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Optical solitons appearing during propagation

of whispering-gallery waves
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Abstract. The properties of solitons appearing during the
propagation of whispering-gallery waves in a homogeneous
glass cylinder are considered. It is shown that such solitons
can be used for the light frequency conversion.
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1. Introduction

Whispering-gallery (WG) waves are mainly known as the
resonator modes of spherical glass microresonators. Having
a diameter about of hundred of micrometers, these
resonators possess an extremely high Q factor, which can
exceed 10° [1]. Similar waves can be excited in glass
cylinders [2], which are called tunneling waves [3]. Theo-
retical WG waves have inevitable radiative losses [3].
However, these losses are negligible in most practical
applications [1], when the cylinder diameter exceeds 10 pm.
The record high Q factor of spherical microresonators of
diameter a few tens of micrometers convincingly confirms
this.

Unlike common waveguide modes in glass cylinders,
which are used for the transfer of optical solitons, WG
waves have a quite unusual property: their group velocity
can be significantly reduced (down to zero) during the
propagation of the waves in a cylinder with a gradually
decreasing diameter. This makes it possible to obtain optical
resonators for WG waves in barrel-shaped parts of a glass
cylinder [4]. It turns out that to make a high Q resonator, it
is necessary to increase the cylinder diameter only by 0.01 %
in the region of length a few tens of micrometres. This can
be also achieved by increasing by 0.01 % the refractive index
of glass in the region of the same length instead of the
cylinder diameter. When an acoustic pulse is propagating
along the cylinder axis, the refractive index of glass inside
the cylinder increases, so that the above-mentioned optical
resonator can propagate along the cylinder axis at the
acoustic-wave velocity v, ~ 6000 m s™!. If the resonator
contains optical radiation, this radiation propagates
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together with the resonator. During the movement of the
resonator along the axis of the cylinder whose diameter
gradually decreases (increases), the radiation in the reso-
nator is compressed (extended), resulting in the increase
(decrease) of its frequency [5, 6]. The change in the fre-
quency of a WG wave under the action of an acoustic pulse
was demonstrated experimentally in Ref. [7].

Very interesting effects appear in a glass cylinder in
which a light pulse propagates as a part of the WG wave.
Similarly to the appearance of optical solitons in a glass
cylinder during the propagation of a usual intense light
pulse, peculiar WG solitons can appear during the propa-
gation of an intense WG pulse. Indeed, the refractive index
inside the pulse increases due to the Kerr effect, as in a usual
soliton. In this case, the pulse finds itself in a moving WG
resonator formed by the pulse itself. Such a self-confined
light pulse, or a WG soliton, has very interesting properties,
in particular, its propagation velocity can be quite small. In
this case, except virtually inertialess Kerr nonlinearity,
which is responsible for the appearance of usual solitons,
the inertial nonlinearity associated with the appearance of
the electrostriction pressure inside the light pulse has time to
reveal itself in full measure. This nonlinearity in glass is
known to be of the same order of magnitude as the Kerr
nonlinearity [8]. In this paper, we consider the relation
between these acoustic and optical effects.

2. Properties of the propagation of WG waves
in a dielectric cylinder with diameter
and refractive index varying along its axis

A WG wave propagating in an infinite dielectric cylinder
can be treated as a part of a plane wave multiply scattering
from the internal surface of the cylinder due to total
internal reflection and rotating in such a way around its
axis (Fig. 1). It is known that if the waveguide diameter
changes sufficiently slowly along the waveguide axis, then
the mode of the wave propagating in the waveguide is
preserved, i.e., the waveguide mode is an adiabatic
invariant. This means that the integers r and «, which
characterise the waveguide mode and are equal to the
number of radial and azimuthal variations, do not change.
In this case, the transverse component k, of the wave
vector changes inversely proportional to the waveguide
diameter D(x), i.e.,

k (x)D(x) = const. (1)
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Figure 1. Direction of the coordinate axes during the propagation of a
WG soliton in a glass cylinder.

Note that k&, (x) is independent of the refractive index
n(x) and the light-wave frequency o and is determined only
by the mode type and diameter of the cross section at the
point x. The longitudinal component k| of the wave vector
is usually called the propagation constant and is equal to the
projection of the wave vector on the waveguide axis. The
longitudinal and transverse components are related by the
expression

ki +k? =k 2)

As the cross-section diameter decreases, the component
k| increases, however, the modulus of the wave vector k
remains invariable if the light wave frequency does not
change. In this case, as follows from (2), the component k|
decreases. If the component &, becomes equal to k for some
radius ry(x;) of the cross section, then the propagation
constant vanishes. The point x = x; is called the return
point. The WG wave cannot propagate in the region where
ri(x) < ri(x;), and, hence, kHZ < 0. Such regions are called
beyond regions.

