (3.39)

da 1+ (a/ag)"[(wo/wn0)” — 1]

The integral from this equation, as expected, coincides with
(3.24). Here, w,, is the initial value of the critical frequency
(3.26) for a = qy.

Thus, a simple example of a planar waveguide explains
both the mechanism of operation of the external force
against the light pressure force of the filed mode during the
waveguide construction from infinite free space and the
general conclusions of section 3.3.

Let us make a brief comment about the TM(, mode of a
planar waveguide with the zero critical frequency o, for any
value of the gap a. The polarisation of this wave is such that
the electric vector is always perpendicular to the waveguide
walls and, hence, the light pressure is absent, resulting in
both the zero work of an external force and the zero critical
frequency, in complete accordance with the above discus-
sion.

3.5 Energy transformation upon varying the cross section
of a generalised cylindrical waveguide of an arbitrary
cross section

A clear result obtained in section 3.4 for a simple planar
waveguide can be extended (although less descriptive) to the
general case of a cylindrical waveguide of an arbitrary cross
section [35], for which the dimensionless scalar function
V(q1, ¢q»), which is the solution of the equation of type
(3.11), (3.12)

VU + (@) =0, (3.40)
determines the dependence of the mode fields on the
transverse orthogonal coordinates ¢; and ¢,. Here,

L {i <@i) ch (hi)}
hihy | 8q, \ hi 0q, 0q> \ 12 0q»

v, (3.41)

is the Laplace operator over the transverse coordinates, and
the Lame coefficients s; and &, satisfy the conditions

0 (I 0
The components of the fields are:
for the TM polarisation
E. = Eqpexp(i®), (3.43)
’k .
E, = Ey—(V,¥) exp(i®), (3.44)
o .
Hq = EOEOwT[(Vql//)ZO] CXp(l¢)7 (3.45)
H. =0; (3.46)
and for the TE polarisation
o \1/2
H.=E, ( i) Y exp(id), (3.47)
Ho
12 2
& ck .
H, = E, <—°> —— (V) exp(i®), (3.48)
Ho Wpm
cw .
E, = E, wT[(Vqlﬁ)zo] exp(i®), (3.49)
E. =0, (3.50)

where E, and H, are the vector components of the electric
and magnetic fields in the cross section plane; V, is the
operator over the transverse coordinates; the gradient (Vi)
forms the vector product with the unit vector z,. The metal
boundary conditions on the contour S limiting the wave-
guide cross section have the form

V|, =0, (V)| L L, for TM polarisation, (3.51)

Gl L

n [, =0, (V)| |l L, for TE polarisation, (3.52)
n

where n is the normal to the contour L and L is its directrix.

The time-averaged force of light pressure on the walls of
a waveguide of unit length, calculated via the component of
the Maxwell tension tensor taken with the opposite sign, is
equal to the integral over the contour L:

2
0% 2
froe = B | (7,07 (359
7E2628° )2 — (V. )l 3.54
frv =B j (@b /) — (V) dL. (3.54)

It follows from this that the total force of light pressure
on the walls of a waveguide of an arbitrary length is
proportional to the total field energy W

_1 [ ? L
F"’*§<7 W (3.55)
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Here, we took into account that the field energy per
waveguide unit length is expressed in terms of the integral
over the cross section S:

2
W*:Eg’g—‘)( @ ) J ¥ 2ds.
2 Wpm S

The elementary work performed by moving the contour
L against the light pressure force F,, upon a change in the
waveguide cross section S is

(3.56)

dW = —F,dn, (3.57)

where dn is the differential of movement along the normal
to the contour L.

If the shape of the contour L does not change with
varying cross section, then the dimensionless function (g,
¢») also does not change, and the product

2

OpS = (02,)So = const, (3.58)

where the zero subscript denotes the initial values. Taking
into account that dS = Ldn, we obtain

nm ? . (359)

2
dw,,, = —o

Thus, expression (3.59), taking into account the inva-
riant (3.19), gives the equation for the accumulation of the
total mode energy during a change in the waveguide cross
section:

aw
dwnzm -

w2

wan - (wi%m)o + w()z’

(3.60)

whose integral coincides with the Manly—Row relation
(3.24), with all the conclusions of sections 3.3 and 3.4
following from this.

3.6 Summary comments

Thus, the observable photon rest mass M, (3.17) in a
waveguide is equivalent to the energy of a quantum of
critical frequency ,,,, which is equal to the work
performed by an external force against the mode field
force during the waveguide formation when the light
pressure is ‘raked’ from infinite space into the limited
volume of the waveguide. Therefore, the quantity M,
(3.17) is not formal but has a certain physical meaning.

