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Compensation for thermally induced birefringence
in polycrystalline ceramic active elements

M.A. Kagan, E.A. Khazanov

Abstract. Polycrystalline ceramics differ significantly from
single crystals in that the crystallographic axes (and, hence,
the axes of thermally induced birefringence) are oriented
randomly in each grain of the ceramic. The quaternion
formalism is employed to calculate the depolarisation in the
ceramics and the efficiency of its compensation. The obtained
analytic expressions are in good agreement with the
numerical relations. It is shown that the larger the ratio of
the sample length to the grain size, the closer the properties of
the ceramics to those of a single crystal with the [111]
orientation (in particular, the uncompensated depolarisation
is inversely proportional to this ratio).
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1. Introduction

In recent years, considerable attention has been paid to the
problem of using polycrystalline Nd : YAG ceramics (see
Refs [1-6] and references therein) and other cubic crystals
[7] as active media. This attention stems from the
considerable advantage that ceramics have over single
crystals. Modern technology can be used for preparing
ceramic active elements (AEs) with good optical quality,
large aperture and a high concentration of the neodymium
ions. Many properties of ceramics are close to those of a
single crystal, but a number of differences are observed in
the thermally induced depolarisation of radiation in the two
cases [0].

A polycrystalline ceramics consists of a large number of
monocrystalline grains of size 10— 100 pm separated by thin
(~ 1 nm) boundaries. A significant distinction between such
ceramics and a single crystal is that the crystallographic axes
in each grain are oriented randomly. Like a single crystal,
the ceramics is also isotropic. Moreover, in the absence of
thermal effects, the ceramics is almost free from depolarisa-
tion [2]. The photoelastic effect associated with a
temperature gradient leads to birefringence in single crystals
as well as ceramics. In contrast to a single crystal, however,

the ceramics is a system of phase plates with randomly
oriented axes and a random phase delay between eigen
polarisations. The analytic expressions for eigen polarisa-
tions and phase delays between them were derived in
Ref. [6].

The aim of our paper is to derive analytic expressions for
depolarisation of radiation caused by thermally induced
birefringence, and to study the efficiency of compensation
for depolarisation by the methods employed for single
crystals. Instead of the conventional Jones matrix formal-
ism, we used the quaternion formalism [8, 9], according to
which each grain has a normalised quaternion (hyper-
complex number) associated with it.

2. Eigen polarisations and phase delays between
them in ceramics

Consider a cylindrical ceramic AE of radius R, and length
L. We shall calculate depolarisation in the geometrical
optics approximation, i.e., treat the wave packet incident on
the sample as a bundle of beams parallel to the sample axis
z. Figure 1 shows one such beam passing at a distance r
from the sample axis and having an azimuthal angle ¢.
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Figure 1. Mutual arrangement of the coordinate systems xyz and x'y’z’.
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Suppose that the power densities of heat release in an
AE and heat sink are independent of z and ¢. The radially
symmetric temperature gradient defines two preferred
directions, radial and azimuthal, in each cross section
z = const. The eigen polarisations may not coincide with
these directions since the polarisation properties of each
grain depend on thermoelastic stresses (which, in turn,
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depend on photoelastic coefficients) determined by the
temperature distribution and orientation of the coordinate
system of the crystallographic axes abc relative to the
laboratory reference frame xyz [6, 10]. In the simplest
case, the axes abc coincide with the axes xyz, which
corresponds to the [001] orientation.

An arbitrary orientation of the axes abc can be set with
the help of three successive rotations of the coordinate
system xyz by the Euler angles o, f and & relative to the
crystal lattice [11]. At first, the coordinate system is turned
through an angle « (o € [—=, 7]) around the z axis coinciding
with the ¢ axis, after which it is turned around the y axis
through an angle f (f €[—n/2, n/2]) and, finally, once again
about the z axis through an angle @ (@ € [—=, n]). Thus, the
orientation of the crystal axes abc in each grain is
determined by three angles, viz., o, f and @ which are
random quantities distributed uniformly over the corre-
sponding intervals. Since the system does not have
gyrotropy or dichroism, each grain can be treated from
the polarisation point of view as a linear phase plate
characterised by two random quantities, i.e., the angle 0
of inclination of eigen polarisations (relative to the x’ axis),
and the phase difference J between them. Consequently, a
ceramic sample is equivalent to a sequence of such phase
plates.

