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Fibreoptic communication lines with distributed Raman
amplification: Numerical simulation
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Abstract. 'The properties of optical solitons in variable-
dispersion fibreoptic communication lines in which distributed
Raman amplification of optical signals is used are studied by
numerical simulation. It is shown that solitons can serve as
carriers of information in communication systems with a data
transmission rate exceeding 10 Gbit s
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The rapid progress in the investigations of optical
communication lines is associated with the growth of the
Internet and enhanced demand on telecommunication
services, the need to attain the highest data transfer rates
in the existing fibreoptic communication lines, and with the
economical feasibility of modernisation of such systems.
Following the development of optical amplifiers, losses in
optical fibres are no longer treated as the main factor
limiting the efficiency of fibre communication systems. The
broadbandness (product of the signal transfer rate and the
communication range) of fibreoptic communication lines is
limited at present by dispersive and nonlinear distortions of
signals. At the modern stage, soliton communication lines
with a variable dispersion are seen as the most likely
candidates for developing long ultrafast lines (with a data
transmission rate exceeding 40 Gbits~! in a single
frequency channel) because a dynamic balance exists
between the group-velocity dispersion and self-phase
modulation during propagation of solitons (see, for
example, Refs [1—4]). Such systems are based on the
application of different types of fibres with chromatic
dispersions of opposite signs limiting the dispersive broad-
ening of a pulse.

In such systems, dispersion-managed solitons (DM-soli-
tons) are used as information carriers [5—14]. Here, we deal
with a stable localised solution rather than a conventional
(fundamental) soliton. A periodic variation in the system
dispersion makes it possible to increase the soliton ampli-
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tude compared to the amplitude of an analogous pulse in
systems with a constant dispersion and, consequently,
enhance the signal-to-noise power ratio [11]. An increase
in this ratio leads to a considerable decrease in statistical
errors arising during optical transmission of information. In
addition, unlike fundamental optical solitons whose steady
propagation (i.e., compensation for the dispersion and
nonlinearity effects) requires an anomalous chromatic
dispersion, DM-solitons can be transmitted stably along
a line with a zero or even negative mean chromatic
dispersion. A low mean chromatic dispersion allows a
suppression of the Gordon—Haus effect [15], as was
demonstrated experimentally [6] for the first time in systems
with a lumped amplification. Similar results obtained by
numerical simulation are presented in Refs [10, 11]. The
high local dispersion of a line weakens the interaction
between adjacent channels due to four-wave mixing [11].

One of the most significant features of DM-solitons is
their phase modulation, which leads to a rapid phase change
between adjacent solitons and a weakening of interaction
between them. Thus, the use of DM-solitons opens basically
new avenues for increasing the transmission capacity of
fibreoptic communication lines.

Until recently, erbium-doped fibre amplifiers (EDFAs)
were used for amplifying optical signals in fibre communi-
cation lines [16]. They were called lumped amplifiers because
the distance over which a signal is amplified (a few tens of
metres) is much smaller than the separation between the
amplifiers (tens of kilometres). The use of dispersion-
controlled erbium-doped optical fibre amplifiers made it
possible to develop commercial fibre communication lines
with wavelength-division multiplexing (WDM systems) with
a data transmission rate up to 10 Gbits s~' per channel for a
separation of about 80 km between the amplifiers.

The transmission ability of long WDM systems can be
increased significantly by broadening the optical frequency
band. However, the frequency band of conventional EDFAs
covers the wavelength range 1530—1565 nm and severely
hampers the broadening of the optical frequency band of
transmission lines and hence the number of transmitting
channels and the overall data transmission rate. Another
significant drawback of such amplifiers is the nonuniformity
of the gain in the working wavelength range. As a result, the
power in one of the channels begins to exceed the power in
another channel in the long-range WDM systems, thus
increasing the error in data transmission.

The restrictions inherent in EDFAs imposed by the
application can be eliminated to a considerable extent by
using distributed Raman amplifiers [17]. The operation of
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such amplifiers is based on the application of stimulated
Raman scattering that ensures the small-signal gain by
transforming a part of the energy of a powerful pump wave.

The basic advantages of Raman amplifiers over EDFAs
as follows [18]. Their amplification band can be broadened
by increasing the number of pump waves. They have a
relatively low noise level and hence a higher signal-to-noise
ratio. The gain of Raman amplifiers can be equalised over a
wide frequency range by regulating the input pump power.
Finally, the fibre itself can be used as the active medium in
them.

