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Stability and self-stabilisation of single-frequency lasing

in a semiconductor laser

D.V. Batrak, A.P. Bogatov, F.F. Kamenets

Abstract. The problem of stability of single-frequency lasing
is considered using a model including one lasing mode and two
nearest subthreshold modes. It is shown that, the parametric
interaction of the laser and subthreshold modes, due to the
electron concentration beats at the intermode frequency, can
cause the self-stabilisation of the single-frequency lasing
regime, in which the laser frequency detuning with respect to
the spectral gain maximum can exceed the mode interval, and
spectral hysteresis can be observed.
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1. Introduction

The emission spectrum of a semiconductor laser is one of its
main characteristics determining to a great extent the
possibilities of applications of the laser. The emission
spectrum may contain a few excited longitudinal modes
whose number depends on the laser resonator design. As a
rule, this is explained by the fact that the spectral gain band
is many times broader than the mode interval. However,
because of the quasi-homogeneous broadening of the gain
line of a semiconductor [1—3], a strong competition occurs
between different spectral emission components represent-
ing different longitudinal modes. This competition favours
single-frequency lasing at one longitudinal mode of the
resonator.

Along with the above-mentioned factors, the emission
spectrum of a laser depends on the optical nonlinearity of
the laser medium caused by the saturation effect. This
mechanism is fundamental for all lasers. A consideration
of this nonlinearity leads to the relation between the
amplitudes of fields at different frequencies, which has
been studied already in early papers on gas and solid-state
lasers [4—6]. As for semiconductor lasers, this optical
nonlinearity has a specific feature, which is manifested as
oscillations in the carrier concentration caused by the total
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emission intensity beats at the intermode frequency. This
mechanism was first considered in paper [7] and then was
used to describe the interaction between the waves (see
Refs [8—13] and references therein).

The results obtained in these earlier papers explained the
behaviour of a semiconductor laser with an external
resonator in which the intensity beat frequency was not
much higher than the inverse interband relaxation time of
carriers. However, attempts to interpret experimental data
on the formation of the emission spectrum in a laser with a
resonator formed by crystal facets (intrinsic resonator)
encountered certain difficulties because of the unsatisfactory
reproducibility and ambiguity of the data.

In the case of a laser with an intrinsic resonator, the
efficiency of interaction between the modes through inver-
sion beats decreases by more than two orders of magnitude
compared to the case of an external resonator. It is by this
factor that the intermode beat frequency exceeds the inverse
interband relaxation time. However, the fact itself that the
beat frequency is much higher than the inverse relaxation
time does not mean that this mechanism is insignificant in
the formation of the emission spectrum. The induced
nonlinear gain should be compared with the gain deficit
for subthreshold modes. We will show below that these
quantities are comparable already at a moderate intensity of
lasing. Therefore, this mechanism remains one of the basic
mechanisms in the case of lasers with an intrinsic resonator
as well.

The difficulties encountered in the interpretation of
experimental data are probably caused by small absolute
gain deficits for subthreshold modes, resulting in a signifi-
cant role of another factor, namely, a random spectral
selectivity of the resonator. It is well known [14—17] that the
presence of an optical inhomogeneity along the resonator
axis results in the modulation of the envelope of the effective
amplification for longitudinal modes. Because this modu-
lation depends on the position of inhomogeneities and their
amplitude, which are random, this modulation of the
spectral curve is also random. It can provide the preferable
lasing at some mode if the gain for this mode increases. In
this way, a random selectivity of the resonator emerges. The
gain deficiencies for subthreshold modes nearest to the
lasing mode also become random quantities. Their values
can strongly differ for different samples.