Using the expressions presented in Ref. [6], we arrive at
the following relations connecting 0 and § with the Euler
angles o, f and @ for each grain:

b p I, a
20 = — [ 1
an20 =2, 0=-7% l,) c0s20° M
where
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N is the number of grains; P}, is the power of heat release
over the entire AE; 1 is the wavelength; x is the thermal
conductivity; o is the coefficient of thermal expansion; n is

the refractive index without heating; v is the Poisson ratio;
p;j is the photoelastic coefficient; and /, is the length of the
grain (a normally distributed random quantity with a mean
value (/,) and a standard deviation oy,). For fixed Euler
angles, formulas (1) and (2) lead to the values of 0 and d
for a single crystal with the corresponding orientation. For
example, for [001] (x = = @ =0) and [111] orientations
(«= m/4, tan f=+/2, @), we arrive at the following familiar
relations [12]: tan (20 +2¢) = ¢tan2¢ and 0 =0 respectively.
Note that since @ is a random quantity distributed
uniformly over the interval [—x, n], the prime over @ in
the expressions for ¢, and 7, can be disregarded for all
averagings.

We shall restrict ourselves to the case of uniform heat
release over the volume, for which

h=u/2, g=u—1/2, 3)
where u = (r/RO)z. In the general case, the expressions for g
and /1 are presented in Ref. [6]. Note that the quantityé is a
constant characterising the crystal. For example & = 3.2 for
a Nd: YAG crystal.

It follows from (1) and (2) that the angle 6 averaged over
ly, o, f and @ is equal to zero. In the following analysis, we
shall assume that random quantities /,, o, § and & are
independent for different grains. In other words, the
distribution function F is assumed to be the product of
distribution functions f; (,, o, 8, ®) for individual grains:

F(fiofaonfw) = H/, 0, f, @ €

3. Depolarisation of radiation

Let a transverse electromagnetic wave be incident on an
optical system without absorption, having the correspond-
ing Jones matrix U connecting the polarisation e at the
outlet of the system with its initial polarisation e:

e= Uy (lel = leo) = 1), (s)
The local depolarisation I' is defined as the fraction of the
output power radiation corresponding to the polarisation
e, orthogonal to e:

= |eje|2 =ejU%e e} Ue,. (6)

Hereafter, the asterisk indicates the Hermitian conjugate.
Since the matrix U depends on r and ¢, so does I'. We shall
find the depolarisation I'(r, ¢) under the assumption that
the incident beam was linearly polarised along the x axis,
i.e., in the primed coordinate system (see Fig. 1)

€ = ( CO_S(:D )a 35 = (COSQD,—Sin(P),

—sin @
0
_ [ sing Xl
e = (cosqo)’ e} = (sing,cos ).
Formula (6) can be rewritten in the form
= e(TGAeOv (8)
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the matrix G is connected with the Jones matrix U through
the relation

G=U"MU, ©)
where
M= sin” ¢ sin ¢ cos ¢
sinpcosgp  cosPp )’

If the matrix U describes an optical system containing a
ceramic element, it depends on random quantities /y;, o;, B;,
@;, where iis the grain number. We denote by (G) the matrix
G averaged over all grains taking into account the dis-
tribution function (4). In this case, we obtain from (8) the
following expression for average depolarisation:

(I') = e;(G)eg (10)

The most interesting quantity is the integral depolarisa-
tion over the cross section:

1 2n Ry 1 2n 1
Y =— d J I)(r, rdr:—J d(J I')(u, @)du.
y nRng ® 0( )(r ) 2 ), 49 0< ) (u; )
11

Here and below, we shall assume that the beam intensity
has the form

I— Iy for r < Ry,
10 forr>R,.

