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Concentration of light energy within a cone with a metal coating

T.I. Kuznetsova, V.S. Lebedev

Abstract. The spatial structure of light waves of the electric
type in a cone with perfectly reflecting metal walls is
theoretically analysed. The exact formulas and asymptotic
expressions are derived which describe the dependences of the
energy density of different components of the field inside the
cone on the radial coordinate. A special attention is paid to
the study of the character of the field decrease near the cone
apex depending on the cone angle and the wavelength. The
effects of reflection of waves from the truncated cone—free
space interface are studied. The obtained results are used for
calculating the transmission coefficient of a truncated cone in
the optical range for a broad range of parameters, including
the diameter of the output aperture of the order of 0.05-0.1
of the wavelength. The possibility of obtaining a high
transmission coefficient of light in a truncated metallised
cone is theoretically substantiated.

Keywords: near-field optics, nanometer scale, conic waveguide,
transmission coefficient, reflection from a subwavelength aperture.

1. Introduction

A near-field scanning optical microscope is based on the
possibility to localise light within a region of subwave size.
In this connection, the development of a light source with
adequate characteristics is very important problem because
only the combination of a high localisation degree with a
sufficient energy density can provide the high-quality
imaging of nanoobjects.

A number of experimental and theoretical papers
devoted to the development of a quasi-point radiation
source for probing nanoobjects have been published in
recent years. For this purpose, metallised optical fibres
tapering to 4/20 —2/10 at the output are most often
used in experiments [1—5]. Among the first theoretical
studies describing such optical devices are papers [6—9].
In [6], an analytic approach was proposed, which can be
used in the case of small inclination angles of the waveguide
walls. In this case, the transmission coefficient of the
waveguide proves to be quite small. In Refs [7-9], the
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method of multiple multipoles [10, 11] was used. This
method was applied to calculate the propagation of light
through a tapered waveguide with metallised walls and the
open end [8] and through a waveguide with a thin metal
layer deposited on its output end [9]. In Ref. [8], calculations
were performed for the geometry with a weak transmission
of light, while in Ref. [9], due to the action of the plasmon
mechanism in a metallised waveguide end, the intensity of
light at the waveguide output appears to increase.

The idea of using surface waves propagating along metal
walls was also developed in Refs [12—14]. The authors of
these papers combined this approach with the development
of a new geometry of a tapered fibre (the so-called double
and triple cone, i.e., the presence of the regions in the fibre
with different inclination angles of the walls to the fibre
axis). As a result, the expected value of the transmission
coefficient increased from 107°— 107 to 1072, In addition,
the transmission coefficient close to 102 was experimentally
observed [14] for small output diameters (70— 100 nm).

The properties of waves in tapered fibres were approxi-
mately analytically described in paper [15], where the
transmission coefficients were numerically estimated. Within
the framework of the adiabatic approximation (correspond-
ing to a slow variation in the fibre diameter along its axis),
the mutual interaction of counterpropagating waves caused
by the wall inclination was explicitly taken into account.
The interaction of the fundamental waves with the higher-
order waves was neglected, and the approximate boundary
conditions were used. Such an approach is justified when the
wall inclination angle is not too large (when the longitudinal
component of the electric field makes a small angle with the
waveguide surface). We obtained [16— 18] the exact system
of equations for the field in a tapered metallised waveguide
with a subwavelength aperture, in which the waves with all
the transverse indices and the interaction between them are
considered. This system was used to study in detail the
behaviour of waves of the magnetic type in the waveguide
and to find and analyse the dependences of the transmission
coefficient on the geometrical parameters of the waveguide
and the wavelength of light. For waves of the electric type,
we managed to obtain only approximate estimates.

As a whole, however, the reliable numerical calculations
available in the literature concern a comparatively narrow
range of the geometrical parameters of fibres, which does
not allow one to determine the ultimate transmission
coefficient that can be achieved in metallised fibres. To
obtain a more detailed picture concerning the behaviour of
waves in tapered fibres, it is important to study fields in a
cone. The mathematical apparatus available at present
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allows us to separate eigenwaves corresponding to a cone,
i.e., the problem is not complicated by the transfer of the
energy of the chosen wave to other modes. In this case, we
can investigate rigorously the waves of the magnetic and
electric types.