4. The observable photon rest mass
in the co-moving coordinate system

The properties of the observable photon rest mass can be
revealed in a purely kinematic experiment by observing the
travelling wave of a waveguide mode from a co-moving
inertial coordinate system moving along the z axis of the
waveguide at the velocity ¢ = vy, [36]. [The latter is not
forbidden by the laws of the special relativity theory (SRT)
because v, < ¢ (3.5).] The result of such a relativistic
transformation is obviously the wave stopping and the
possibility of the direct observation of the stopped light.

4.1 Relativistic kinematics of the waveguide-mode field
What happens upon such a transformation of coordinates
to the wave frequency and propagation constant in a
waveguide, which were initially specified in the laboratory
coordinate system?

The standard relativistic derivation of the Doppler
formula is based on the postulate of invariance of the
wave phase ® = wt — kz in different inertial coordinate
systems. By substituting the values of 7 and z

t' z' /e 2/ cpt’
= %7 7 = ;2/31/2’ (4.1)
(1=57) (1=57)
which are expressed in terms of the Lorentz-transformed
primed coordinates of the co-moving system, into the
relation for the phase @, we can easily obtain the expression
for the phase in the primed system:

1 —cfk/o 1 - po/ck
YRR T

Here, the factors in front of ¢’ and z’are the values of the
frequency o’ and the propagation constant k' in the co-
moving system, and the second terms in the numerators are
transformed with the help of the dispersion relation (3.6) to
give

4.2)

f_ L B = (@0/0)]? 1= Bvg/c)
TR T T U A
g LB = @)1 T Ble/o)

- a—pyr ey 40

Expression (4.3) is the Doppler effect formula for a
waveguide.

It follows from (4.3) and (4.4) that, if the movement
velocity ¢f of the primed system coincides with the group
velocity v, of the wave in the laboratory frame, then

0’ = w,, = ol - )", 4.5)

k'=0, vg=0. (4.6)

The latter means that the wave stops in the primed
coordinate system and the transport of the electromagnetic
energy ceases, the travelling component of the wave
disappears at all, and only the transverse standing compo-
nent is retained at the frequency o' =w,, (4.5) cor-
responding to the second-order transverse Doppler effect.
This stopped light wave accumulates the resting electro-
magnetic energy Nhw,,, or, in other words, it contains N
stopped photons, the energy of each of the photons being
equal to that of the photon of the critical frequency of the
waveguide mode. According to the principle of equivalence,
this energy of the resting photon corresponds to the rest
mass (3.17) coinciding with the nonzero observable photon
rest mass.

As the movement velocity of the primed coordinate
system further increases (cff > vg,), the direction of the wave
propagation changes to the opposite (k' < 0) and the wave
frequency ' increases (Fig. 3).

4.2 Relativistic transformations of the field vectors
and the Poynting vector

The change in the wave propagation direction to the
opposite and the wave standstill are also confirmed by the
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Figure 3.

change of sign and the vanishing of the Poynting vector in
the primed coordinate system.

The field vectors are transformed on passing to the co-
moving primed coordinate system, the longitudinal compo-
nents of the field vectors remaining invariable (e’ = e. and
h’ = h.), while the transverse components are transformed
by the known rules

o &= (/)" Bhy

ST “n
LS
w =l (l(gf/gg))://jﬁex . (4.10)

It follows from this, taking into account (3.7)—(3.10) and
(3.14), (3.15), that the longitudinal component of the
Poynting vector for each of the polarisations is

(1 — ﬁugr/c)(l — cﬁ/vgr)
(=g

Therefore, when the group velocity of the wave in the
laboratory coordinate system and the velocity of an
observer moving together with the primed system are
identical, the longitudinal Poynting vector vanishes, i.e.,
the transport of the electromagnetic energy ceases and
photons are stopped. As the velocity of the observer further
increases, the energy flux changes its sign and begins to
propagate in the opposite direction, which corresponds to
the change in the sign of the wave vector pointed out above.