Advances in the modern technology of fabrication of
heterolasers allow us to hope that the number of techno-
logical imperfections of modern semiconductor lasers is
small enough for the random selectivity of the laser
resonator not to be its dominating property. In this
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connection, it is important at present to analyse the stability
of the single-frequency regime of a semiconductor laser in a
model including fundamental physical mechanisms, in
particular, the gain saturation and dynamic inversion
oscillations caused by intensity beats. The presence of
such oscillations is a fundamental property of the laser
system. Such studies are also urgent because of practical
applications of tunable single-frequency lasers, for example,
in optical communications and laser spectroscopy. Although
analysis performed in this paper has a general character, it
nevertheless first of all can be applied to InGaAs/AlGaAs/
GaAs and InGaAsP/AlInGaAsP/InP heterolasers emitting
in the visible and IR spectral regions and having the best
emission properties.

2. System of equations for coupled modes

Within the framework of a semiclassical approach, which
we will use in the paper, the interaction of a semiconductor
active medium with an electromagnetic field is described in
terms of the permittivity. We assume that the field in the
laser satisfies the scalar wave equation written in the form

2

1
V2E(r, 1) *Cjw[

EE(r,1)] =0, (1

where & = &(r) is the permittivity operator of the medium.
The solution of this equation corresponding to the

single-frequency regime is written in the form

Ey(r, t) = Re[Coe ™ u(x, ) (F P + F_e )],
2

0<z<L,

where C is the real quantity characterising the amplitude
of the laser-mode field; u(x, y) is the transverse distribution
of the field, which is assumed real; f, is the complex
propagation constant [u(x,y) and f, are described in
Appendix]; L is the laser diode length; and the z axis is
directed along the resonator axis. The constant coefficients
F, and F_ characterise the relation between amplitudes of
the waves propagating in the positive and negative
directions along the z axis. Taking into account the
boundary conditions at the laser facets, we obtain
F_/F_=r. We determine the absolute values of these
coefficients by the normalisation condition

24y =1

1 - .
e LCR Gy
V‘dl’

(integration is performed over the volume V,, of the active
region).

The boundary conditions for z=0,L lead to the
following expressions for the real and imaginary parts of fiy:

nk arg(rr)

By =7 - 3

1
ﬁ{,’:iln\rlrﬂ, 4

where r|, r, are the amplitude reflection coefficients of the
laser facets and k is a natural number. Equation (3)

determines the mode frequencies of the resonator, while
equation (4) is the condition of the equality of the gain and
losses.

Let us analyse the stability of lasing at a given mode. For
this purpose, we will study the response of our system to the
appearance of small additions to the field at other modes
(for example, due to spontaneous emission). In single-
frequency lasers, all the transverse modes, except the lasing
mode, are usually strongly suppressed. Therefore, we will
consider only longitudinal modes. The transverse structure
of the field in this case weakly depends on the mode number
(and the pump level), and its variations can be neglected
here by representing the field in the laser in the form

E(r,1) = Re[u(x,) 3 Cul0)e™'V,,(2)] 5)

m

where C,,(?) is the slow complex amplitude of the mth mode
field and V,,(z) is the longitudinal distribution of the mth
mode field. We will read the mode number m from the
lasing mode, for which we assume that Cy(7) = C, = const.
The value of C, is assumed real (which can be always
obtained by a proper choice of the time reading). We also
assume that |C,,(7)] < Cy for m # 0, and all the expressions
below will be written in the linear approximation in C,,().
The interference of the fields of the laser and side modes
leads to the appearance of the radiation intensity beats at
frequencies that are multiples to the mode interval

— 1

E> ~ S [u(x. )P { G 1V

—%2:[CbC;Vb@)V;Qﬁé@“’MW4—ccl}. (6)
m#0

As a result, due to the saturation effect, a variable addition
ON(r,t) appears to the carrier concentration in the active
laser region and the corresponding addition to the complex
permittivity

de(r,t) = (;1—;8N(r, 1). (7)

The expression for ON(r,f) can be obtained using the
balance equation for the carrier concentration
G(N)cnE?

2T =0, (8)

V2N
# + 4nthay

N+
T

where t is the carrier lifetime caused by spontaneous
recombination; u is the diffusion coefficient; G(N) is the
material gain of the medium; J is the term describing pump;
and the term proportional to E? corresponds to stimulated
transitions. Let us represent N(r,t) and G(N) as a sum of
static and dynamic components

N(r,t) = Ny(r) + dN(r, 1),
)
G(N) = G(Ny) + (gTi)NfN 3N(r,1).