In this paper, we restrict ourselves to the consideration
of a cone with perfectly reflecting metal walls in order to
obtain, for a sufficiently simple system admitting an exact
solution, the rigorous and detailed picture of the behaviour
of waves in tapered optical fibres. For definiteness, we will
study the fundamental wave of the electric type. We will
show that high energy densities of the field can be achieved
near the cone apex. A great part of the paper is devoted to
the study of a truncated cone. We found that, in the optical
range, for the geometrical parameters of the cone under
study, the presence of the open end of the waveguide weakly
changes the energy density of the fields calculated for closed
cone. This will allow us to claim that a simple conic
geometry can provide high transmission coefficients even
when the output aperture is rather small.

2. Basic equations

Consider a circular cone with the cone angle 6,. The
dielectric constant ¢ inside the cone is constant and is not
equal to unity. We assume that the cone surface is covered
by a layer of an ideal metal. This leads to the zero
tangential component of the electric field on the cone
surface. Let r, 6, and ¢ be the distance from the cone apex,
the polar angle, and the azimuthal angle, respectively.
Consider a monochromatic dependence exp ( — iwt) of the
fields on time, which will be omitted below for brevity. By
using the Hertz function for the electromagnetic field, we
have

62U+1 10 (. ,0U N 1 ?*U
or? " r2|sin0 00 Rl sin%0 d¢?
2
+%U=0. (1)

Let us represent the expressions for the field components
in terms of the Hertz function [19]. The subscripts at the
components of the fields E and H denote projections to the
corresponding axes of the spherical coordinate system. The
fields for the waves of the electric type have the form

U 19°U 1 U
E—-—2.2° == - " 0
o T2V Be=igag o rsin 0 0rogp” @
iwe 1 oU iwe 10U
H =0, Hj=——————— = 3
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The boundary condition has the form U(6,) =0 and
provides the equality of the tangential components of the
electric field to zero: E,.(6,) =0, E,(0y) = 0. Recall that 0,
is the polar angle on the cone surface, i.e., 260, is the cone-
opening angle.

In the case of the magnetic type waves, the Hertz
function satisfies equation (1). The relation between the
fields (with the subscript m) and the Hertz function can be
obtained from (2) and (3) after the replacement E; — H,-(m)
and H; — sEj(m). The boundary condition for the magnetic
type waves has the form 8U/00|,_,, = 0 and provides the
equality of the tangential component of the electric field on
the cone surface to zero: E(f,m (0y) = 0.

The method of separation of variables gives for equation
(1) the solution in the form

U(r,0,9) = R(r)P)"(cos 0) exp(ime),
4
R(l‘) = C\/;J‘,Jrl/z (wT\/EV> 5

where J,/, is the v 4 1/2-order Bessel function and P;" is
the adjoint Legendre function [20] of the first kind, power v,
and order m (m is integer). The boundary conditions for the
waves of the electric and magnetic types take the form

0P} (cos0)

P 0y) =0,
v (COS 0) o0

=0, (%)
0=0,

respectively.

Let us present the results of calculations of the lowest
eigenvalues for the E-wave with m = 0 and for the H-waves
with m = 0 and m = 1 for different cone angles. These waves
penetrate through a tapered waveguide more efficiently than
higher-order waves (similarly to the results obtained for a
cylindrical waveguide). The results of our calculations are
presented in Table 1. One can see that an increase in the
cone angle 20, leads to a drastic decrease in the lowest
eigenvalues v, for all the three types of the eigenwaves in a
tapered waveguide. This means that at large 6, the waves
will penetrate more efficiently through a tapered waveguide.
At the same time, when he angle 6, is specified, the values of
v, for the waves of the electric and magnetic types are
substantially different. To obtain a lower spatial decay of
the field at the output of a truncated cone, it is preferable to
use electric type waves with the azimuthal wave number
m = 0 and magnetic type waves with m = 1. Below, we will
consider only the electric type wave with m = 0.

Table 1. Lowest eigenvalues v; for the E- and H-waves for different
angles 0, (260, is the cone angle).