4. Compensation for depolarisation
in various schemes

Let us calculate the average depolarisation in a ceramic AE,
as well as in some schemes used for its compensation
(Fig. 2). Depolarisation in ceramic elements without com-
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Figure 2. Measurements of the depolarisation (a) in an AE without com-
pensation, (b) in scheme I with two AE and a 90°-rotator (left) [13] or
with one AE and a Faraday mirror (right), (c) in scheme II with an AE
and a uniaxial crystal [15], and (d) in scheme III with an AE and a 1/4
plate [16].

pensation (Fig. 2a) and in all schemes with compensation
(Fig. 2b—d) is defined by expressions (10) and (11), the only
difference being in the matrices U and G describing the
optical system.

The Jones matrix T of a ceramic element is the product
of Jones matrices of N phase plates corresponding to N
grains:
Q2Q17

T=0x0x ... (12)

where Q) = O(3y, 0;) is the matrix for the kth grain, and

isingsin 20

S 4 iaind
cos§ + isincos 20 Isingsin a3
cos§ — isingcos 20

)
isin%sin 20

0(6.0) = (

For the scheme without compensation (Fig. 2a), we obtain
from (9) and (12) the matrix G:

Go=T"MT = Q0;... On 1ONVMONON_1... 0201. (14)

In order to calculate the matrix G corresponding to
scheme I (Fig. 2b, left) [13], we denote by 7 and T, the
Jones matrices for the first and second AE respectively. In
the absence of thermal effects in scheme I, the radiation
emerging at the output will be polarised along the y axis,
although the initial polarisation was directed along the x
axis. Hence, for the sake of convenience in computations, we
insert another —90°-rotator (not shown in Fig. 2b) after the
second sample and calculate depolarisation as the fraction
of power in the y-component of the field, i.e., in the
component whose polarisation is orthogonal to the initial
polarisation. In this case, Uy = J*T,JT, = T5T,, where J is
the 90°-rotation matrix and the matrix 7} is defined by the
expression (12). Thus, the expression for G, has the form

G, =TiTOMT5T,. (15)
In scheme I with a Faraday mirror [14] (Fig. 2b, right) two
different ways are possible. If all the beams in their return
path pass through the same grains as in the forward path,
the depolarisation y = 0. On the contrary, if the transverse
displacement A/ of a beam between direct and return paths
is larger than, or of the order of, the grain size <Zg>, i.e., if
the beam passes through different grains on its return trip,
this scheme is completely equivalent to the scheme with a
90°-rotator (Fig. 2b, left).

The key element in scheme II (Fig. 2c) is a uniaxial
crystal cut along the optical axis and mounted inside a
telescope [15]. This crystal is described by the Jones matrix
O(—4, 0) since its eigen linear polarisations are oriented
along the azimuth and the radius. Consequently,

i = T0(4,0)MQ(~4,0)1, (16)
where 4 is the effective phase delay in the ceramic [see
formula (21)].

The axis of the A/4 plate in scheme III (Fig. 2d) is
parallel to the x axis [16]. A return trip through the 1/4 plate
in the system of coordinates x’ y’ is described by the Jones
matrix O(r, —¢). It follows hence that
—0)T; MT,0(rn, —)T).

5y =T 0(-m (17)
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Here, we assume that the beam passes through different
grains on its return passage.

