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Features of the dynamics of lasers with a saturable absorber”

|A.N. Oraevsky |

Abstract. The dynamics of free-running lasers and lasers
operating in the amplification regime is considered. It is
shown that the stability of a wave propagating in the amplifier
depends on the wave velocity. A regular wave propagating at
the superluminal velocity in class A amplifiers can lose its
stability, and its propagation becomes random. The appea-
rance of the periodic or random pulsations of the amplitude in
the laser-generator with a saturable absorber operating in the
hard excitation regime leads to the self-switching off (quen-
ching) of lasing despite continuous pumping.
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1. Introduction: The dynamics
of free-running lasers

In this introductory section, we consider briefly the known
data on the laser dynamics, which will be required for the
discussion of the results presented in the paper.

The dynamics of a single-mode laser is described by the
following system of equations for the field E, the polari-
sation P of the active medium, and the difference N of the
concentrations of particles at the upper and lower operating
energy levels of the active medium
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Here, y is the decay of the field in the resonator; w, is the
resonator mode frequency; w, is the resonance frequency of
the atomic transition; 7; and 7, are the relaxation times of
the population of energy levels of the active medium and its
polarisation, respectively; u is the dipole moment of the
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resonance transition; and J is the pump intensity. The
relaxation parameters in (1) are small compared to the
frequencies of w, and w,, while the frequencies themselves
are close to each other. For this reason, the dynamic
parameters £ and P are quasi-harmonic quantities varying
at the frequency w close to w, and .. The amplitudes of
these quantities changes, however, comparatively slowly.
The bar over the product of the field by polarisation means
the averaging over the period of their rapid variation.
Equations (1) were written in this form for the first time in
Ref. [1].

The symbolic notation in equation (lc¢) can be written
explicitly by representing polarisation and the field in the
form

E = A(t)exp(—iwt), P = B(t)exp(—iwt), 2)

where A(f) and B(¢) are the slowly varying functions of
time. Then, by neglecting the second time derivatives from
‘slow’ amplitudes, equations (1) are reduced to the system
of equations

dA4
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The derivation of equations (3) are described in more detail,
for example, in papers [2—6]. We will assume below that the
frequency of the corresponding mode of the resonator is
exactly tuned to the resonance-transition frequency in the
active medium, so that 4. = 4, =0.

Let us write equations (2) in the dimensionless variables
and parameters

dx
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System of equations (4) has three time parameters: yt,, 1,7,
and b. Depending on their magnitude, lasers are divided
into three dynamic classes. Class A includes lasers in which
all the three parameters have comparable magnitudes. For
class B lasers, the relation yt,, y7,rr € 1, b < y7, is valid. If
Y75, 7Tor € 1 and b ~ 1, the lasers belong to class C. The
dynamics of class A lasers is most interesting, although real
lasers mainly belong to class B. It follows from equations
(4) that in the regime of stationary lasing with a constant
amplitude,

1/2 r— 1 1/2 1
Xg = :t(r - 1) y Yg= i( P ) , Wy = e . (6)
2 2

The question arises: What is the physical meaning of the
negative values of the amplitudes of the field and polari-
sation? Two opposite signs in expressions (6) mean that the
laser has two different operating regimes in which the field
phases (polarisations) differ by n [6]. These two regimes
cannot be distinguished experimentally. However, the exis-
tence of two stationary states is manifested in lasing regimes
with the pulsating amplitude, which is discussed below.

Regime (6) loses stability if the excitation parameter r
exceeds the critical value r* [7—9]:

* VTZ(VTZ +b + 3)

r>r e —

(N

The polarisation of the active medium plays a decisive role
in the origin of the instability described by expression (7).
Therefore, this instability can be called coherent instability.
The instability of this type is absent if r* is negative, i.e., if
17, < 1 +b. For this reason, this instability is absent in
class B lasers.

When condition (7) is fulfilled, laser radiation exhibits
non-periodic pulsations [7-9], which were called the
dynamic chaos. An example of such pulsations is shown
in Fig.1, and the phase portrait of these pulsations is
presented in Fig. 2. The phase portrait clearly demonstrates
the existence of two regimes shifted in phase by m. The

Figure 2. Phase portrait of the laser corresponding to the parameters in
Fig. 1.

amplitude of laser radiation pulsates around one of the
equilibrium states. When the amplitude vanishes, the laser
finds itself in the region of attraction by another equilibrium
state. The amplitude of laser radiation begins to pulsate
around this equilibrium state, by abruptly changing its
phase by m. This phase jump in not accompanied by any
‘energy catastrophe’ because the phase abruptly changes in
the state with the zero amplitude.