0 /rad
Wave type m

/24 /12 /6 n/4 n/3 n/2
E 0 17.869 8.681  4.083 2.548 1.777 1
H 0 28.776 14.147 6.835 4405 3.196 2
H 1 13.591 6.584 3.120 2.000 1.468 1

3. Radial dependences of the electromagnetic
energy density in a cone

In the case of the electric type wave with m = 0, the three
field components will be nonzero [see (2)—(4)]:

viv+1)
E = pe R(r)P,(cosb), Ey= o

10R(r) 0P, (cos 0)
r a0
(6)

o _ iwe R(r) 0P, (cos 0)
T e a0

Consider the dependence of the squares of these
components on the radial coordinate r. For each of the
components, we will introduce the quantity corresponding
to the time-averaged electromagnetic energy density
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| It follows from expressions (12)—(14) that the less intense

w, = o <[Re{ H, exp —iwt)}] > - 2 component at small r is H,. At large distance from the cone

Let us now introduce the integrals of w,, wy, and w, over
the part of the spherical surface of radius r enclosed inside
the cone

[
W, = 2nr2J w,(r, 0) sin 6d6,
0
Oy
W, = szJ wy(r, 0) sin 0d0, ®)
0
0y
W, - 2nr2J w, (r, 0) sin 60,
0

These quantities allow us to study the dependence of the
angle-averaged energy densities for different components of
the field on the coordinate r. For r — 0o and r — 0, we can
use the asymptotic expansion of the Bessel function for the
fields, which immediately demonstrates the radial depend-
ence of the quantities quadratic in the field. For r — oo, we

have
ﬂ 2 2CT ¢ PO+ DP L (ovE m
|E.(r — o0)|” = T ovi sin 5
x [P,(cos 0)]%, ©)
2
|Ey(r — oo)|* = &w‘/?iz cos2<—w\/51 - EV)
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OP,(cos 2
x {%—6)} . (11)

The character of the field decay near the cone apex (r — 0)
is determined by the expressions

et = (50 (50) [r5]

x [P,(cos 0)]%,

(12)
|Eg(r — 0) —C2<w2\c[> (wz\c/gf[F(vV:—r;ﬂ)r

" ' 0P, (cos0)]*
00 ’

(13)

apex, the component E, rapidly decreases with increasing r
[see (9)—(11)]. Therefore, by introducing the integrated
energy density W, as a sum of all components of the field

Wtol(r) = Wr(") + Wﬁ(r) + W(p(")’ (15)

we will have W, (o0) = Wy(oo) + W,(c0) for r— oo.

Using (10) and (11), we obtain

C?wey/e (" 0P, (cos0)]” .
)75 : L [ 30 } sin 0d0.

Wiot(o0 (16)

It is convenient to normalise all the integrated energy
densities, i.e., W,, Wy and W, to (16). We will also consider
separately the integrated energy densities for the electric
and magnetic components of the field. The corresponding
normalised quantities have the form

PO = e B = WWGEQ)
(17)
Pu(r) = (1) + Palr).
Polr) = Py(r) = WW—&) Pua(r) = Pu(r) + Po(r). (18)

Figure 1 shows the angle-averaged integrated energy
densities for the radial (P,) and polar (Py) components of
the electric field in a cone as functions of the coordinate r.
Note that the integrated energy density of the radial
component P, becomes small at distances from the cone
apex exceeding the wavelength. This corresponds to asymp-

P, Py
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Figure 1. Normalised energy densities of the radial (P,) and polar (Py)
components of the electric field in a cone integrated over the spherical
surface as functions of the coordinate r measured from the cone apex;
P, = W,/ W (o0) and Py = Wy/ W,y (00) are the ratios of the compo-
nents W, and W, to the integrated total energy density W, at the
waveguide input (r — oo) for the lowest-order wave (4 = 500 nm) of the
electric type with m =0 (¢ = 2.25) and the cone angle 20, (0, = /6,
v, = 4.084).
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totic expressions (9)—(11). The dependences of the inte-
grated energy density of the electric field Py = P, + Py and
of the magnetic field P, = P, on the coordinate r are
presented in Fig. 2. One can see that the curves correspon-
ding to the magnetic and electric energies are out of phase,
and at small values of r the integrated energy density of the
electric field decays much slower than that of the magnetic
field. Figure 2 also shows the dependence of the integrated
total energy density P, = Py + Py, of the electric and mag-
netic fields in the cone on the coordinate r. According to the
normalisation used, the dimensionless quantity P, rapidly
achieves unity (for r > 1). Note that, as the cone apex is
approached, a characteristic peak in observed in the depen-
dence of P, on r before the beginning of a strong decay.
Our calculations show that the intensity of this peak
substantially depends on the cone angle, increasing at small
angles.