Unlike a sphere, the cross section in the resonators
considered here decreases rather slowly. As mentioned
above, such resonators were also studied experimentally
[4]. Consider a real situation, when a change in the refractive
index An(x) is very small (An/n does not exceed 107%).
Taking into account that k = wn/c and using expressions (1)
and (2), we obtain the expression for the propagation
constant

on(x)

JES RS

where the functions n(x) and D(x) describe changes in the
refractive index and the waveguide diameter along the x
axis coinciding with the waveguide axis. For the case
AD/D < 1, An/n < 1, and Aw/w < 1, where AD(x) = D(x)
—D(0), An(x) = n(x) —n(0), and Aw = w — w,, expression
(3) can be rewritten as

o = | r k()

ky(x, o) = {kHZ(O,a)O) + 2k % (wy) %

AD(x)
D(0)

12
ELCY) +A—wH . )

n(0) )

One can see from (4) that the propagation constant
depends in the same way on the relative changes in the
diameter AD(x)/D(0), the refractive index An(x)/n(0), and
light frequency Aw/w. By introducing the notation
Ak (x, w) = ky(x, @) — ky(0, wp), we obtain in the case

G 0,0n) < 2% (o) | )+ S 20

the relation
AkH(x,w):kz(wO) {AD(x) An(x) A_a)] 5)
ky(0,00) ki (wo) L DO)  n(0) o

Therefore, the relative change in the propagation constant
proves to be larger by a factor of kZ(wO)/k‘f(O, ) than the
relative changes in the initial factors. For a distinctly
pronounced WG wave, for which k(wg) > k) (0, my), we can
substantially change the propagation constant by slightly
varying the waveguide diameter, its refractive index or the
light frequency.

3. Self-focusing of a WG wave
along a cylinder axis

Consider first the effects related to the self-action of a WG
wave, which cause a change in the wave parameters along
the x axis of an infinite dielectric cylinder with quadratic
nonlinearity (Fig. 1). Such a cylinder can be treated as a
waveguide inside which the WG wave propagates. It is
known that the propagation of a wave in any waveguide is
described by the one-dimensional wave equation

621/{ 2
where
1= 4= (7)

k Yk

are the wavelengths of light in glass and along the
waveguide, respectively. In the general case, if the refractive
index n depends on x, the parameters k and k| also depend
on x. However, k, is determined only by the waveguide
cross section (cylinder diameter) and is independent of x.
The field distribution in the waveguide cross section for any
mode is independent of A, and coincides with the field
distribution of this mode in the case of transverse resonance
[9], when the field is invariable along the waveguide axis,
i.e., Ay = 00.

Consider an infinite WG wave rotating in a cylinder,
with the wave vector perpendicular to the cylinder axis, i.e.,
Jw = co. Let us confine now this wave by the region —y ' /2
<x<n _1/2, so that the width of a rotating circular belt is
n~'. In this case, the refractive index in this region increases
by An = n,E* due to the optical Kerr effect, where E is the
amplitude of the light wave field and n, is a constant
characterising the nonlinearity of the Kerr medium. It is
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known that a region with an increased refractive index can
play the role of a waveguide. In the case under study, such a
waveguide is closed, i.e., represents a circular resonator of
width 5 ~'. The intensity distribution of the light wave along
the resonator width differs from a rectangular one. For this
reason, the distribution of the increment of the refractive
index caused by the Kerr effect also differs from a rec-
tangular distribution and An(x) = nyE*(x). Therefore, it is
necessary to find the profile of the refractive index An(x) for
which the propagating light wave has the intensity profile
I(x) providing the formation of the profile An(x) = anZ(x).

Such a problem is considered mathematically in the
analysis of formation and propagation of a two-dimensional
soliton along the z axis, in which the field along the
coordinate y is constant [10]. Taking into account the
diffraction divergence and self-focusing in the Kerr medium,
the propagation of a two-dimensional wave along the z axis
is described by the equation [10]

ou 0?
“2iky o+ o+ 2KG 2 [u|u = 0, (8)
0z Ox n

where kg = wny/c and n, is the refractive index of the
medium for low-intensity waves. The solution of equation
(8) is the wave [10]

ulx,z) = < o

2
kO ny

()

)'/2 exp[—in*z/(2ko)]
cosh(nx) ’

The propagation constant of this wave along the z axis is

2
n
k.=kyl1+— ],
“ °( +2k§)

from which it follows that k2 = k¢ +n? for n° < k¢, i.e., k.
depends on the beam width #~'. In addition, the
perpendicular component of the wave vector appears,
which can be found from equation (8). By substituting
instead of Ou/0z the quantity —inzu/(ZkO) obtained by
differentiating (9), we have 62u/6x2|X:0 = —5°u. On the
other hand, by definition

(10)

o

2
0x x=0

= —k2(0)u.