By substituting (9) into equation (8) and separating static
and dynamic terms, we obtain two equations



Stability and self-stabilisation of single-frequency lasing

943

N, G(Ny)cnE?
No ¢ OWolenks (10)
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SN — VN = — =0
- Tegr (1) " 8mhay )
< [CoCr Vo (2)Vi(2)e ™) + e, (11)

m#0

where 1.(r) is the effective lifetime of injected carriers
taking into account stimulated transitions
11 <6G> nE}
=-+| == :
Tr(r) T ON ) oy, 4nhay

Equation (10), together with (2) and equations for u(x, y)
[see (1) in Appendix] allows us to find the static distribution
of the carrier concentration Ny(r) and the amplitude C, of
the lasing mode. By substituting Ny(r) into (11) and taking
into account the slow variation of amplitudes C,, compared
to the intermode beat frequency, we can find SN(r, t) in the
form

ON(r, 1) =Y [ fnlwy — 00, 1) CoCre @™ + e, (12)
m#0
where the functions f,,(r) are determined by the equation

G(Ny)en
8mhwy

h%rw@+ —wﬂmm:— u(x, )

Tegr(r)

V(2 Vi (2): (12a)
Although the functions Ny(r) and f,,(r) cannot be found
analytically in the general case, they can be easily calculated
numerically in all practically important cases.

Note that the vector r in equations (8), (10), and (11)
represents only two coordinates: the transverse coordinate y
in the p — n junction plane and the longitudinal coordinate
z. The dependence of the concentration N on the coordinate
x (perpendicular to the structure layers) for modern lasers is
described by a piecewise constant function, which is nonzero
only within the active layer.

Note also that equation (11) is valid if the beat frequency
w,, — w,y does not exceed the homogeneous width of the gain
line of a semiconductor. This is the case when the resonator
length L is not too small. For example, when the homoge-
neous width is ~ 10 meV, the value of L should be =20 pm.

The time-oscillating addition ¢ to the electric induction
produces the field components at the frequencies of the
longitudinal modes adjacent to the lasing mode. Therefore,
in the presence of a strong field of the lasing mode the
interaction appears between these longitudinal modes. By
using expressions (12) and (7) and separating components at
different frequencies in equation (1) for the field, we can
obtain the system of equations for the complex amplitudes
of individual modes. This system, in the approximation used
here (in the first order in C,,), is decomposed into pairs of
equations describing modes that are located at equal
distances from the different sides of the lasing mode. As
shown in Appendix, these equations can be written in the
form (m > 0)

. c
Con(t) + =— A, Cot
(1) 5 A
N C *
+ (O( + 1) ﬁXm[AmCm([) + BmC—m(l)] = 03
or
i ¢ ] . (13)
C—m(t) + ﬁAfm + 1K, C—m(t)
ar
. c * * *
+(_<x + 1) ﬁXm[A—mC—m(t) + B—mC/n(t)} = 07
or
where
1 1 . e
Xm = &0 Q. E; Q, =, —wy~ mﬁgrL;

A4,, and 4_,, are the gain deficits for the mth and —mth
modes; k,, is the deviation from the equidistant location of
the modes (see Fig. 1); 7, is the group modal refractive
index; « is the so-called amplitude—phase coupling
coefficient (all these parameters are defined in Appendix);
g = L7! ln(|r1r2|_l) is the threshold mode gain;
1 :chg/(8rc) is the lasing mode intensity in the active
region; and Iy = hwy/[(0G/ON)t] is the characteristic
intensity of the saturation effect. By using (10), we can
show that the value of I/I, is related to the pump current J
by the approximate expression [/l ~n0, where
0= [(N/G)@G/ON)]|y_y, is a coefficient of the order of
unity and n = J/Jy, — 1 is the relative excess of the pump
current over its threshold value. The dimensionless complex
coefficients 4,, and B,, of the order of unity characterise the
spatial overlap of the field and the carrier concentration
beats and are defined in Appendix.

g, 0
K Q Q 1 1
o4 1 2 =—1In
| L |ryry]
&o ]
A / | A
|
)
e
g(w) [
|
|
o' W, W) ' w

Figure 1. Position of the working point of a laser at the lasing threshold.
g(w): frequency dependence of the mode gain; wy: lasing frequency; w,:
maximum gain frequency; dw: lasing frequency detuning from the
maximum gain frequency; w and w’_;: frequencies of the subthreshold
modes nearest to the lasing frequency in the blue and red regions,
respectively; go: threshold gain.