Pcl,vaPmI -

2.0

Figure 2. Same as in Fig. 1 for the integrated electric (Py = P, + Py,
solid curve) and magnetic [Py, (r) = P, (r), dashed curve] energy densities.
The wupper curve is the dependence of the integrated density
Py = Py + P, on the coordinate r taking into account the contribu-
tions from the electric and magnetic fields.

4. Effects of reflection from the truncated
cone —free space interface

We considered above the properties of electromagnetic
waves in an unperturbed cone. Under real conditions, a
cone should be truncated, i.e., its part near the apex should
be removed. In the calculation of the energy density of the
field at the output aperture of subwave diameter in the
zero-order approximation, we can assume that in this case
the field structure does not change. Actually, however, the
field varies, and we will estimate the scale of perturbations
produced upon the cone truncation.

We assume that a part of the cone is cut off by a plane
perpendicular to the optical axis. Let us introduce the
cylindrical coordinate system (p,¢,z) so that the point
(p =0, z=0) coincides with the centre of the spherical
system (r = 0). Let the plane cutting off the cone apex be
described by the equation z = z,. The radius of the output
aperture is a = zytan#,. Let us assume that a perfectly
conducting surface is located at p > a, z = z, (the cone turns
to a flange going to infinity). The problem is to match at the
aperture the fields in the cone the fields in the free space. To
solve this problem rigorously, it is necessary to represent the
field in the cone by an infinite superposition of different
eigenwaves, and the field in the free space by a continuous
set of cylindrically symmetric waves. Let us represent the
Hertz function in the form

U = CVid, (% r> P,(cos0)

Z C,VrH! H/z(‘*’;f )Pvﬂ(cos 0). (19)
Expression (19) contains the waves with all the possible
eigenvalues (v; coincides with v). For all v, # v, only the
waves going away from the centre are taken because only
the wave with v, =v is incident on the cone. All the
components of the fields in the cone should be now
expressed in terms of the new Hertz function (19) with the
help of previous formulas [see (2), (3), (6)], in which the
quantities E,, Eo, 1o, and U should be replaced by E,

(c) H(@, and U®. We should pass now from the ﬁelds

E(C> and E< to the components Eéc) u E using the
relations
EIEC) = E© sin0+EéC) cos 0,

E = E/9 cos0 — E\) sin 0. (20)

Let us introduce the special notation

é(p) :E;())<V_ (p’ +Zo)l/2 cos@:ﬁ), 21
W(p) :EZ(C)< (p? + 24 )1/2 COSB_(p—&—ZOzO)]/Z) (22)

for the values of these fields at the exit hole. The
components of the field in the free space are denoted by
© and E©

At the truncated cone-—free space interface, the con-
tinuity conditions should be satisfied for the tangential
component of the electric field and the normal component
of the electric induction
O —¢E® (z=z, 0<p<a) (23)
In addition, because of the perfect conductivity of the
flange, the condition

E,§0> =0 (z=2zp, p>a) (24)
should be fulfilled.

Let us represent the field E by the Fourier — Bessel
integral with the expansion coefficient A(x)

o0

EO(p,2) :j A()o(p)

0

X exp{f i(wz/c2 Az)l/z(z — zo)} xdx,

where » is a continuous variable. This dependence on z
follows from the Helmholtz equation, to which the
component EZ(O) should satisfy. Note that for
%% > w?/c?, the factor —i(w?/c? — %)% in (25) dl’ld all
similar expressions should be replaced by (x°— w /c )2,
Such a choice of the radical sign is determined by the
requirement that each of the field components E:<0) was
either the wave going away to —oo (i.e, from the cone) or
the wave decaying dt —

By calculating 0E° /az by means of (25) and using the

(25)
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condition div E® = 0, we obtain

E 0)) _ oEL” _ [OC [_ i(w2/c2 _ Xz)l/Z}

0z Jo

10

il

pop

x A(%)Jy(xp) exp {— i(coz/c2 — %2) l/2(2 . ZO)} xdx. (26)

In addition, it follows from relations (21), (23), and (24)
that

<p <a),

10
__a[pd)(p)} (0 (27)

=z 0 (p > a).