By comparing these expressions, we obtain

ky(0) = n. (1n

The modulus of the wave vector k(x) of the wave, which
generally depends on the refractive index of the medium
where the wave propagates, is determined by the expression

k(x) =k [1 +AL(Y)} (12)
n
On the other hand, from the general relation
I3 (x) = k3 (%) + k2 (x), (13)

taking into account (10) and (11), we have

915
0’
k*(0) = k2(0) 4 k2(0) :koz(l +2p>. (14)
0
By comparing (12) and (14), we obtain
An(0 2
n( ) :%. (15)
0

The component k. remains invariable during propaga-
tion along the x axis, whereas the component k, decreases.
Indeed, expression (10), taking into account that An(x)/n ~
u*(x) and expressions (14), (15), can be written in the form

2
K2 (x) :k§<1 +2icosh*2x>. (16)

kg

Because k.= ko[l +1%/(2k3)], we have kZ(x)=n’x
(2cosh™x — 1). It follows from this that k2(x,) =0 for
x =xp and k2(x) <0 for x > x,. The points x = +x, are
return points, and according to the WKB method [9], the
condition

0
[ k(x)dx =1 (17)

should be fulfilled for the phase integral. Between points
—x and xg, we have k7 > 0, and the wave can propagate.
For |x| > xo, we have k2(x,) < 0, and the wave decreases
exponentially without changing its phase. However, after
reflection from the return point, the wave acquires the
additional phase shift equal to m/2.

It is known that two-dimensional solitons are charac-
terised by the so-called area integral

J= <Z_‘;)l/z Ji ()| dx

It was shown [10] that J = 2 in the soliton and the integral
is independent of the initial function u(x) for z=0. If a
beam is not a soliton for z = 0, but its area integral satisfies
the condition © < J < 37w, then the beam becomes even-
tually a soliton with J=2n. The nonequilibrium beam
propagating in a waveguide produced by the beam itself
acquires eventually the profile at which the field distribution
in the waveguide proves to be exactly the one required for
the formation of this waveguide. This profile is stable. All
the beams that weakly differ from the stable beam, i.e., the
beams satisfying the above condition, acquire this profile.

Let us now use the known results, obtained for two-
dimensional spatial solitons propagating in an infinite Kerr
medium, for the case under study. We will pass to this case
in several steps. At the first stage, we change the conditions
of propagation of a spatial soliton. Instead of an infinite
wave along the y axis, we consider the propagation of a
fragment of this wave in an infinite planar waveguide, which
is formed by two flat perfect mirrors oriented perpendicular
to the y axis, assuming that the strength of the light wave
field is parallel to the y axis. In this case, the field
distribution between the mirrors coincides with its distri-
bution in an infinite medium and, hence, the profile of the
wave amplitude along the x axis corresponds to the two-

(18)
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dimensional soliton considered. At the second stage, we roll
up the planar waveguide to a cylindrical layer so that the
cylinder axis would be parallel to the x axis. Then, the wave
begins to rotate in the cylindrical layer along the cylinder
axis. At the third stage, we fill the entire cylinder with glass
and remove the internal mirror. In this case, the wave is
restricted along the radius toward the centre not by the
mirror but due to the waveguide curvature. At the fourth
stage, we remove the external mirror. In this case, the wave
is confined along the radius in the direction from the centre
due to total internal reflection from the glass—air interface.
At each of the stages, the conditions of the confinement of
the wave in the direction perpendicular to the x axis were
changed. However, the conditions of the wave self-confine-
ment along the x axis were invariable. In all the cases, the
intense wave increases the refractive index inside itself,
thereby producing a waveguide that confines the diffraction
divergence of the wave.

Propagating in the cylinder in the azimuthal direction,
the WG wave returns to the site where it has already been.
In this case, the phase shift after the wave passage around
the cylinder should be multiple of 2m, i.e., the condition

nDgk. = 2na, wim Dok./2 =a (19)
should be fulfilled, where a is an integer equal to the
azimuthal index and D, is the cylinder diameter. Therefore,
solitons with the zero group velocity along the cylinder axis
x (a wave that is symmetric with respect to x =0 is
considered) and the specified intensity (i.e., at fixed values
of 1 and k.) can exist only at certain frequencies of light.
The inevitable decrease in k. caused by the reduction of n
during the wave decay is compensated by the increase in k.
due to the increase in the carrier frequency of the WG
soliton with decreasing n. It is known that during the
propagation of light in a medium with the refractive index
decreasing in time, the light frequency increases [11]. One
can easily see that the relative change in the carrier
frequency for the WG soliton is equal to the relative change
in the refractive index with decreasing light intensity.