PiFM‘TE = PTM‘TE (411)

4.3 Summary comments

In addition to the above conclusions about the mass-like
behaviour of photons in real electromagnetic fields, which is
caused by the presence of the fragments of standing waves
(stopped light) in them, we can also conclude that the

nonzero observable photon rest mass in a waveguide is
revealed upon its purely kinematic stopping due to the
relativistic transformation of coordinates. Such a relativistic
kinematic photon stopping, resulting in the detection of
their rest mass, can be undoubtedly found in any fields
outside a material medium, because, as pointed out above,
gy < ¢ in these fields [for example, in the field of the wave
reflected from a plane mirror (section 2.7) during the
movement of an observer along the mirror surface at the
velocity (2.30)].

5. Dynamic experiments with photons
with a finite observable rest mass

The characteristic properties of the quantity defined as the
inertial and gravitational rest mass of a body are revealed
when the body is subjected to the action of one or another
force producing acceleration, i.e., in a thought dynamic
experiment with photons belonging to the modes of the
basic waveguide model [28].

5.1 Longitudinal acceleration of a photon in a waveguide

It follows from dispersion expression (3.6) and relation (3.5)
for the group velocity that the photon energy in a
waveguide is

M, 02
—_ mmz 5.1
TR RS G

and the product of the propagation constant by Planck’s
constant corresponding to the photon momentum is

Mnmvgr
[1— (vg/?]"?

Both these expressions obviously coincide with the corre-
sponding relativistic formulas for the energy and
momentum of a massive particle.

The only force capable of accelerating a photon along a
waveguide can be probably the gravity force, which will be
considered below. Here, it is sufficient to find in the
expression for the time derivative of 7k (5.2) [37]

ik = (5.2)

d M dv
~ hk _ nm gr (53)
3t " T g a

the coefficient at the longitudinal acceleration dvg,/dz. This
coefficient

— M)ZWI (5 4)

[1— (vg /)

has the form and meaning of the so-called longitudinal
mass of a particle.

—

5.2 Transverse acceleration of a photon in a waveguide

The transverse (normal to the waveguide axis) acceleration
A of a photon acquires the physical meaning only if we
study the movement of the field and of the waveguide
holding the field, treated as whole, caused by the action of
the force F; normal to the axis. The difference AF of the
forces of light pressure of the mode field with the only
photon on the opposite walls of the waveguide counteracts
to this force [37]. Then, the so-called transverse observable
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photon mass in the waveguide (of course, neglecting the aA

. AV~ ——| (5.11)
mass of the waveguide walls) can be defined as ccosv

v _Fi_AF
"4 a4

(5.5)

During the transverse movement of the waveguide at the
variable velocity V' = At (for simplicity, the acceleration 4 is
assumed constant), the wave frequency changes according to
the law (3.19), in which the critical frequency w,,, depends
on the instantaneous value of the velocity ¥ due to the
relativistic contraction of the transverse size of the wave-
guide. In a simple case of a planar waveguide with the walls
separated by the distance a,

and the frequency changes (in fact, due to the Doppler
effect on the moving walls) as

2 2 91,2
w:w0|:1+<wnm0) (V/C) 2:|
200 1—(V/e)
(the zero subscripts denote the initial values).

At the instant ¢ > 0, when the velocity V' = At, a photon
incident on the wall at an angle of 3 imparts the momentum

(5.7)

_ 2hocosd £ Ve

7 (5.8)

to the wall after reflection. After the next reflection from the
opposite wall, which occurs at the instant 7 + A¢, when the
velocity acquires the increment AV = AA¢, the momentum

, 20
C

L cosVE V/eF AV/Q)[L £2(V]e)cos + (V/e)]

1— (V+AV)*/c? 9

is imparted to the waveguide in the opposite direction.
(Here, the frequencies and angles are given in the immobile
coordinate system, set for t = 0 and V" = 0; the upper signs
refer to the first reflection from the wall, which moves
toward the photon, the lower signs refer to reflection from a
co-propagating wall.)

After two successive reflections of the photon, the
waveguide acquires the difference momentum

2hw
Ap = i([’/ —P”) :T

y 1 F (cos? £ V/e)A(V/e) /[l — (V/e)]
1— (V+AV)?/c?

(5.10)

directed toward the acceleration vector. In the second
approximate equality in (5.10) for the case of the non-
relativistic movement of the waveguide, the terms quadratic
in V/c and AV/c, which depend on the succession of
reflection events, are omitted. The increment of the velocity
during the time between two reflections is

and the momentum imparted to the waveguide in one
reflection is
Ap  Tho ad

Ap' =—=— .
P 2 3 cosd

(5.12)

If N is the photon occupation number of the waveguide
mode, then

J:ivcosﬂ (5.13)
a

is the total photon flux incident on the waveguide walls,

and

. hw N
Ap'J = 2 4 ni2
[1 - (Ugr/c) ]

is the light pressure force of the mode photons, which
counterbalances the external force F; in (5.5) accelerating
the waveguide. By equating F; to the force (5.14) for the
waveguide containing a single photon in the mode (N = 1),
we obtain the expression

(5.14)

M,
nm (515)

[1 = (vae /)]

for the so-called transverse observable photon mass in the
waveguide, which coincides with the standard SRT
formula.