The mechanism of averaging formulas (14)—(17) over all
grains for the case when their number is fixed and equal to N
is described in the Appendix, where the expressions for
([y_3) are also obtained. Substitution of these expressions
into (11) gives

1 sinpX p2 ! 1
VO_Z<1_ X >+WL A—i—EB cos4 + B|du

1
4 B .
~ L Zsing 1
16NJ0 asm du, (18)
2 01 1
S 3 L _n
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o1 1_sian s 1_sin2pX
374 2X ) 16 WX
I
+WJO {Bl4cos®(4/2) + 3cos 4]
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32NJ0 p (sin sin A4) du, (20)
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- 75& 453
a=(ay=2Xh; X_T’ A = pa;
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(21

x (2266582 + 31470& + 11401) + B — 4(Xh)2;

(&-1)>

B=(b7) = (1+d°) 555> (1060g” + 9865h); d =2k

(lg)

Note that this computational technique can considerably
simplify the solution of problems on propagation of light in
birefringence fibres with random inhomogeneities [17].

5. Discussion of results

It can be easily shown that if the ratio of the length of an
AE to the average grain size tends to infinity (N — o0), then
expressions (18)—(20) for y,_; are almost identical to the
analogous expressions for a single crystal with the [111]
orientation, the only difference being in the value of X
which is (1+4+2¢)/3, for a single crystal and X =
(75¢ + 53)/128 or ceramics. In other words, for N — oo,
the ceramics is equivalent to a single crystal with the [111]
orientation and an effective constant &y defined by the
expression

Car — 1= (£ = 1)(15/16)%. (22)

For example, £ =3.2, &y =29 for the Nd: YAG cera-
mics. This leads to quite insignificant discrepancies in the
integral depolarisations, which is in agreement with the
experimental data [2].

Figures 3 and 4 show the dependence of depolarisation y
on the normalised radiation power p for an Nd: YAG
ceramics in different schemes (curves) as well as the results
of numerical computations based on the technique described
in Ref. [6] (points). One can see that for a large value N of
the ratio of the length of the AE to the average grain size,
the numerical and analytic results have a nearly ideal
matching.

Yo |

0 2 4 6 8 10 p

Figure 3. Dependences y,(p) for ceramics for N = 30 (g, curve /), 100
(&, curve 2) and 300 (o, curve 3), as well as for a single crystal (curve 4).
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Figure 4. Dependences y,(p) and y;(p) for N = 30 (g, curve /), 100 (o,
curve 2) and 300 (o, curve 3). For comparison, curve (4) shows
depolarisation in the absence of a 90°-rotator in scheme I and a 1/4
plate in scheme III.

Note that the length of the AE may vary from 2—3 mm
in the case of diode pump to 10 cm for flashlamp pump,
while the grain size may vary from 10 to 100 pm. Thus, the
ratio N may change over a wide range from 20 to 1000. For
an Nd: YAG ceramics, the expression for p can be
presented in the form p = 0.025P,. The power of heat
release P, may be as high as several hundred watts, and
hence the parameter p varies from zero right up to 20.
However, such an extent of heat release may destroy the
sample.

For a single crystal, the depolarisation in schemes shown
in Figs 2b and c is theoretically ideal, but the compensation
for large heat release power is at the level 1 % —3 % in actual
practice. If the parameters p and N are such that depola-
risation is much smaller than this quantity, it can be
assumed from the practical point of view that depolarisation
in the ceramics does not exceed depolarisation in a single
crystal with the [111] orientation.
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For finite values of N, formulas (18)—(20) are obtained
by expanding the expressions for depolarisation into a
Taylor series in the small parameter ¢ = p/N (see Appendix)
if terms of the order of ¢” are disregarded. This explains the
disparity between the analytic and numerical results shown
in Fig. 4 for quite large values of ¢. Additional depolarisa-
tion (relative to the case N = oo) is proportional to the
square of the normalised radiation power p and is inversely
proportional to N. This is due to dispersion of the local
depolarisation Dy. Using an approach analogous to the one
proposed in the Appendix, one can show that

Dp = ((I'*) = (I')*) ~ p*/N, (23)
which is also in accord with the numerical results [6] and is
an important consequence of the random nature of
birefringence in ceramics.