Consider now the case when the group velocity of the
WG wave is nonzero. In the two-dimensional soliton
analogue, this corresponds to the propagation of the
wave at some angle 6 to the z axis. Then, expression (9)
takes the form [10]

"y 1/2
u(x,z) = <k02n2)

exp [—i(n® — &%)z/(2ko) +i&x]
1 cosh(nx)

, (20)

where ¢ = 0k,. In this case, the azimuthal component k. of
the propagation constant decreases by &2 /(2ky) compared
to that in the case 0 = 0, and condition (19) can be satisfied
for any frequency by a proper choice of ¢ (or of the angle
0 determining the group velocity cf/n). As a result, we
obtain that, unlike free space, where the two-dimensional
wave can propagate at any angle 0, the WG wave can
propagate in a cylinder only at certain angles. To each of
the angles, its own value of ¢ and own waveguide mode
correspond. In fact, we have a soliton, which can propagate
at different velocities.

The similarity between the equations describing the

propagation of solitons in a cylindrical optical fibre and
self-focusing of two-dimensional beams in a nonlinear
medium was pointed out by many authors. In this case,
the action of dispersion in the optical fibre resulting in the
broadening of the transmitted light pulse is similar to the
action of diffraction during the propagation of a spatially
confined beam in free space, which causes the broadening of
the beam. For the case under study, these types of solitons
differ from each other by angles 0.

We can analyse the properties of WG solitons in a
different way by using the methods for studying the
properties of usual solitons in optical fibres. It is known
that a soliton is formed due to the action of two competing
processes: nonlinear compression, which is proportional to
the light intensity, and the dispersion spread, which is
proportional to the group-velocity dispersion. On passing
from a usual soliton to a WG soliton, the light intensity in
the soliton increases inversely proportionally to the group
velocity v, = (¢/n)(k /k). On the other hand, the group-
velocity dispersion

d (k) nk
do\n k) ck

is also inversely proportional to the group velocity. By
comparing these expressions, we can see the balance
between the competing processes is retained on passage
from a usual soliton to a WG soliton.

4. Properties of WG solitons with the group
velocity comparable to the sound speed in glass

Because the velocity of the WG soliton is relatively small,
the electrostriction effect produced by the appearance of an
additional pressure inside the light wave has time to reveal
itself in full measure along with almost inertialess Kerr
effect. Although the electrostriction effect itself is virtually
inertialess, its action on the propagation of light occurs
with a delay. The electrostriction pressure increases the
glass density, resulting in the increase in the refractive index
n. The time required for increasing n is determined by the
expression 1t~ //v,, where / is the size of the region where
the electrostriction pressure appears.

Consider a WG soliton propagating with the initial
velocity v, smaller than v, in a cylinder with a gradually
increasing diameter. When the diameter D increases, the
longitudinal component k| increases according to (5), and
the relation vy > v, becomes valid at some value of D. The
acoustic pulse cannot propagate independently at the
velocity v,. On the other hand, the WG soliton also cannot
propagate independently, having separated from the acous-
tic pulse, because the latter is involved in the formation of a
region with the increased refractive index, which restricts the
WG soliton. As a result, the velocity of the WG soliton does
not exceed v,. The energy of the WG soliton decreases
[5, 11] and a part of its energy is transferred to the acoustic
pulse. The decrease in the WG soliton energy is accom-
panied by a decrease in its frequency and, as follows from
(5), by a decrease in the propagation constant k|, which in
turn results in a decrease in the group velocity of the WG
soliton. It is only necessary to provide not too strong change
in the cylinder diameter to ensure that the change in the
soliton frequency had time to follow the change in the
cylinder diameter. As shown in Ref. [5], during the prop-
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agation of a soliton in a cylinder with a gradually increasing
diameter, the shape of the soliton becomes asymmetric. The
radiation proves to be concentrated in the part of the
moving resonator where the refractive index increases in
time.