All the theoretical results are in remarkable agreement
with experimental data [10]. However, it is not simple to
build class A lasers because most of the active media have a
very broad gain band in the visible range compared to the
spectral width of the resonator mode. In this connection, we
point out here Ref. [11] in which pulsating regimes were
observed for the first time in class A lasers.

Note that the character of pulsating regimes depends
substantially on the parameter b, i.e., on the ratio of the
relaxation times of polarisation and the number of particles.
As the parameter b is decreased, the rest of the parameters
being invariable, pulsations become more regular, which is
clearly shown in Figs 3 and 4. The smaller b, the greater
value of r is required to produce non-regular pulsations.

An amplifier, in which radiation freely propagates in the
active medium in the absence of a resonator, has an

|
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Figure 1. Amplitude X of output laser radiation as a function of 7 for
r>r*and yt, =3, b= 0.3, and r = 50.
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Figure 3. Complicated periodic pulsations of the field amplitude in a
laser for yt, =3, b = 0.1, and r = 50.
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Figure 4. Phase portrait of the laser corresponding to the parameters in
Fig. 3.

interesting dynamic property. In this case, equations (3) are
transformed to the system of partial differential equations
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The experiments and theory show [12, 13] that the
stationary wave A(t —z/u) can appear in the amplifier,
which propagates in the amplifying medium at the velocity u
exceeding the speed of light in vacuum. Equations (8) for the
stationary wave take the form

dA c z
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The system of equations (3) for 4. =4, =0 is iso-
morphous to system (9). Therefore, when the amplifier
parameters satisfy the condition [14—16]

772 (9 b+3) .
o= tb+3) o w
77 —b—1 u—c

(10)

the stationary regime becomes unstable and should pass to
a chaotic regime. In the case of an amplifier, a new
parameter appears — the velocity of pulse propagation,
which gives an additional possibility to control the lasing
regime. When the pulse velocity is close to the speed of
light, but is somewhat greater, the condition yt, > 145

required for producing the chaotic regime can be achieve
more easily.

The superluminal pulse velocity is determined by the
expression [14]

4

U= ,
1 —yro[rey /(1) + 72) — 1]

(11)

where 7 is the characteristic rise time of the leading edge in
the linear part of the laser pulse entering the amplifying
medium. For 1, > 1,, expression (11) transforms to the
formula for the class B lasers, which was obtained in
Refs [12, 13]. The superluminal pulse velocity can be
controlled by varying the time t;. Unfortunately, no
examples of the propagation of radiation in the class A
amplifier have been reported in the literature so far. This
problem is rather complicated for calculations because the
system of partial differential equations (8) should be solved.
A detailed study of this problem requires time-consuming
computer calculations compared to the study of the system
().

The examples considered above can give the impression
that, when condition (7) is fulfilled, the lasing regime with
the constant field amplitude passes to the pulsating regime.
However, the lasing dynamics within the framework of
model (4) is much more complicated. The matter is that the
instability condition (7) is obtained upon studying the
stationary regime by the Lyapunov method, i.e., by the
method of linearisation of equations. A global numerical
study shows that the phase space of system (4) begins to
change when the excitation parameter r is smaller than r*. In
particular, it is found that the pulsating regime and the
constant-amplitude regime can coexist at the same values of
r. The development of one or another regime depend on the
initial conditions. This is discussed in more detail in Ref. [6]
and references therein.

2. Dynamics of a laser with a saturable absorber

The dynamics of a laser with a saturable absorber (SA)
attracts the attention of researchers beginning from papers
[17—-19]. However, these studies concerned mainly class B
lasers. Below, we will consider the general case of class A
lasers.

The model of a laser with an inertialess SA is obtained
from the system of equations (3) by the replacement
y—= [l +o/(1+ o—nAz)}, where « is the relative absorption
coefficient of the SA; 5 is the saturation coefficient of the SA
divided by the laser saturation parameter ¢. The system of
equations for the laser with a SA in the dimensional
variables has the form

dx o
G a1 )Xo
d—Y+Y—XW:0, (12)
dr

w
(L—+b(—1 + W+ XY)=0.

T

The system of equations (12) contains five parameters. A
detailed study of the lasing regimes of such a laser in the
five-dimensional space is very time consuming. Because of
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this, we will study this system depending on the excitation
parameter r, giving specific values to the rest of the
parameters.