MT:

5.3 Centripetal acceleration of a photon in a curvilinear
waveguide

To observe and measure the photon mass, we can follow a
simple recipe of Feynman [38]: “The mass is a quantitative
measure of inertia. It can be measured by simply tying a
subject to a rope and rotating it at a certain velocity by
measuring the force required to hold the subject. In this
way, one can measure the mass of any subject’. In other
words, it is necessary to measure the reaction force of the
walls of a waveguide curved along the arc of a circle to the
wave of the specified mode propagating through the
waveguide [39].

For simplicity, we can set the central angle of the arc
equal to 2m, i.e., to consider in fact a ring resonator of a
rectangular cross section with sizes @ and b, the radii of
cylindrical walls R, and R; = R, — a, and with two counter-
propagating travelling waves with the same frequency o
with the field components [32] in the cylindrical coordinate
system (R, ¢, x), which form the standing wave.

For the TM polarisation,

Ep = —AOED;”(pR) sin(zx) expli(wt F me)], (5.16)
p

mt . .
E, = Aopz—RDm(pR) sin(tx) expli(wt F me +n/2)], (5.17)

E. = AyD,,(pR) cos(tx) expli(wt F mo)], (5.18)
H,=0, (5.19)
where
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Dm(pR) = Nm(pRZ)Jm(pR) - Jm(pRZ)Nm(pR);

P = Pym = %mRy is found from the roots a,, of the
characteristic equation

(5.20)

Do) =0, m=0,1,2,.... n=1,2, ... (5.21)

For the TE polarisation,

Ho

& 172 mt
H,= —AO(—0> o
ko) PR

N2
Hy :A0<L—O) %G:n(pR) cos(tx) exp[i(wt F me)], (5.22)

x G, (pR) cos(tx) expli(wt F mo + n/2)], (5.23)

CN\1/2
H, = A, (8—()) G,,(pR) sin(zx) exp[i(wt F mo)], (5.24)
Ho
wm . .
Ep AO—ZRGm(pR) sin(zx) exp[i(w? F me)], (5.25)
cp

E,= AOEG;,,(pR) sin(tx) exp[i(wt F mo + n/2)], (5.26)
cp

E, =0, (5.27)
where
Gm(pR) = N;n(pRl)Jm(pR) - J;n(pRl)Nm(pR); (528)

0= Ppm = %um/Ry 1s found from the roots a,, of the
characteristic equation

GhlpmR) =0, m=0,1,2,, n=12,.; (529

J,, 1s the Bessel function of the first kind; N,, is the m-order
Neumann function (primes denote the differentiation over
the argument); and A4, is the amplitude factor.

The resonance frequencies of the waves of both polari-
sations are determined from the expression

wZ = wi%m/ = (cpnm)2 + (CT)Z = wnzO/ + cz(plfm - anO)ﬂ (530)
where
T =7l/b;

1=0,1,2,.... (5.31)

The radial component of the vector of light pressure on
the cylindrical boundary with R = const is equal to the
corresponding component 7;; of the Maxwell tension tensor
with the opposite sign

¢
Or=-Ty, = —30(E1ZQ—E$—E§)

"
— S (Hr = Hy — H). (5.32)

It follows from this, taking into account (5.16)—(5.19)
and (5.22)—(5.27) that the radial components of the light
pressure vector for the TM and TE polarisations are

Mo g oy (5.33)
2 2
and
OFF = -2z + o2 4 1) (5.34)

2 2
respectively, and the time-averaged total force of light
pressure on the entire cylindrical surface of radius R; or R,
is

2n/w b

0 0

Therefore, the differences of the forces of light pressure
on the opposite cylindrical walls for the TM and TE
polarisations are

B sz,i<pRz>}
AFry =—|1 —== 5.36
™T R RJE(PR)) (5-36)
and
r 2 12
AP = 1_(£) _ReTu(pR)
Ry | PR, Ry J;(pR))
2
x (1 _ m—zﬂ (5.37)
(PRy)
where
_ &b
= i (5.38)

has the dimensionality of energy and appears as a factor in
the total energy of the mode fields