Equations (13) are similar to equations used earlier in
Refs [11-13] and describe the amplitudes of coupled
oscillations. The coupling between the oscillations [terms
proportional to y,, in system (13)] appeared due to the
oscillations of the electron concentration. The frequency of
these oscillations can exceed the characteristic time response
of the system determined by the value of t ' by two orders
of magnitude and more, however, they cannot be neglected.
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As we will show below, the value of yx,, can be of the same
order of magnitude as 4,,, and 4_,, already at moderate
radiation intensities.

The general solution of system (13) has the form

1
Cm(l) _ . " Pml
(ij(l) > = O ((X _ 1)%/71 —m ¢
é'm + ém
(@ A+ 1) 2B
+ Q_m gm + ém ep*’”’, (14)
1

where Q:tm are constants; p.,, = (C/Zﬁgr)(nm + ém); and

1 ity i .
N = — E |:Am + Afm + % + aXm(Am - Afm)

+ 1 (A + Aim)] ;

1

Cm =5 |:A7m — Ay +

2inge Iy,
2 >

- aXm(Am + Ajm) (15)

+ iXm(Ajm - Am):| 5

« 712
& = () = (14 27) ()" BB ] .
The sign of the square root in the expression for &, is
chosen so that sign[Re(&,,)] = sign(4_,, — 4,,,).
Similarly to individual modes, we can introduce for a
coupled pair of modes the effective gain deficits
27,
A% = == Re(py)- (16)
Oscillation at the lasing mode will be stable if additions
to the field at other modes will decay with time, i.e., when
the condition
455, >0 (17)
is fulfilled for each pair of the modes. The fulfilment of
these conditions can be readily verified by direct calcu-
lations by varying the laser system parameters, including
the pump current and detuning of the longitudinal
resonance of the lasing mode from the spectral maximum
of the material gain band.

3. Analysis of the solution

Consider a ridge semiconductor laser with a quantum-well
active layer. We will use a simplified model in which the
transverse distribution of the field wu(x,y) in the active
region is described by the expression

Ty D D
u(y)NCOSB, -5 Srs< 5. (18)
where D is the effective ridge width. We assume that the
static electron concentration Ny(r) in the ridge is constant
and consider the case of a high-Q resonator (rj, = 1).
Within the framework of the assumptions made above, the
coefficients A4,, and B,, are described by the expressions

11 in (2m\*]"!
A, =A%, ~t |1+ 2
m —m 2+4|: +Qm<D>:|

(19)

Here, /, is the radiation wavelength in vacuum and 7 is the
modal refractive index.

We will find now the gain deficits 4,, and 4_,, for the
subthreshold modes. Lasing occurs near the frequency at
which the maximum gain is achieved in the medium.
Consider the case when the medium in which laser radiation
propagates is ‘perfect’ (i.e., does not contain inhomogenei-
ties). Then, the modal refractive index and the mode gain
are the smooth functions of the frequency. The modal gain
function near its maximum can be very accurately approxi-
mated by a second-degree polynomial. The gain deficit A of
the subthreshold mode at the frequency w is

Aw) = A(w,) + p(0 — )%, (20)

where w, is the position of the maximum of the mode gain

curve and g(w); y = féazg/awz is the parameter determin-
ing its curvature [the function g(w) is determined in
Appendix].