Indeed, consider an optical system formed by m suc-
cessive ceramic samples, each of which is characterised by
the number of grains N, and heat release power p,. In this
case, the system can be treated as a single sample containing
N = mN, grains and corresponding to the power p = mp,.
According to (23), the dispersion of local depolarisation Dy
in this system of elements will be m times higher than that in
each individual sample (Dpy), i.e., D = mDpq. The obtained
results coincide with the classical problem of random walk
in which the mean square displacement is proportional to
the number of steps. Using the same arguments, we can
explain the fact that y, = y,/2 since only one ceramic AE is
present in scheme II, while there are two such elements in
scheme 1.

All the constraints of compensation techniques known
for a single crystal (e.g., the presence of a thick lens with a
focal length commensurate with the length of the AE) are
also applicable to ceramics. Beams separated in the trans-
verse direction by a distance equal to the grain size pass
through an independent set of grains, and will therefore
have different values of depolarisation. Thus, a large-scale
polar structure of polarised (and depolarised) output
radiation will contain intensity modulation with a characte-
ristic scale of the order of (/). This modulation is due to the
dispersion of depolarisation Dy, the modulation depth
increasing in proportion to the square of the normalised
radiation power p and inversely proportional to the ratio N
of the length of the AE to the average grain size. In addition
to the above-mentioned amplitude modulation, phase mod-
ulation may also occur on account of the presence of grains
of different sizes in the path of adjacent beams.

Consider the applicability of the geometrical approach
used here. The size of a grain is much smaller than the
characteristic scale of temperature gradient that determines
the variation of the refractive index. Since the separation
between grains (cavity size) is much smaller than the
wavelength [2], it can be assumed that beams passing
through ceramics will have nearly the same trajectory as
the beams passing through a single crystal (curved on
account of the thermal lens). A formula was obtained in
Ref. [18] for mean-square lateral displacement of a beam p
during the propagation of light in a randomly inhomoge-
neous medium. When applied to ceramics, this formula
gives p ~ 0.2N'?z. As a rule, p is smaller than the average
grain size (/,). In the opposite case, the characteristic size of
the above-mentioned modulation will be equal to p and not

to (ly).

Note also that the numerical results (points in Figs 3 and
4) were obtained by solving another more ‘physical’ problem
in which the length of the AE is assumed to be fixed rather
than the number N of grains [6]. These two formulations of
the problem are exactly identical if we assume that the grain
size [, is fixed, which is the same as equating to zero the
dispersion of the grain length d = gy, /(l,) = 0 The depend-
ences shown in Figs 3 and 4 are constructed just for this
case. A comparison of the results obtained in these two cases
is justified if d < 1/N'. This condition means that the
mean square deviation of the number of grains over the
length of the sample does not exceed one, i.e., the number of
grains in the sample can be assumed to be fixed. Note that
the numerical computations reveal a weak dependence of
depolarisation on the dispersion d of the grain size.

Polycrystalline ceramics can be used not only as an
active medium and a Q-switch [19], but also for making
Faraday isolators based on magnetoactive elements made of
terbium gallium garnet (TGG). There are no fundamental
difficulties in the path of creating TGG ceramics [20]. The
above analysis can also be used for high average power
Faraday isolators taking into account the specific character
of depolarisation due to the imposition of a magnetic field
[10].

6. Conclusions

The results of the paper can be summarised as follows:

1. If the ratio of the length of the AE to the average grain
size tends to infinity, the polarisation properties of the
ceramics are quite similar to those of a single crystal with the
[111] orientation. In this case, the depolarisation dispersion
tends to zero, while the depolarisation itself can be described
for all schemes shown in Fig. 2 by the formulas for a single
crystal with the [111] orientation taking into account the
variation of the crystal parameter ¢ as described by formula
(22).

2. The efficiency of birefringence compensation by using
standard techniques is worse in the ceramics than in a single
crystal. The increase in depolarisation in the ceramics
compared to a single crystal is proportional to the square
of the normalised radiation power p and inversely propor-
tional to the ratio N of the length of the AE to the average
grain size.