(o V][, JipRy)
=55 ) |1 Te0R ) 3
W *B w 2 1 m 2
w=s( o) {1 [k
T (pRy) {1 m’ H
_ _ . 5.40
T20R) L R, (5.40)

Therefore, the difference AE of light pressure forces
(5.36), (5.37) can be expressed in terms of the total energy W
of the mode field

W ([ cp 2

AF=— | — | f, (5.41)

R2 (0]

where the factor f for the TM and TE polarisations is
different:

R,
=2(1-
f™m R ( 1

L= Ri/R ) (5.42)

—Ja(pRa)/T5(pRy)
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F Ry, 1—R\/R,
JTE = &5~ -
Ry _Ja(pRy) 1= (m/pRy)’
T (pR1) 1 — (m/pR,)?

Returning to the recipe of Feynman, we should take into
account that the entire mass in this simple mechanical
analogue is concentrated at the rope end, whereas the
field energy in a toroidal resonator is distributed within
a ring with radial coordinates differing by a, which was
taken into account with the help of the factor fin (5.41).
Therefore, a direct comparison with the experiment of
Feynman can be performed only for the mode in which
the field is concentrated closely to the cylindrical surface of a
larger radius R,. This requirement is fulfilled for modes with
multiply periodic fields over the circle and a small number of
zeroes along the radius

(5.43)

m>landn ~1, (5.44)
when we can assume for simplicity that R; < R,, which
does not affect noticeably the result. Then, expressions
(5.42) and (5.43) take the approximate form and have
almost coincident roots [40]:

for the TM polarisation

m _ m
Tn(prmR2) =0, py, ~ (14 1.86m ) m =, (5.45)
R Ry
and for the TE polarisation
m _ m
Tn(pimRa) =0, pry = —(1+0.81m ) ~ —. (5.46)
R, R,
For both polarisations, the difference between light
pressure forces is
N SLARRY (5.47)
NRz Q)Rz ’ '

where the frequency determined from (5.30), taking into
account the above approximations, is

W~ ()] ~ ()]
(1= (/@) (pl, — p2)'? 1 = (em/wRy)*)'"?

(5.48)

Let us assume now that the mode contains a single
photon, so that W = hw. Then, taking into account the
expression for the group velocity of the wave in a toroidal
waveguide

C2m

Ugr = ﬁ (549)
the expression
hwn()//c2 v_ng
(1= (/)] Ra
2 2
_ M,y - 2@ _ Myvy (5.50)
[~ (g/c)] P R R
for the difference of light pressure forces [where

M, = hiw,g;/ ¢? is the observable photon rest mass and
M, is the transverse photon mass (5.15)] obviously coincide

with the standard formula for the centripetal acceleration of
a body.

5.4 Gravitational acceleration of a heavy photon.
A desktop ‘black hole’

The properties of the gravitational mass in the quantity

M,,, (3.17) can be found by observing the propagation of a

wave through a waveguide mounted vertically in the

gravitational field [4]. According to (3.17), the value of

M,,, is proportional to the critical frequency
Colym

Wy = a

(5.51)

where a is the size of the transverse section of the waveguide
and «,,, is the root of the characteristic equation, i.e., the
mathematical invariant independent of the size. If the
waveguide is located in the gravitational field with the
potential ¥ <0, |¥| < ¢?, then the speed of light is

er e (1 +2¥/c?), (5.52)

and the transverse size (as any linear dimensions of bodies)

a=ay(l+2¥/c?) (5.53)
depend on ¥ (hereafter, the subscript oo denote values at
infinity, where the potential is normalised as ¥, = 0) [41].
It follows from this that the critical frequency, and hence,
the observable photon rest mass in the waveguide also
depend on the gravitational potential

ho‘))’ll’ﬂ ~ MHH’IOO

Mon == 2" X LW/ (1 + 29/

~ Mnmoo(l _3q//62)a (554)
where
hal}’l

Note here that dependence (5.55), obtained by taking
into account the influence of the gravitational field on the
quantities entering the definition of the observable rest mass
M, (3.17), does not differ from the standard dependence of
the mass of a usual heavy body on the gravitational
potential [41], which is also obvious from the dimensionality
considerations.