From this we find the expression for the Fourier — Bessel
expansion coefficient

10
5 (L")

-1
—i(w?/c? — %?
After that, we find from (25)

“ a ! /! ! i
A(x) = )vzjo 3710 00 )l . (28)

o Jo(xp)
Ez(o)(P,Z):*JO i 2/c L 2)1/2
exp[fi(wz/czfxz)l/z(zfzo)}%d%

x JO %[pw(p’)wo(xp')dp’. (29)

Assuming then that z = z; and changing the integration
order in (29), we obtain

¢ 0
I R T

o J°° Jo(#p)Jo(#p ") xd (30)

0 —i(w?/c?— %2)1/2.
Using the recurrent relations for cylindrical functions and
making the replacement xp'Jy(xp”) = d[p 'Ji(xp")]/3p  in
the integrand, we can write (30) in the form

e[ st

1 a ! ! !
X{?W[p L(p,p )]}dp , (31
> Jy(p)J (ep )
L") = | . (32)
( ) 0 _i(wz/cz_%z)lﬁ
By integrating by parts, we obtain from (31)
(0) 0 / / /
EX(p)|..,= =1 5,710 "¢ )L(p.p")
P pima
“ a ] a ! ! ! ! !
— = L dp’. 33
+Lap’{p’ap'[p ¢(p )]} (p,p")p"dp (33)
Let us rewrite (33) in the form E; 0)\ = L¢(p), where the

operator £ is determined by reldtlons (32) and (33). By

substituting this expression into the left-hand side of the
second boundary condition in (23) and the field E )| -

calculated directly from the field E ) and E ©) in the cone,
into its right-hand side, we obtain
1(p) = L(p) = e (p) (34)

This equation contains the coefficients C and C, (n = 1,
2, ...,00), which should be determined and for which system
of linear equations can be obtained from (33). Let us assume
that the coefficient C; is the largest of all the coefficients C,
and discard all of them. Using this simplification, we can
represent the Hertz function in the form

U© C\/‘{(l +B) »+1/2<M’) *‘ﬁY‘“”(w\[ ﬂ
Hv(i)l/2<w7\>/5r>

1428 wy/e
+ THSEW (—r)] P, (cos0).

Here, Y,.i,(x) is the Neumann function; Hl+l ,(x) and
Hﬁ)] ,(x) are the Hankel functions of the first and second
kmds This expression contains except a common arbitrary
constant a constant —f, which should be determined. For
p =0, function (35) is reduced to the previous Hertz
function (35) of the cone (1). If the constant f is nonzero, it
gives the different amplitudes of the waves coming to the
centre and going away from it. It is reasonable to call the
ratlo of the amplitudes at the functions H <+)1 ,(x) and

( 1,(x) the reflection coefficient R. The value of 28
determlnes the difference of the reflection coefficient of the
truncated cone from unity, i.e.,

x P,(cos0) = \/_{

(35)

R=1+2p. (36)

It is important that the amplitude of the wave coming
from +oo does not vary with f. The algorithm for
determlmng the value of P consists in calculating the
fields E ), E, and EY in the cone and free space and
minimising the dlfference (E — (1 /s)EZ(O))|_,:_,0 [see the
second boundary condition in (23)].