Taking into account that the gain deficit for the lasing
mode should be zero and neglecting the non-equidistant
location of the modes in this expression, we obtain the
expression for parameters 4,, and 4_,,:

Ay = A(CUO + Qm) = :l:’VQm(ZSw + Qm)? (21
where dw = wy — w, is the detuning of the lasing frequency
from the maximum of the gain band. The quantities 4.,
are explained qualitatively in the scheme in Fig. 1.

The parameter k,, in the ‘perfect’ case under study has

the form
Q, (;Lz ﬁ)
g 0 YDA

Now we have all the initial data to find the effective gain
deficits 45" =A"(Q,,, I, 3w) and to analyse the stability of
single-frequency lasing.

Consider first the case of low radiation intensities, when
the terms proportional to y,, in system (13) are small
compared to 4,, and 4_,,. This takes place when I < I,
where Iy = o~ '(Ag/gy)Qtl, (for a2 1) and Ag = yQ? is the
modal gain deficit for the first pair of modes at dw = 0, i.e.,
when the laser emission is exactly tuned to the spectral
maximum of the material gain (here, Q is the mode interval).
The region of values of the variables ©,, and dw in this case
is shown in Fig. 2a, where 45"(Q,,,1,8w) > 0; the region is
shaded and bounded by the beams dw = +Q,,/2. The solid
horizontal segments show the intersections of the region
with the straight lines Q,, = mQ = mmnc/(fig L), each of the
segments determining the interval of values of dw where the
stability condition (17) is satisfied for the given m. The
intersection of these intervals form the stability region for
single-frequency lasing for the given intensity 7. In the case

(22)

Km =
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Figure 2. The case of low laser radiation intensities (/ < I), when the
interaction between the modes can be neglected: stable lasing region (a)
and temperature dependences of the detuning 6w (b) and the lasing
wavelength 4, (c).

under study (7 < Iy), the stability region is the interval
(—9Q/2;Q/2) whose width is equal to the mode interval. This
is a simple and quite expected result, whose validity can be
confirmed by Fig. 1 corresponding to a linear case.

Consider the process of continuous tuning of the lasing
frequency @, (or the laser wavelength /,) by varying
temperature 7 under the conditions considered above. In
principle, other external parameters, for example, pressure
or the pump current can be used instead of temperature. We
will assume that the lasing frequency w(7}) at temperature
T, exactly coincides with the position w, of the gain
maximum, i.e., dw(7Ty) =0 and the corresponding lasing
wavelength is 1g = 2rnc/w,. We vary the temperature by 87
near the point 7)), which is located, for example, near 300 K.
This leads to the temperature detuning dw and the corre-
sponding change in the lasing wavelength by &1y =
4o(To + 8T) — 2o(Tp).

The maximum w, of the gain band and longitudinal
mode frequencies m,, (including the lasing mode) shift with
temperature at different rates (0w,/0T < 0w,/0T < 0).
Therefore, the detuning dw also changes, and when it
achieves the boundary of the stability region, lasing is
switched to another mode. The lasing frequency w, can
be continuously tuned only when the detuning dw remains
within the stability region. The qualitative temperature
dependence of the detuning dw is shown in Fig. 2b. The
calculated temperature dependence of the change 8/, in the
lasing wavelength is shown in Fig. 2c. Hereafter, we use the
following typical values of the laser parameters: L = 1 mm,
D=3um, ri=1, rn=09, 1,=098pum, 7n=34,
fig =37 a=3 Ag=3x10"cem™', 270%i/0)° = 2,
1=10"s, the diffusion length Ap= VHT = 2.2 um,
0=1,0),/0T =037 nm K', and 84,/0T = 0.06 nm K"

Consider now the laser frequency tuning in the case
I~ I, i.e., when the nonlinear interaction of the modes
becomes significant. For the values of the parameters
presented above, we have [, = 0.3, which corresponds
to the pump exceeding the lasing threshold by 30 %. The
stability region for single-frequency lasing found by the
method described above is shown in Fig. 3a. A comparison
of these data with the data presented in Fig. 2a shows that
the stability region is shifted to the red and broadened. The
temperature dependence of dw is qualitatively shown in Fig.
3b, and the calculated temperature dependence of the lasing
wavelength for this case is presented in Fig. 3c. The stability
region of single-frequency lasing was (—0.98Q2;0.23Q), i.e.,
its width is Aw ~ 1.21Q for the above laser parameters.