Returning to the process of the wave propagation in the
vertical waveguide, note that the propagation constant k
also varies in the gravitational field

2 UJZ (0)] 2
"Z(?)‘(T)

g 2
~k2l=-2—(14+4—")|.
OO|: CZ( +]_u)nzmao/(’uazo):|

This is explained by the fact that both the critical frequency

(5.56)

O R Do (1 + P /7, (5.57)

and the wave frequency
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o =awy(l—¥/c?) (5.58)

depend on the potential. It is important to note that,
although the second term in (5.56) can be not small even
when |¥| < ¢, near the critical conditions, ®.., — ®umeo»
the propagation constant k does not vanish nevertheless
because ¥ < 0, and k., # 0 due to the normalisation.

The observation of a decrease in the propagation
constant k during the propagation of the wave upward
through the waveguide from a point with the potential ¥, in
which k= k", to a point with a larger potential ¥ + AY
(AY > 0) reveals the phenomenon of the gravitational stop
of the wave:

k2~ (k*)? {1 - 2%"(1 +1—#>]

(5.59)
(w and w,,, are taken at the point with the potential V).

Indeed, near the critical regime, when 1— (®,,,/ w)? <1,
despite the fact that A¥Y < ¢?, the propagation constant
vanishes when

C2 , 2
AV ~—|1— nm

and the propagation of the wave upward through the
waveguide ceases. Then, together with the sign of +Vk?2,
the direction of the wave propagation changes to the
opposite — downward the waveguide.

This means in the language of the mechanical analogy
that a body thrown upward with the kinetic energy that is
small compared to the rest energy (due to the smallness of
k* near the critical regime), i.e., in the nonrelativistic case,
stops in the upper point of the trajectory, having exhausted
its initial momentum, and then falls back.

Using another analogy, we can say that this situation
reproduces in a certain sense a desktop ‘black hole’, which
holds the photons of the waveguide mode.

The vertical distance H to the turning point behind
which the wave propagates downward can be obtained from
condition (5.60). Thus, if

(5.60)

AY =gz (5.61)
(g is the gravitational acceleration and z is the vertical
coordinate), then the height of the turning point of the
wave is

i (5)])-%
4g o] 4g
One can easily see that the value of H is half the lift of a
heavy body thrown at the initial velocity v, calculated
from the laws of Newton mechanics. The reason for this
discrepancy is the same as that appearing upon comparison
of the estimates of the gravitational deviation of a light
beam made using the laws of the general relativity theory
and the Newton gravitation theory taking into account the
principle of equivalence (see, for example, Ref. [41]).
Indeed, the reversal of the wave in the vertical waveguide
is in fact nothing but one of the possible realisations of the
process of gravitational deviation of a light beam separated
into individual parts due to multiple successive reflections
from the waveguide walls. Thus, in a planar waveguide for
g =0, a light beam circumscribes a zigzag broken straight

(5.62)

line with a constant step and apexes on the waveguide walls
(Fig. 4). Using the known method for sweeping a beam
reflected from plane mirrors (which are the planar wave-
guide walls), the zigzag can be represented by an inclined
straight line. The gravitational field with g > 0 bends this
initially linear beam, transforming it into an arc with a
maximum corresponding to the gravitational height H
(5.62). This arc is in essence the beam sweep inside the
waveguide, which is shown by the broken line with a step
decreasing with height. A similar arc, with a two times
slower variation of the angle calculated according the laws
of Newton mechanics, taking into account the principle of
equivalence, is shown by the dashed line with a maximum of
height 2H.

v

Figure 4.

5.5 An optical resonator with a gravitational mirror

The reversal of the wave propagation in the vertical
waveguide can be interpreted as refraction reflection
from a gravitational mirror mounted at the height
z = H. If the vertical waveguide is supplemented with a
usual reflecting mirror mounted at its base at z =0, then
such a waveguide of height exceeding H and open from
above forms an optical resonator [42] with the resonance
condition

H
J k(z)dz=mnq (¢ =1,2,...). (5.63)
0
In a particular case (5.61), when
k(z) = k*(1 — zH)'?, (5.64)

the resonance frequency measures at z =10 is

5 37th 291/2 67qu 291/2
wt] = |:wnm + < 2H > :| = Wy |:1 + (m) :| . (565)
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5.6 Photon weighing
To weigh a photon directly, it is sufficient to place the
gravitational resonator described in section 5.5 with a single
photon in the mode on the balance platform and to find the
light pressure force acting downward on the lower mirror,
which is imparted to the balance. It is important that the
force directed upward after reflection from the upper
gravitational mirror can be neglected because this force is
imparted directly to the gravitational source, for example,
the Earth rather than to the balance. As a result, the light
pressure force of a single photon acting on the bottom of
the gravitational resonator is equal to the photon weight.
The round-trip transit time (upward —downward) for a
photon in the resonator is equal to the doubled time of
energy transport to the height H at the velocity vy,

