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Generation of harmonics of a radiation field ionising
hydrogen-like ions in a rapidly rising strong field

V.P. Silin, P.V. Silin

Abstract. Approximate scaling dependences of the generation
efficiency of the first five harmonics of the exciting field on
thier number are determined in the case of Coulomb
degeneracy. Analytic dependences of the efficiency of
harmonics of a given number on the principal quantum
number of the atomic level from which ionisation of an
electron occurs are derived. Approximate scaling dependences
of the harmonic generation efficiency on the generated
harmonic number and the principal quantum number of the
ionised atomic level are obtained.
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1. We pose the problem of determining the efficiency of

harmonic generation in a strong field whose intensity
satisfies the Bethe condition [1]

5
= W’ (1.1)
where
Zme*
Iz= 2112;12 (12

is the ionisation potential of the atom; Z is the charge of the
atomic nucleus of the hydrogen-like atom; m, is the electron
mass; e is the electron charge; and n is the principal
quantum number.

In order for the atom ionisation to occur under the
Bethe conditions, the ionisation redistribution of the atomic
levels should proceed on the atomic time scale. To put it
otherwise, to ionise the nth atomic level under the condition
(1.1) requires the action of a laser pulse with a very short rise
time
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(1.3)

i.e., t should be comparable with the time conventionally
referred to as the electron orbiting time corresponding to
the quantum state n.
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Having been almost instantly detached from the atom,
the ionised electrons retain the memory of their intra-atomic
distribution. That is why the plasma electron distribution
function in the coordinate system oscillating in the exciting
field can be represented in the form

Soim = Ne|an/m(P)‘2’ (1.4)
where N, is the electron density; ¥ = p/m, is the electron
velocity; p is the electron momentum; and n, /, m are the
quantum numbers of spherical quantisation of electron
levels prior to atom irradiation by a rapidly rising high-
power laser pulse.

2. Taking into account that the electron velocity dis-
tribution after ionisation in a strong field is, first,
accompanied by their oscillation in the exciting field and,
second, the spread relative to such oscillations is determined
by the intra-atomic distribution of electrons prior to thier
ionisation, it is reasonable to use Ref. [2], where expressions
were obtained for the electron eigenfunctions of a hydrogen-
like ion with a nuclear charge Zle| in the momentum
representation:

anlm[p7 0117 d)p} = ®m[¢p]@/m [()p]anl[p]a 2.1

where n is the principal quantum number; / is the orbital
quantum number; and m is the projection of the angular
momentum in the momentum space. According to Ref. [2],
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where m, is the electron mass; 7, is the Coulomb unit of
velocity [3]; P, (x) is the Legendre polynomial; and C,(x) is
the Gegenbauer polynomial.

Considering the situation when the plasma electrons are
unpolarised, we will employ the electron function averaged
over the angles
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Below, we consider a relatively simple case when it can be
assumed, owing to the / degeneracy of the electron energy
levels of a hydrogen-like ion, that the states with different
values of the orbital quantum number are represented with
equal probabilities. Then, we can use the distribution
function corresponding to the principal quantum number:

N an/[ ] (25)

n—1

22%, 20+ 1].

We will calculate this
important relationship:

LV = (2.6)

function using the following

2214-1 2/1,2’1(”1 )(

" n+ D) G P =0 27

which gives

LlVl= (2.8)

w2 (Vz/n)? L+ (nV V)
For n =1, formula (2.8) coincides with the electron velocity
distribution function of the ground state of the hydrogen-
like ion. The significant difference of expression (2.8) from
the ground-state function is that expression (2.8) depends
on the principal quantum number. This difference is
precisely the reason why the harmonic generation intensity
depends on the quantum numbers of excited energy states.
3. Following Refs [4, 5], we will describe the coherent
bremsstrahlung generation of harmonics of the field

E(t) = Ecoswt (3.1
using the Boltzmann kinetic equation with the Landau
collision integral. Then, as in Ref. [5], for the collisional
contribution to the electric current density we have the
following expansion in terms of the odd harmonics of the

exciting field:

00 2
. e"N,
6] = E ?U2N+1ECOS[(2N + I)CUt]’ (32)

N=0

where N belongs to the natural number set. Here, the
effective partial nonlinear collision frequencies

v N, E] :vzH{ZN—i—l,nﬁ] (3.3)
Vz
are defined by the relationships
16e%¢?N;A
Uy = ——s—t (3.4
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where Vi = |e|E/m.o is the amplitude of electron oscil-
lation velocity in the field E; ¢; is the ion charge; N; is the
ion density; and A is the Coulomb logarithm. Expressions
(3.3), (3.5), (3.6), and (3.7) are independent of the orbital
quantum number and in this sense are simpler than the
results of Ref. [5].