1
-Q/20 Q/2 ¥ 0 0.3 AT/K
C

a

Figure 3. Behaviour of the laser system at the radiation intensity 7 of the
order of the characteristic intensity /; (calculation was performed for
I = I)): stable lasing region (a) and temperature dependences of the
detuning dw (b) and the lasing wavelength 4, (c).

This new result follows exclusively from the nonlinear
interaction of the modes and the deformation of the spectral
contour of the effective gain due to parametric process via
the carrier concentration oscillations at the intermode
frequency. The increase in the detuning interval Aw, in
which the mode switching is absent, with increasing the laser
output power means an increase in the stability of single-
frequency lasing, which can be called the self-stabilisation of
the single-frequency regime. This was observed earlier in
Refs [18, 19] for a laser with an external resonator. Some
estimates of this effect were made in Ref. [19]. The increase
in the tuning region Aw can be treated qualitatively as
additional absorption at optical frequencies nearest to the
lasing mode induced by a ‘strong’ laser field (due to the
parametric process). As a result, the influence of random
fluctuations of the laser parameters (for example, temper-
ature, pump current, and carrier concentration) on the mode
switching can decrease with increasing laser power, i.e., the
self-stabilisation of the single-frequency regime will occur.

Due to the expansion of the stability region, two modes
can enter simultaneously this region at some temperatures,
and single-frequency lasing can occur at any of these modes,
i.e., bistable states appear. The lasing frequency in these
states depends on the prehistory. In this case, the temper-
ature dependence of the lasing frequency exhibits hysteresis
loops, as shown in Figs. 3b,c.

Generally speaking, the radiation intensity also changes
upon frequency tuning. However, these changes can be
neglected upon the determination of the instant of mode
switching (except the case of tuning by varying the pump
current). As for the dependence of the radiation intensity on
the tuning parameter, we note only that this dependence
should also exhibit hysteresis when the width of the stability
region exceeds the mode interval.

As the radiation intensity increases from zero to the
value of the order of [, the width of the stability region
increases, resulting in the effects described above. As the
radiation intensity / further increases, the dependence Aw(7)
becomes more complicated. This is explained by the fact
that pairs of modes with m > 1 begin to affect the position
of the stability region (see Fig. 4). The consideration of all
the properties of the laser system at such intensities is
beyond the scope of this paper. We mention here only two
of them. First, breaks appear in the plot Aw(I) of the
dependence of the width of the stability region for the single-
frequency regime on the radiation intensity (Fig. 5 shows
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-Q/2 0 Q/2 dw

Figure 4. Stable lasing region at the radiation intensity I several times
greater than the characteristic intensity I;, when the influence of the
modes with m > 1 should be taken into account (calculation was
performed for I = 21,).

Aw/Q L
14

1.3 1
1.2 -

1.1+

10 1 1 1 1 1
0 025 050 075 100 I/I.n

Figure 5. Dependence of the stability region width Aw on the radiation
intensity / and the relative excess of the pump over the threshold
n=J/Jn— 1

this dependence for the laser parameters presented above).
Second, under some conditions, cascade mode switching
appears, when, after the loss of the lasing stability at the
initial mode, a mode located outside the stability region is
first excited, and then lasing is switched to the mode located
within this region.

4. Discussion and conclusions

We have shown for the first time that in a semiconductor
laser with a Fabry—Perot resonator formed by laser’s own
facets and a homogeneous active medium, the self-
stabilisation of single-frequency lasing regime can occur.
As a result, a continuous tuning of the laser frequency can
be performed within the interval of detuning from the
spectral maximum of the material gain exceeding the mode
interval. In this case, the single-frequency regime can
exhibit an increased stability with respect to the mode
switching, and a spectrally bistable lasing regime can be
observed.