H
(&)
tgy=2| —5d
H JO Czk Z,

(5.66)
where the integrand is determined taking into account
(5.59). In particular, if the potential is described by
expression (5.61), then

ty=—

- = e (5.67)
Vg

2J‘H dz _4H v
o (1—z/H)'? vy g

In each reflection event, the photon imparts the momentum

_2hw([ 1 Opm 212

Py =2— o, ;

to the balance platform, and the photon weight, as the ratio
of p, to ty, is

(5.68)

)2 J10)

1y = 2C_qu = ZMnmg'

Je= (5.69)

Note that the photon weight f, is twice as large as the
standard Newton weight. The reason is the relativistic
velocity of the photon propagation between the waveguide
walls, unlike the nonrelativistic velocity of a heavy ball.

Here, it is necessary to make a digression [42] in order to
consider the problem of weighing a usual heavy particle
(ball), which is not, however, at rest on the balance platform
but periodically bounces off it at a relativistic velocity. In
the general case of the absolutely elastic ‘reflection’ of a ball,
the trajectory of its movement during each fall on the
balance platform is a cyclic succession of the arc-like
fragments resting on the horizontal plane, and the ball
weight can be determined from the expression

. 2p.(z=0
fg:#a

(5.70)
where p.(z = 0) is the vertical component of the momentum
at the reflection point z=0 and At is the time interval
between two successive ‘reflections’ (bounces).

The relativistic equation specifying one cycle of the
trajectory of a ball with the mass M™, the velocity v,
and the momentum p in the gravitational field with the
potential ¥ has the form [41]

2
d—p:M*[—<1+U—2)grad?’+2<2grad&”)}. (5.71)
dt c c\ ¢

In particular, if grad? =g, vector equation (5.71) is
decomposed into the vertical and horizontal projections

d v\’

- _ —M*g{l + (—) } (5.72)
dz c

dp, . UyU:

— =M"g—=- 5.73
T g3 (5.73)

where the subscripts z and x denote the vertical and
horizontal components of the vectors, respectively. The
solutions for the two limiting cases are substantially
different.

In the case of a strictly vertical movement, v, = 0 and
the arc-like trajectory degenerates to a segment of the
vertical straight line, which is characterised by values

* pz(z = 0)
=-M (z= .= At =2———~= 74
p- gt+p(z=0), p,=0, At Mg (5.74)
while the ball weight (5.70)
Jfe=M'g (5.75)

coincides with the Newton value.

In the opposite case of a very sloping, almost horizontal
trajectory, when we can assume that v, < ¢ and v, ~ v, we
have

p-= —M*g[l + <Z>2}t+1ﬂz(2 =0),

(5.76)
p, =const, At = 2173(2—:0)2
Mgl + (v/e)]
and, hence, the ball weight (5.70) is
Jo = Mgl + (v/c)?), (5.77)

which gives, for the relativistic velocity v — ¢, the value

fo—2M’g, (5.78)
which is twice as large as the Newton value. For a
moderately inclined trajectory, there exist the intermediate
values of the relativistic ball weight, so that, generally
speaking,

M*g<f, <2M'g. (5.79)

All this is valid both for a usual relativistic heavy particle
and for the vertical movement of a photon in a waveguide
considered above, where in the case close to critical
conditions, the photon trajectory approaches the horizontal
trajectory, which explains result (5.69).

5.7 The wave equation versus the Schrodinger equation

A characteristic feature of the above consideration is, in
particular, the demonstration of the creation of the field of
massive particles by a typical massless wave field. It is
interesting that the genetic relation between the wave
equation and the Schrédinger equation can be also revealed
(of course, without pretending to derive the latter), as well
as the transformation of the massless wave equation (1.9) or
(1.10) to the equation of the Schrodinger type, containing
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the mass explicitly but without its introduction as a priory
quantity.

The nonrelativistic character of the Schrodinger equa-
tion requires the fundamental dispersion equation (3.6) for a
wave in a waveguide to be also written in the nonrelativistic
approximation close to critical conditions:

1/ ck\
+ 2<wl’l"’l> } ’
which corresponds in the language of the mechanical
analogy to the smallness of the kinetic energy compared to
the rest energy.