3. Apart from the large-scale structure, both polarised
and depolarised radiation also contain a random small-scale
modulation with a characteristic transverse size equal to the
grain size (l,), and a depth proportional to p? and inversely
proportional to N.

Appendix

Consider the method of averaging of expressions (14)—(17).
This procedure is considerably simplified if, instead of the
Jones formalism, we use the quaternion formalism (see
Refs [8, 9] and the references cited therein) according to
which each grain is decribed by a normalised quaternion
(hypercomplex number). We shall first describe the
transition from matrix representation to quaternion repre-
sentation. Each optical element has a corresponding unitary
Jones matrix U for which

UU*:&0:<(1) (1)) (A1)
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where the asterisk indicates Hermitian conjugation. An
arbitrary unitary matrix U can be presented in the form
U:(N0+1Hl :u2+¥:u3) (A2)
My s po — 1y

where \/,t0|2 + |, \2 + \,uz\z + |,u3\2 =1. This expression can be
rewritten in terms of the Pauli matrices

(i 0\ . [0 1\ . [0 i
1= o0 —i) 27\ =1 0) 7\ o

and will then have the form

U= uyoo+ o1 + 1,02 + (1305. (A3)

The matrices 6; (i = 1, 2, 3) satisfy the following relations:
(Ada)

where the subscripts i, j and k satisfy the cyclic permutation
condition.

The algebra of 2 x 2 complex matrices is isomorphous to
the algebra of quaternions, i.e., hypercomplex numbers with
three imaginary units I, J and K satisfying the following
relations analogous to (A.4a):

’=J2=K’=-1; U=-JI=K, JK=-KJ=1,
(A4b)
KI=-1IK =1.
Thus, carrying out the substitution
(3'0—>1, &1—>L 6'2—>J, 6'3—>K, (AS)

we can treat the matrix U as a quaternion U =
to + w1+ o J + ;K. Each quaternion U has a conjugate
quaternion U™ =iy — fi;] — fi,J — K (the bar mdlcates
complex conjugation) and a norm UU* = U*U = |uo|*+
lui|* + |us|* + |i5]*. Unitary matrices correspond to qua-
ternions with a unit norm associated with them.

Let us define the quaternion (Gy) corresponding to the
matrix (G). The factorised distribution function (4) allows
a successive averaging of the expression (14):

(Go) =

(O (ON-1 ({05 {07 MO 1)1 02)l--) -

X Q~N—l>|N71Q~N>‘N,

where

M = (1 +ilcos2¢ — iK sin2¢)/2;

O = 0(8y,0) = cos (9;/2) + Isin (5, /2) cos 20, (A6)

—Ksin (8;/2)sin 26 Q" (S, 0x) = O(—3y, by );

and (...)|, indicates averaging over the kth set of variables:

00 n n/2
()l :J dlng do‘kJ dpy
0 - —n/2

| A0 e 20} (A7

Right and left multiplication of each quaternion G
= 0705 0f M0y Q5.0 = % + Ly + Iz + Kuy (where
Xi» Vi» 2 and wA are the corresponding coefficients of the
quaternion G ) by Q/&H and QA+1 leads to the trans-
formation of real and imaginary parts respectively (Gk+1
= Xy +1yipr + Iz + Kwyyg), which can be written in
the form

Yier1 R Yk
X1 = X Zk+1 = S(5/c+1 ) 0/c+1) Zk ]
Wit1 Wy
where
S(6,0) =
1 —2sin’$sin®20 —sindsin 20 —sin’ ¢sin 40
sin 0 sin 20 cos o sin ¢ cos 20 ;

fsinzgsin4() —sindcos20 1 — 2s1n2(z’cos 20
(A8)
2 in2
xo = 1/2; yO—lcosz o8P, L =o; wO:—ism2 ? (A9

Note that each optical element which is described by a
normalised quaternion U has a 3 x 3 unitary matrix, which
defines a transformation of the type (A.8), corresponding to
it. If the matrix U is not unitary, this transformation is
assigned by a 4 x 4 matrix.