If the WG soliton propagates initially along the cylinder
at the velocity v, > v,, it loses a part of energy containing in
the acoustic wave produced by it. The smaller v, the greater
part of the energy is lost because there is more time for
excitation of the acoustic wave at each part of the cylinder.
In this case, the WG soliton leaves after itself the acoustic
wave with the energy that exceeds the energy of a usual
soliton by a factor of (c/n)z/ug. As a result, the velocity, at
which the frequency of light in the WG soliton decreases,
increases by the same factor. When the frequency decreases,
k| and the group velocity v, also decrease. This facilitates a
further decrease in the WG soliton energy and its group
velocity. As a result, the soliton velocity becomes equal to
the sound speed and the soliton transforms to a WG
resonator filled with light and moving at the sound speed.
The properties of such WG resonators filled with light are
considered in Refs [5, 6, 11].

5. On the possible involvement of WG solitons
in the supercontinuum generation

The properties of WG solitons can be use to explain
processes going on in the generation of a supercontinuum
in a tapered optical fibre [12—14]. High-power short light
pulses were coupled into a usual optical fibre whose
diameter gradually decreased from d, = 125 um down to
d, =2 pm (d, and d, are the initial and final diameters).
The length of the fibre part with a minimal diameter was
about of 90 mm. The conditions of the supercontinuum
generation are similar to those for the generation of WG
solitons. Indeed, in both cases, intense light pulses are used,
which are subjected to self-action effects.

A supercontinuum was generated using a single-mode
fibre with a gradually decreasing diameter. For some core
diameter, which decreases proportionally to the external
diameter of the fibre, the core is no longer capable of
holding radiation. The radiation leaves the core and is
confined by the cladding—air interface. Therefore, the light
pulse begins to propagate under the same conditions as the
WG soliton considered above. Let the fibre diameter at
which this occurs be d;, where dy > d| > d,. It is difficult to
imagine that the waveguide symmetry with respect to its axis
is completely preserved with decreasing its diameter. In this
case, radiation emerging from the fibre core will inevitably
acquire the azimuthal component, which is inversely propor-
tional to the fibre diameter. Therefore, when the fibre
diameter decreases significantly, for example, by a factor
of 30 (from d; = 60 pm down to d, = 2 pm), an intense WG
wave can appear, whose group velocity is much smaller than
the speed of light. Due to effects considered above, such a
wave can produce WG solitons, whose wavelength can
strongly decrease during their propagation to the fibre
region with a decreasing diameter. After the propagation
through the region with a minimal diameter, the wavelength
of such WG solitons begins to increase.

If we consider the generation of a continuum by a
periodic train of light pulses, we should take into account
that each WG soliton can be subjected to the action of
previous acoustic pulses. For example, we can assume that

doi> |

s 2.

there exist some reflected acoustic pulses. Then, the process
occurs against the background of additional acoustic waves
(resembling sea waves). In this case, an acoustic compres-
sion pulse, accompanying the WG soliton, loses its confining
properties during propagation through a counterpropagat-
ing acoustic extension pulse, and radiation inside the WG
soliton is no longer confined by this pulse and, hence,
changes its wavelength. Such a destruction of the WG
soliton can occur at any stage of the light frequency
conversion. As a result, the emission spectrum at the
fibre output will contain components with frequencies
that are both higher and lower than the incident light
frequency. The surprising thing is that the width of this
spectrum exceeds two octaves. Without assuming that WG
waves with a much lower group velocity appear, it is difficult
to imagine that the light frequency can be changed twice for
the time ~ 0.5 ns, during which a usual light wave prop-
agates by 90 mm. For this to occur, the rate of a change in
the relative refractive index should be (dn/dr)/n s7". If we
assume that the ultimate admissible change is An/n = 107*,
then it should takes place for 50 fs. This time is substantially
shorter than the time constant of Kerr nonlinearity.

The validity of this explanation of the supercontinuum
generation can be tested in two additional experiments. In
the first experiment, instead of a periodic train of pulses with
a pulse repetition rate of 76 MHz, a pulse train with a much
lower repetition rate of 1 kHz is used [12]. In this case,
perturbations caused by a previous pulse have time to decay
before the appearance of the next pulse. Then, the spectrum
of the output signal can be substantially shifted, but its
width should be much lower than two octaves because the
conditions for the destruction of WG solitons disappear. In
the second experiment, only the tapering part of a fibre with
a minimal diameter is used. In this case, the blue shift of the
output radiation frequency should be substantially greater
that the red shift.

Of course, WG solitons can propagate not only in
homogeneous glass cylinders but also in fibres with a
core. However, in this case the core diameter should be
somewhat larger than in usual single-mode fibres. In
addition, the parameter showing how abruptly the refractive
index changes on passing from the fibre core to its cladding
is also very important. These questions require special
studies.

Therefore, WG solitons, unlike usual solitons, possess a
number of interesting properties related to the fact that their
velocity can change from zero to the velocity of a usual
soliton. This property allows one to use WG solitons for the
light wavelength conversion.
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