Until recently, the main drawback of Raman amplifiers
was their low efficiency, which necessitated the use of
continuous high-power pumping (~ 1 W). However, highly
efficient Raman fibre lasers generating almost at any wave-
length in the range 1.2—1.5 pm have been developed in
recent years [19, 20], as well as an amplifier of this type
based on fibres with a high concentration of germanium and
with low optical losses [21].

In view of the above, it is quite urgent to study systems
with distributed amplification. A large number of publica-
tions in recent years have been devoted to theoretical and
experimental investigations of fibreoptic communication
lines with distributed Raman amplification [22-30]. In
this work, we have obtained numerically the soliton
solutions for fibreoptic communication lines with distri-
buted Raman amplification. Individual sections of such lines
consist of alternating segments of a standard single-mode
fibre and a dispersion-compensated fibre (Fig. 1). Table 1
shows the parameters of fibres used in the calculations.

3 3

Figure 1. A section of a fibreoptic communication line with distributed
Raman amplification: (/) standard single-mode fibre; (2) fibre for
dispersion compensation; (3) reverse pumping.

To describe the dynamics of optical pulses in fibreoptic
communication lines, we use the nonlinear Schrodinger
equation for the complex envelope W(Z, T) of the electro-
magnetic field [31]:

e 4

07 1ﬁz(Z)W—i—o(Z)\‘I’fT:iG(Z)?’. (1)
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Here, Z is the distance in kilometres over which a soliton
propagates; T is the time in picoseconds; |'1T’|2 is the power
of an optical pulse in watts; ,(Z) is the group-velocity
dispersion coefficient; o¢(Z) = 2nn,(2)/[AgAe(Z)] is the
nonlinearity coefficient; n, is the nonlinear refractive

index; 4, is the carrier wavelength; A.4(Z) is the effective
fibre area;

G(2) = (D) +7.(2) (@)

describes the optical losses in a fibre and the distributed
Raman amplification; 7,(2) = gox exp[—2y,(L — 2)]; L is
the length of one section of the line; y(Z)= 0.05
x In (10)e; y,(Z) = 0.05In (10)or,; and o, o, are pulse atte-
nuation coefficients at the carrier wavelength and at the
wavelength of the return pump wave; g, is the input pump
power (chosen in such a way that the signal power is
completely restored at the end of each section).

We make the following change of variables in Eqn (1):

Y(Z,T)=A(Z,T)exp “ G(z/)dz'}

In this case, we go over to dimensionless variables z = Z/L
(L is in kilometres); t = T/t,, where ¢, is the characteristic
time in picoseconds; and |¥’\2 = PO\A|2, where P, is the
characteristic power in watts. In this case, the equation for
the function A(z,f) satisfies the nonlinear Schroédinger

equation with periodic coefficients:
4. +d(2)A4, + c(2)|4)*4 = 0. 3)

Here

dz) =— Lh(2). ¢(z) = PyLo(z) exp {2J

! !
2w ZG(Z )dz }
Using the averaging procedure described in Ref. [32], we
can construct numerically the soliton solution of Eqn (3)
for arbitrary initial conditions.

In most cases of practical importance, the shape of the
real DM-soliton in the power region is close to Gaussian.
Using this circumstance, Gabitov and Turitsyn [33] used the
variational approximation to obtain a system of two
ordinary differential equations for describing the dynamics
of the main characteristics of a Gaussian pulse over a
compensation period, namely, the duration of a pulse and
the phase modulation parameter. The system of equations
has the form

0 = 4z M), @
d_M_@_c(z)Né )

dz 71} Ty

Here, the variable T{(z) is the optical pulse duration; M(z)
is its phase modulation parameter, and N? is the parameter
proportional to the pulse energy.

Later, such a system of equations was also obtained [34]
for the mean square angular momenta assuming a parabolic
law of its phase variation:

Table 1.
Dispersion D aD
Fibre Distance/km ~ at A= 1553 nm F/ps km~' nm~2 Losses/dB km™! ;12/10’20 m> W! Aggr/nm
/ps km™' nm™! ‘
Standard single-mode fibre 102 +16.4 +0.06 0.21 2.6 80
Dispersion-compensated fibre 17.425 —-96 —0.18 0.5 2.6 26
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The periodic solutions of the system of equations (4) and
(5) describe quite accurately the main characteristics of
optical solitons (peak power, phase modulation parameter
and duration) for a number of specific configurations of
fibreoptic communication lines. A comparison of solutions
of the system of equations (4) and (5) with solutions of
Eqn (3) of the DM-type solitons will be made below.