For a Very large value of N (when ¢=p/N < 1) sino
=54 O(¢%) [see Eqn (1)] and the matrix S can be written in
the form S(3,0) =1 +enZ(s,0) +1e*n>2%(5,0)+O(e™),
where

/ 0. b 0
1=y 200 =(-b 0 - (A10)
e 0 a o0

We shall restrict ourselves to terms of the order of §2.
Going over from the quaternion (Gy) to the matrix (Gy)
and substituting it into (8), we obtain

(Iy)= x¢+iyy cos2p—iwy sin 2¢, (A11)
where
YN [ Yo
zy | =S| 20 |3 (A12)
Wy Wo
R R R 0 0 O
Si=Y; (S)=1+¢[0 0 —a
0 a O
B 0 0
—~el 0 A2+a*+B 0
0 0 A+a’

Here we have used the notation adopted in (21). Raising to
the Nth power and substituting it in (A.12), we can
determine yy and wy. Substituting these into (A.11), we
obtain the local depolarisation

4 p? 1
(I'y) = sin*2¢ sin25+%\7 {Bcos2 2¢ + <A +§B> X
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Calculation of <F1*3> for schemes with compensation 12. Mezenov A.V., Soms L.N., Stepanov A.l. Termooptika tverdo-

(Figs Z.bfd) is performed Si.mile}rly. In ContraSt. to the tel’'nykh lazerov (Thermo-optics of Solid State Lasers) (Lenin-
preceding problem, the matrix S; for scheme I is trans- grad: Mashinostroeniye, 1986).

formed into the matrix Sy = (S(ANV(S(=4))". The 13. Scott W.C., de Wit M. Appl. Phys. Leit., 18, 3 (1971).
calculation gives 14.  Gelikonov V.M., Gusovskii D.D., Leonov V.I., Novikov M.A.

Pis’'ma Zh. Tekh. Fiz., 13, 775 (1987).

pz ) 1 . 15.  Khazanov E., Poteomkin A., Katin E. J. Opt. Soc. Am. B, 19,
(ry) = N {Bcos 20 + (A +§B> sin 24 667 (2002).
16. Clarkson W.A., Felgate N.S., Hanna D.C. Opt. Lett., 24, 820
(1999).
p B ., . 17.  Malykin G.B., Pozdnyakova V.I., Shereshevskii I.A. Izv. Vyssh.
3N g S 2osin24. (Al4) Uchebn. Zaved. Ser. Radiofiz., 43, 976 (2000).

18.  Rytov S.M., Kravtsov Yu.A., Tatarskii V.I. Vvedenie v statisti-
cheskuyu radiofiizku (Introduction to Statistical Radiophysics)
(Moscow: Nauka, 1978) Vol. II.

M&19. Takaichi K., Lu L.R., Murai T., Uematsu T., Shirakawa A.,

In scheme II, a uniaxial crystal has the following matrix
corresponding to it:

1 0 0 Ueda K., Yagi H., Yanagitani T\, Kaminskii A.A. Jpn. J. Appl.
Se=8(-4,00=[0 cosd —sin4a |, Phys. Pt 2, 41, L96 (2002).
0 sinA cos A 20. Ikesue A. Private communication (2002).
hence S, = S.(S)", which gives
r
ryy =Lk (A15)

For scheme III, we have S = (S)NS‘A/AS’)N, where

. R cos 4o 0 —sindep
Sy =8(r,—p) = 0 -1 0 ,
—sind4p O cos4o

and hence

(I's) = sin® 4 sin*(4/2) — - =

x (sin? 2¢ cos 4¢ sin 24 — sin® 4¢ sin A)

2
1
+ gTV [B cos® 2¢ cos 4 + (A + 53) sin® 2¢

1
x(1 —2cos*2pcos® A) + <§A +%B> sin24q)cosA}. (A16)

Relations (18)—(20) for y,_5; are obtained by integrating the
expressions (A.13)—(A.16) with respect to r and ¢.
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