We employ the relationship

1
A[2N + 1,x] = —(arsinh x + a[2N + 1, x]) (3.8)
X

to obtain, bearing in mind that the functions a[2N + 1,x] in
the limit x — oo prove to be of the order of unity, the
asymptotic dependence

APN + 1,3 ~ 1 2V (3.9)
X VZ
This leads us to the scaling (cf. Ref. [5])
Vi o 2nV

v E] = v, Vi In VZE (3.10)
which corresponds to the strong-field limit

nVE

— > 1. 3.11

v, > (3.11)

4. For comparatively weak exciting fields, when the
condition (3.11) is violated, there arise complicated non-
linear dependences of efficient collision frequencies on the
pump field. The aim of our subsequent study is to deter-
mine, despite these complications, the approximate
(reasonably accurate) scaling dependence of the effective
collision frequencies on not only the principal quantum
number [as indicated even by relationship (3.5)], but on the
number of a harmonic generated.

We consider first the generation of the third and fifth
harmonics. In this case, according to expression (3.7), we
have

8b 8b% + 7x?

X
3,b = inh( = ov oV T iA 41
%[3, b, x] = arsin (b>+3x ) (4.1)
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What these harmonics have in common, according to
expressions (3.6), (3.8), (4.1), and (4.2), is that

X

al2N +1,x] = 2)2NH172

(1+x P4[2N+1,X],

4.3)

and the difference is only in the polynomials P4[2N + 1, x],
which have the form:
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1
Py[5,x] = —— (15 4+ 35x% + 23x*).
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Expressions (3.5), (3.8), and (4.3)—(4.5) completely describe
the generation of the third and fifth harmonics.

5. Higher-order harmonics are somewhat more difficult
to describe. In particular, for the seventh harmonic it
follows from expression (3.7) that

o[7,b,x] = arsinh(%) +% (720x* + 1600x>5>
X

1

+11526%) — 337x% + 1376x*h2
) 105x5(b2+x2)1/2(
+2176x7h* + 11525°). (5.1)
Expression (3.8) leads to the following relation:
7,x] = ! Ruo[7,x] + = 0ol7 5.2
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One can see a certain resemblance of seventh harmonic
generation to ninth and eleventh harmonic generation.
Then, we have:

2[9, b, x] = arsinh(%) n % (2800x° + 11200x*5>
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In this case, according to (3.8),
1 1
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3465

O4ll1,x] = . (5.12)

These expressions describe analytically nonlinear effec-
tive partial permittivities which appear upon the generation
of harmonics when a plasma is produced due to ionisation
of ions of the hydrogen-like atoms by /-degenerate electrons.

6. In the strong-field limit, the expressions obtained
above are reduced, as mentioned in Section 5, to a relatively
simple dependence of the harmonic intensity, which is
common for all harmonics, on the exciting field intensity.
We show that these expressions additionally possess one
more relatively simple and approximately common scaling
property, which is revealed if we use the expression

GRN+1,x] = QN+ 1) ARN +1,x2N+1).  (6.1)
Indeed, expression (6.1) describes an approximate unified
scaling, which corresponds both to the dependence on the
principal quantum number and the exciting field intensity
owing to the argument x = nV/V, and to the dependence
on the harmonic number by virtue of the argument
2N+ OnVg/V, as well as to the dependence on the
harmonic number of the form (2N + 1)’. This statement
follows from the approximate similarity of the curves
plotted in Fig. 1. This similarity enables determining an
approximate dependence for the effective collision fre-
quency, which describes the generation of the (2N + 1)th
harmonic
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Figure 1. Dependence of the scaling function G[2N+1,x] on the
harmonic number (2N + 1), on the excited ion quantum state n, and
the electron oscillation velocity Vg in the pump field.
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The expressions obtained above allow us to determine, for
linearly polarised exciting radiation, the generation
efficiency of linearly polarised harmonic waves as the
ratio of their energy densities

(2N + 1)o* M, E}r

" E] = [ 4NN+ Do

B (vl)Z {n3G[2N+ 1, (nVg/V,)(2N + 1)]}2
o AN(N+1)(2N+1)° '

Since G = 3.5, the maximum values of generation
efficiency for different harmonics are approximately related
as vzn®/(160>N*?).

Therefore, the efficiency of harmonic generation is
proportional to the sixth power of the principal quantum
number. This statement is valid when the electrons are
ionised from the same energy level in the case of Coulomb
| degeneracy.

Note that the main result of our paper consists in the
demonstration of a strong dependence of harmonic gene-
ration efficiency on the principal quantum number of the
energy level from which the electrons are ionised in the case
of fast above-barrier Bethe ionisation. The result obtained is
exact for the model of a hydrogen-like atom. Another result
of our paper is the derivation of the approximate scaling of
the dependence of the maximum generation efficiency on the
generated harmonic number.
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