We write the function G(z) in the dimensionless varia-

bles:

W)

Gy = =, + goexp[—2y, (h — 2)
- 2yp2(1 - ll )]7

Gy = =7, + goexp[—2y (1 — 2)],

0<z<, ®)
h<z<]1, 9
where /; is the length of a segment of the standard single-

mode fibre; 7, 7, are the attenuation factors of the return
pump wave for various regions of the fibre. The condition

1
J G(z)dz=0 (10)
0
leads to the input pump power
1 1 1
g():z["/z—(“/z—“/l)ll]{ +<f——>
VpZ /pl yp2
| -1
X exp[—2yp2(1 -h)] - y—EXP{—z[“/plll + “/pz(l - 11)]}} .
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an

Consider first the results of numerical solution of the
system of equations (4) and (5). The periodicity conditions

To(0) = To(1),  M(0) = M(1) (12)
make it possible to formulate the boundary value problem
for this system. Because only two conditions (12) are
imposed for determining three independent parameters
Ty(0), M(0), N2, one of these can be treated as free. The
algorithm for solving the system of equations (4) and (5) is
based on a combination of the fourth-order Runge—Kutta
method and the Newton method [35] for determining the
other two independent parameters, namely, M(0) and N 2,

The solution of the system of equations (4) and (5) is
presented in Fig. 2 as the dependence of the maximum
power of a Guassian pulse on its FWHM duration (for
z = 0). While constructing the soliton solution, the initial
approximation (for z =0) was chosen in the form of a
Gaussian pulse

1/2 2 . 2
2\/5} Cxp{_ t iM(0)t (13)

0.0 = N{TO(O) 27200)

272(0) T To(0

=

In this formula, the parameters N, Ty(0) and M(0) were
obtained from a solution of the boundary-value problem
(4), (5). After this, the averaging procedure described in

Ref. [32] was used to construct solutions of the DM-soliton
type for the initial configuration of fibreoptic communica-
tion lines. The numerical solution of the nonlinear
Schrodinger equation (3), describing the evolution of an
optical pulse, was carried out by the method of operator
exponent [31]. A solution of the DM-soliton type was
assumed to be constructed if the difference between its
characteristics at the beginning and the end of a periodic
section did not exceed 0.001 %. The dependence of the
maximum power of DM-solitons on their duration is also
shown in Fig. 2 (points). One can see that the solutions of
the system of equations (4) and (5) are in fairly good
agreement with the soliton solutions described by Eqn (3).
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Figure 2. Dependence of the maximum pulse power on its duration. The

solid curve is the solution of the system of Eqns (4) and (5), and the
points are the soliton solutions of Eqn (3).

Fig. 3 shows the distribution of the DM-soliton power at
distances Z that are multiples of the length L of one section
of the fibreoptic communication line. One can see that the
main parameters of the constructed soliton solutions vary
significantly over the compensation period. This is
confirmed by the dynamics of the main soliton parameters
presented in Fig. 4 for a single period, namely, the maxi-
mum power, duration and the phase modulation parameter.
Figure 5 shows the dynamics of interaction of two optical

(=]

Power /dBm
A
(=)

—100

—150

—200

Figure 3. Distribution of the soliton pulse power (on logarithmic scale)
at distances that are multiples of the length of one section of the fibre
line.
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Figure 4. Dynamics of the main parameters of a soliton pulse over one dispersion compensation period.
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Figure 5. Dynamics of interaction of two soliton pulses initially
displaced relative to each other by 100 ps.

7.
DM-solitons (initially displaced relative to each other by

100 ps) over a distance of over 10000 km with a data 8.
transmission rate (capacity of the line) 10 Gbit s~'. 9.

Let us summarise the results of the above investigations.
The method of mathematical simulation was used to study

the propagation of DM-solitons along a fibreoptic commu- g (¢

nication line with distributed Raman amplification.

Individual sections of this line are formed by a standard 12.

single-mode fibre and a fibre for compensating dispersion.
Soliton solutions are constructed for
Schrodinger equation with periodic coefficients and com-
pared with the solutions obtained by using the Gabitov—
Turitsyn approach. It is shown that soliton data trans-
mission with a capacity exceeding 10 Gbit s™' in a single
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