Starting from expression (35) for the Hertz function,
with the use of expressions (6) and (20) for the fields in the
cone and the first relation in (23), we obtain

d(p) = (1 + B)dg(p) +ifdn(p). (37
In this expression, the separate contributions from the
cylindrical Bessel function, ¢g(p), and the cylindrical
Neumann function, ¢yn(p), to ¢(p) are written explicitly.
The corresponding combination of the contributions from

the Bessel and Neumann functions to the field E{”|__ o

calculated from (33). We denote it by y(p) = O>| .-, and
represent in the form
1(p) = (1+ B)zs(p) +iBrn(p), 1mn(p) = Lopn(p).  (38)

The calculation of the field Ez@ inside the cone also leads
to a linear combination of the contributions for the Bessel
and Neumann functions. Therefore, the value of Ez(c) at the
output aperture [see the second relation in (20)] will have the
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form

¥(p) = (1+ Bls(p) +iBn(p). (39)
The condition for the matching of the z components of the
electric fields inside and outside the cone [see the second
relation in (23)] will not be satisfied exactly because we have
omitted all the highest waves with v, # v in expression (19).
The problem consists in the minimisation of the difference
W(p) — (1/e)y(p). Let us require that the integral

a
1|
0

would have a minimum, and determine the coefficient f and
thereafter R [see (36)].
By substituting (38) and (39) into (40), we obtain

1 2
V(p) =~ x(p)| pdp

(40)

I=(1+B)(1+p") g+ pp"In —if™ (1 + B)Ipn

+ip(1 + )i, (41)
a 1 2
Iy :JO V() = 28(p)| Pdp,
a 1 2
i = [ o) = (o) 0. )

ti = | sto) = )| | 9500) = 00 | .

0

By differentiating (41) with respect to B*, we find the
condition for the minimum of the quantity 7 in the form

Iy — ilgN

B=- e -
Iy + In +i(Igy — IpN)

(43)

We calculated numerically the values of f and found

Table 2. Amplitude reflection coefficient R of light waves at 500 nm on
the truncated cone (¢ = 2.25)—free space interface and the relative error
0 [see (44)] for different values of the angle 6, and radius of the output
aperture.

a/nm  0y/rad 1 -Re{R} Im {R} 0
/12 282 x 10718 —7.80 x 10718 0.059
/6 2.58 x 1071 —8.94x 10710 0.044
12.5 /4 7.02 x 1078 —335%x 1077 0.118
/3 481 x 1077 —3.45%x107° 0.310
/12 1.65x 10712 —2.52x 10712 0.081
/6 2.76 x 1077 —520x 1077 0.069
25 /4 917 x 107° —236% 107 0.143
/3 222%x107° —8.61 x 107 0.329
/12 933 x 1071 ~1.14x 107 0.108
/6 7.66 x 107° —1.14 %107 0.101
35 /4 9.40 x 1073 —1.90 x 107* 0.173
/3 1.42x 1074 —429%x 1074 0.353
/12 6.30 x 1077 —6.76 x 1077 0.165
s /6 234 %107 —2.99x 1074 0.165
/4 1.04 x 107 ~1.76 x 1073 0.235
/3 1.00 x 1073 —247 %1073 0.402

from (36) the corresponding reflection coefficients R (see
Table 2) for different values of the output radius a and the
cone angle 26,. One can see that the reflection coefficient
weakly differ from unity in all the cases considered. This
means that the solution in the form of the Bessel function (a
standing wave in the radial dependence) considered in
section 2 is a good approximation for the field in the
truncated cone. Note that it was unclear beforehand what
relation between the amplitudes of the incoming and
outgoing waves [functions Hfi)l , and Hlffl /2] is adequate
to the properties of the open (i.e., truncated) cone.

The calculations presented above show that the ampli-
tudes of the incoming and outgoing waves are virtually
identical for the output radii in the range from zero to 1/10.
We performed calculations not only for the values of the
output aperture presented in Table 2 but also for larger
values. We found that, for A =500 nm, 0, ==/3, and
a ~ /2, the real part of the amplitude reflection coefficient
already strongly differs from unity. Therefore, we can expect
that for a > /2, the fields in the closed and truncated cones
will be substantially different.

Another question, concerning the form of the field in the
truncated cone, is related to the contribution from higher-
order waves to the solution. To estimate the error of the
solution that neglects the higher-order modes, we estimated
the difference between E'© and (1 / s)E_,(O) at the aperture. To
make a rough, knowingly overstated estimate, we took the
fields in the zero-order approximation (which do not contain
the contribution from the Neumann function). We will
consider the average square of this difference divided by the
aperture-averaged square of the field calculated for the cone
as the relative error 6 of the quantities calculated in
section 2:

5:LJ
Ng Jo

One can see from Table 2 that the error is small for small
cone angles 26,. As the angle 0, increases, the error also
increases and achieves 0.3-0.4 for 6, = /3. To calculate
reflection more exactly in this case, the contribution from
higher-order modes should be taken into account in
accordance with the general scheme of calculations outlined
in the beginning of this section [see expressions (19)—(34)].