In the stationary lasing regime, the field amplitude in the
resonator is determined from the equation

« 2 r 2
l+— | X = X,
( 1+nXx? ) 1+ X2
while the corresponding population difference and polari-
sation are found from the expressions

1 o
w=-(1+—2—), v=xw.
"< +1+nX2>

It is obvious that the zero and positive values of X 2' have
the physical meaning. The zero solution always exists*. The
nonzero solutions of equation (13) are shown in Fig. 5 (X
and X2 are the greater and smaller of these solutions,
respectively). In the region ry, < r < r;, three stationary
values of the intensity exist: zero (zero regime) and two
nonzero. The nonzero values at the point ry becomes
identical. This point corresponds to the lasing threshold. It
follows from the general concepts of the theory of nonlinear
oscillations that the nonzero regime with a lower intensity is
always unstable [20]. In this sense, it can be called absolute
unstable. The zero regime in this region of the values of the
parameter r is stable, and lasing develops beginning from a
finite radiation intensity (a start signal is required to trigger
the laser).
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Figure 5. Dependences of X (1) and X2 (2) on the excitation
parameter r for the laser with a saturable absorber for « = 2 and n = 20.

When r > r;, the nonzero solution with a lower intensity
becomes negative, and only one stationary value of the
intensity exists. The zero regime in this region is unstable, so
that the excitation regime of the laser becomes soft. The
laser can be triggered by an arbitrarily small perturbation of
the field or polarisation. The study of the stability of the
lasing regime with the constant radiation intensity X leads
to the following characteristic equation

3+ As> +Bs+C=0, (15)

in which

2
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* This statement is true if spontaneous emission into one resonator mode is
neglected.
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It follows from the Gurvits theorem [21] that the stationary
regime with the constant output amplitude becomes
unstable if at least one of the coefficients (16) or the
determinant D = AB — C becomes negative. Note that, for
o = 0, the inequality D < 0 is equivalent to condition (7).

The value of D proves to be decisive for the determi-
nation of the stability of lasing regimes. Figures 6 and 7
show the values of the determinant D and X? for two
different sets of parameters. As mentioned above, the
positive value of X2 corresponds to the hard regime of
excitation of oscillations in the laser. The curves in Figs 6
and 7 demonstrate different dynamic regimes of the laser
with a SA. For example, the parameters can be chosen so
that the laser will not have operating regimes with the
constant radiation intensity at all (Fig. 7).

Let us study the type of pulsations appearing in the
region r > r*. The character of lasing regimes in this region

—y12b
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Figure 6. Determinant D (/) and st (2) as functions of r for o = 2,
n=30,b=0.1, and y7, = 3.
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Figure 7. Determinant D (/) and Xs2 (2) as functions of r for o = 2,
n=10,b=0.1, and yz, = 3.
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Figure 8. Amplitude X of output laser radiation as a function of 7 for
o=2,r=15#n=20,b=0.1, and y7, = 3.

Figure 9. Phase portrait of the laser corresponding to the parameters in
Fig. 8.

significantly depends on the parameter b. Figures 8§ and 9
show one of the possible regimes. We see that the amplitude
pulsations are complicated but periodical. Let us now
increase the value of b by five times, keeping the rest of
the parameters invariable. As a result, the regime of periodic
pulsations passes to the regime of dynamic chaos (Fig. 10).
Therefore, the property that the lower b, the greater
excitation parameter is required to produce dynamic chaos
in the laser, is also inherent in lasers with a SA.
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Figure 10. Pulsations in the laser for « =2, r = 15, n =20, » = 0.5, and
775 = 3 (cf. pulsations in Fig. 8).

Let us select the laser parameters to provide the hard
excitation regime (Fig. 11). Then, the development of sta-
tionary lasing will be accompanied by pulsations of laser
radiation. Let us now increase the pump intensity, remain-
ing in the hard excitation region. Fig. 12 shows on of the
typical lasing regimes in this case. One can see that chaotic
pulsations are interrupted within some time after the onset
of lasing and lasing ceases despite continuous pumping. This
situation appears paradoxical because an increase in the
pump intensity over the lasing threshold resulted finally in
the quenching of lasing. This effect can be explained in the
following way [22]. In the chaotic regime in a free-running
laser (Fig. 1), the radiation field and polarisation pass
repeatedly through zero, but this does not quench lasing
because the polarisation and field are shifted in phase and
do not pass through zero simultaneously. However, gen-
eration in a laser with a SA can be quenched not only when
the field and polarisation vanish simultaneously but also
when the absolute values of their amplitudes become
simultaneously lower than the required starting values. In
the chaotic regime, this occurs sooner or later, resulting in
the quenching of lasing.

X
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Figure 11. Development of the lasing regime with the constant amplitude
for « = 20, r =10, n = 500, b = 0.5, and yz, = 3.