One can now easily see that the differentiation of the

phase @ of a travelling wave suggests that the differential
operators can be written as

W R Wy, {1 (5.80)

2
— —iw and — —

)
ot 0z2 ke

(5.81)

Then, the approximate dispersion equation (5.80) for the
wave can be rewritten in the form of two operator
equations

62 U‘))‘H’H

62—2: =2 C2 ((l)—(l)nm), (582)
10 1/ ¢ \* 92

Tor = O {1 ~3 (LT) ﬁ] (5:83)

These operator equations can refer to any of the six
components of the field vectors, for example, to H,:

’H, | M,

2 +2 P (E — T Hy = 0, (5.84)
ioH, n? 0°H,

o T M o + T, H.y. (5.85)

Here, E = fio is the total energy and M,,,, = fiw,,,/ ¢? is the
observable rest mass.

The above consideration shows that the energy of a
photon with the critical frequency #hw,,, is in fact the
potential energy U accumulated in the waveguide upon
the compression of the mode field from infinite free space.
Then, the replacement /iw,,, = U transforms (5.84) and
(5.85) to the the familiar form

0’H, M,
azz“ +2 h’;” (E-U)H, =0, (5.86)
hoH, I 9°H, un (5.87)
i ot  2M,, 0z2 ’
Of course, these one-dimensional equations of the

Schrodinger type do not contain the Laplacian over the
transverse coordinates because the integration over these
coordinates have been already performed, which resulted in
a priory appearance of the observable rest mass M,,, in
(5.85) and (5.87).

5.8 Summary comments

The cycle of the thought dynamical experiments with the
basic model of a photon in the waveguide mode have

demonstrated that neither of these experiments reveal any
features that would demonstrate the difference of the mass-
like quantity M,,, (3.17), which is equivalent to the energy
of a quantum with the critical frequency, from the inertial
and gravitational rest mass of a body in its standard sense.

It is interesting to compare the possible values of the
photon rest mass observed in some particular situations with
the data presented in Table 1 (section 1.3). Thus, for a
microwave photon in a standard waveguide, M,mlc2 ~
10 eV, for an optical photon in a glass fibre,
M,,¢> ~0.1 eV, and M,,,c> ~107° eV for the fundamental
mode of a laser beam of diameter ~ 1 cm. These values are
many orders of magnitude greater than those presented in
Table 1, which is explained by the extremely strict spatial
restriction imposed on the fields compared to the conditions
used in section 1.3.

6. Conclusions

The main content of the analysis performed in this paper
consists in a chain of the interrelated and following from
each other statements:

(1) Plane electromagnetic waves do not exist in nature; all
the physically realised fields are nonplane and spatially
restricted.

(ii) Strictly transverse physical wave fields do not exist;
any physically realised nonplane wave field has three
polarisation states.

(iii) Nonplane waves realised in nature possess outside
the material medium the frequency dispersion, the super-
luminal phase and subluminal group velocities.

(iv) To photons, represented by physically realisable
nonplane fields, a finite observable inertial and gravitational
rest mass can be assigned, which is not, however, their
immanent characteristic, but depends on the field structure.
Attempts to propose the experiment for detecting the
difference between the behaviour of a photon having a
finite observable rest mass and belonging to a nonplane
wave field and the behaviour of usual massive bodies under
similar conditions have failed.

(v) The observable photon rest mass is caused by the
presence of a standing component in the form of the
fragments of a standing wave (stopped light) in any physi-
cally realised nonplane wave field, which produce the
momentum defect in the Hamiltonian.

(vi) All the above statements are in fact the direct
corollaries of the ‘classical uncertainty relation’, i.e., are
the result of the application of the Fourier theorem to
spatially restricted nonplane wave fields. (Note here that a
standard expression for the density function of the radiative
modes in free space (the radiative oscillators of the field) is
also a direct corollary of the ‘classical uncertainty relation’
applied to nonplane wave fields, which are the only fields
that can be realised physically [43].)

(vii) It is curious heuristically that a typical massless
photon field can is capable of producing, under certain
conditions, the field of quanta having a finite observable rest
mass, which is indistinguishable from the standard rest
mass.

Of course, the problem of the nonplane electromagnetic
waves and finite observable photon rest mass has not been
comprehensively studied in this paper. Recall, however, the
words Einstein has said once: ‘All these fifty years of
persistent reflections have not drawn me nearer to the
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answer what the light quanta are. Of course, now anyone  40.

thinks that he knows the answer, but he is deceiving
himself”.

=42,
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