1 2
Y(p) — ;XB(p)

pdp, Ng = JO W (p)*pdp. (44)

5. Transmission coefficient of a truncated
cone with a subwavelength aperture

The transmission coefficient T of a tapered optical fibre is
of special interest for applications. We define it as the ratio
of the total energy density Po' = P (rou) of the field at
the output of a truncated cone integrated over the spherical
surface r = rqy, 0 < 0 < 0 to the half the integrated total
energy density Py, = (1/2)Py(00) at the cone input. The
factor 1/2 is introduced to take into account the
contribution only from the input wave and to exclude
the reflected wave. We performed calculations for different
values of the output radius ¢ and the angle 0y, in each case
Fout = a/ sin 0.

Figure 3 shows the dependences of the transmission
coefficient 7 of the truncated cone with the dielectric
constant ¢ =2.25 on the wavelength A for the angle
0y =n/6 and a=12.5, 25, 35, and 50 nm. One can see
that, for the specified values of a and 6, the transmission



Concentration of light energy within a cone with a metal coating

937

T
1072
107
107

a = 50 nm

35 nm

25 nm

12.5nm

1079 1 1 1 1 1 1
400 500 600 700 800 900

Figure 3. Dependences of the transmission coefficient 7' of a tapered
fibre on the wavelength A for different values of the output radius ¢ and
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coefficient strongly decreases with increasing A (it is obvious
that short waves are preferable). A decrease in the output
radius a leads to a drastic decrease in the transmission
coefficient of the fibre. The largest transmission coefficient is
obtained for the output radius ¢ = 50 nm and is equal to
0.047 and 0.0092 at A = 400 and 500 nm, respectively. As the
radius was decreases by half (¢« = 25 nm), the transmission
coefficient substantially decreased down to 2.4 x 10™* and
4.1 x 107> at the same wavelengths, respectively.

The results of similar calculations of the dependence of
the transmission coefficient 7 on A for the angle 0, = n/3
are presented in Fig. 4. Comparison of Figs 3 and 4 shows
that the value of T drastically increases with increasing angle
0. In particular, for = 50 nm and 1 = 400 and 500 nm, we
have T'=0.56 and 0.28, respectively for 0, ==n/3 For
a =25 nm, we obtain T = 0.059 and 0.027 for the same m=
wavelengths, respectively. Therefore, for the same radius of
the output aperture, the transmission of a tapered fibre
drastically increases compared to the case of 6, = /6. Note
that a decrease in the transmission coefficient with decreas-
ing output aperture and the inclination angle of the
waveguide walls was pointed out earlier [9, 15]. However,
this was reliably established only when the transmission of
light in the waveguide was rather small. Our study based on
the model giving an exact solution allowed us to analyse the
case of higher transmission coefficients and to establish the
behaviour of the transmission coefficient 7" for a broad
range of geometrical parameters in the entire optical wave-
length range.

6. Conclusions

We have analysed the characteristics of light fields in a
metallised cone. The dependences of the output radiation
intensity on the geometrical parameters of the system are
plotted for different variants for the subwavelength output
aperture. The effects of reflection of light from the
subwavelength aperture of a truncated cone have been
considered for the first time. The transmission coefficients
of the system under study have been calculated in the
optical wavelength range. Our calculations have shown that
for 2 =400 nm, the transmission coefficient can achieve
~0.05 — 0.5 for the output apertures 2a ~ 50 — 100 nm and
large cone angles (20, = 2n/3).

It follows from the preliminary analysis that, to increase
the output radiation intensity in practice, it is necessary to
improve the input characteristics of the field (to provide the
initially converging wavefront and the symmetric transverse
structure) and to reduce reflection at the output with the
help of an antireflection coating or some other matching of
the output aperture with the characteristics of the free space.
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