10

20 60 80 1t

Figure 12. Quenching of lasing in the regime of dynamic chaos for
o =20, r =20, n =500, b =0.5, and y7, = 3.

Figure 13 shows the phase portrait of a laser with a
saturable absorber operating in the hard excitation regime.
One can see that the phase trajectory enters the region of a
strange attractor and, after remaining there for some time,
goes away to the region of the zero amplitudes of the field
and polarisation. Due to the chaotic character of the motion
in the region of the strange attractor, the residence time of
the phase trajectory in this region should depend randomly
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on the initial conditions. This is indeed the case. Table 1
presents the dependence of the typical duration 7, of the
chaotic pulse on the initial amplitude X(0). Polarisation and
the difference of concentrations of particles on the upper
and lower levels at the initial instant were assumed zero. The
intervals of lasing between its appearance and quenching
were such that it was difficult to find any regularity in the
interval variation with changing the initial field amplitude.

X

Figure 13. Phase portrait of the laser corresponding to the quenching of
lasing (cf. Fig. 12).

Table 1.

X0) 91, X(0) yr, X(0) yr,  X(0) yz,  X(0)

215 1.0 625 3.0 87 50 355 7.0 18.7 9.0
47 20 50.0 4.0 19.0 6.0 16.8 80 223 10.0

Note: oo = 20, r = 20, n = 500, yz, = 3, Y(0) =0, W(0) = 0.

Let us take the following laser parameters: o = 2, § = 3,
YTy = 107*, and b = 107°. The last two values are typical of
class B lasers. Figure 14 shows the dependences of X2 and
the determinant D on the excitation parameter r*. One can
see that the determinant D for class B lasers is negative (and
the lasing regime with a constant amplitude is unstable) only
when the excitation parameter is comparatively small. In
this region, in the case of soft excitation, the pulsating
regime is established, which can be called the relaxation
regime, following the notation used in Ref. [20] (Fig. 15).

2

D, X2

Figure 14. Determinant D (/) and st (2) as functions of r for class B
lasers for o = 2,y = 10, b = 1073, and y7, = 107*.

U

0 20 40 60 80 100 vt

Figure 15. Relaxation pulsations in class B lasers in the region of soft

excitation of oscillations for a=2, r=4, n=3, b= 107>, and
-4

T, = 107"

What will happen with class B lasers in the hard
excitation regime? Figure 16 gives the answer to this
question: the laser, emitting a pulse according to the initial
conditions, cannot generate in the stationary regime at all.
This is quite clear in view of the above discussion. Class B
lasers, even in the stable stationary regime with a constant
amplitude, pass to the stationary regime through a sequence
of decaying intensity pulsations. If the intensity of pulsa-
tions at the minimum is very low (lower than the initial
intensity), then lasing ceases after the first pulsation.

X
4 F

0 5 10 15 20 25 vt

Figure 16. Quenching of lasing in class B lasers in the region of hard
excitation of oscillations for =2, r=295 n=3, b= 107, and
YTy = 1074,

3. Conclusions

Although the dynamics of masers and lasers have been
studied for more than forty years, many questions remain
to be answered.

It is obvious that the structure of the phase space in the
laser model with a SA (12) should be no less complicated
than that in model (4). The global study of the former model
requires time-consuming calculations and, hopefully, will be
performed in the near future. We present here only one
example of the dependence of the lasing regime on the initial
conditions. As shown in Fig. 17a, when the initial popu-
lation inversion is maximal, lasing with the constant
amplitude develops. If the initial population inversion is
zero, lasing ceases after several pulsations (Fig. 17b).

Note also another property of lasing for the laser
parameters corresponding to Fig. 17. During the develop-
ment of lasing, the laser field changes its phase by =
compared to the initial-signal phase. We saw that this
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Figure 17. Dependences of the stationary lasing regime on the initial
conditions for X(0) = —3, W(0) =1 (a) and X(0) = 3, W(0) =0 (b) and
o =20,r=10,n=50,b=0.5, and y7, = 3.

does not always occur and depends, in particular, on the
excitation parameter. It is undoubtedly interesting to study
numerically in detail the propagation of a pulse in an
amplifying medium, for example, the transformation of a
regular superluminal pulse to a chaotic pulse. Unfortu-
nately, this was not accomplished yet.

Although it is difficult to obtain in laser experiments the
numerous regimes corresponding to model (12), many of
them can be observed in nonlinear systems of different
nature. In particular, the author does not abandon the
attempt to understand whether is it possible to provide the
self-defence of nuclear reactors based on the quenching of
generation?
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