Such behaviour is explained by the parametric process
caused by optical nonlinearity, resulting in the coupling
between the spectral amplitudes of the fields. We have
considered here the most general case of three optical
frequencies, with the field amplitude at the central frequency

being greater than the amplitudes at two other frequencies
corresponding to the red and blue components. In the
presence of only two fields, one of them weak and another
strong, which corresponds, for example, to the case when
the field of one of the components is suppressed, this process
can be treated as stimulated scattering from the electron
density, as was first performed in Ref. [7]. In the case of two
fields, the nonlinear interaction of the fields is spectrally
asymmetric. The strong field induces additional gain in the
Stokes region of the spectrum and absorption in the ant-
Stokes region. Of course, the interaction of this type is only
a particular case of the theory presented here.

This theory does not use any physical parameters whose
values would be difficult to measure in independent experi-
ments. The parametric coupling between the field
amplitudes via the population inversion is a fundamental
property of a laser system and of the saturation gain effect,
so that its presence in a physical model analysing the
spectrum is a natural and necessary factor.

Note in this connection a number of papers (see, for
example, Refs [20, 21]) in which was stated without proof
that, because the beat frequency € is high compared to the
inverse interband relaxation time (top) ', the interaction
between the modes caused by oscillations of the total carrier
concentration in bands does not play any role due to a small
amplitude of these oscillations. The authors of these papers
considered for this reason instead of interband relaxation of
carriers only their intraband relaxation. The intraband
relaxation time 7; is substantially shorter, so that
Q < (r;)"', and therefore, this relaxation mechanism dom-
inates in the opinion of authors [20, 21]. We believe that
such reasoning is groundless because it is exclusively
intuitive and is not verified quantitatively, as was done
in our paper. A shortening of the relaxation time reduces the
response amplitude simultaneously at all the frequencies, the
time shortening being strongest at lower frequencies, result-
ing in the blue shift of the spectral response. This
circumstance is a basic property of the relaxation system,
which is related to the population inversion or carrier
concentration. In other words, we can consider some
subsystem within the electronic system, which is located
in the energy band corresponding to the homogeneous
width. Carriers in such subsystem can interact with a laser
field, and they are connected with the remaining system by a
shorter intraband relaxation time. In our opinion, the
quantitative result of such an approach will not differ
substantially from the result obtained in our paper, but
is more difficult to obtain.

Another consideration, which allows us to ignore intra-
band relaxation, is that it is difficult to expect the deviation
of the carrier density distribution from the Fermi function
because the Coulomb interaction between carriers forming
this distribution is simultaneously strong and long-range. In
our opinion, there is no conclusive experimental evidence of
the possibility of such deviations at the time scale consid-
ered. Of all the processes of the intraband relaxation of
carriers, which can really take place, we ignored in this
paper only one — ‘the detachment’ of the temperature of
carriers with the Fermi distribution from the crystal lattice
temperature. This process proceeds slower than the estab-
lishment of the Fermi distribution, and its characteristic
time can be ~10713 .

The interaction of the fields, taking into account this
mechanism, was considered in Ref. [22], where it was shown
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that this mechanism introduces only some quantitative
correction. This corresponds to the above conclusion that
a decrease in the relaxation time of the system (subsystem)
does not enhance its response. By concluding the discussion
of the influence of the beats of the total carrier concen-
tration on the interaction between longitudinal modes, we
point out paper [23] in which these beats were directly
observed. Concerning a comparison of our theory with
experiments, we note that one of the manifestations of self-
stabilisation is the presence of a hysteresis loop in the
temperature dependence of the wavelength or the pump
current. Although this was earlier observed in many experi-
ments (see, for example, Ref. [24]), and the characteristic
parameters of the spectral bistability region are quantita-
tively close to the calculated values (see, for example,
Fig. 3), further experiments are required to confirm a
complete coincidence between the theory and experiment.
To provide an adequate comparison of the theory with
experiment, it is necessary to have high-quality samples with
high optical homogeneity along the resonator axis, thereby
ensuring the absence of a random uncontrollable selectivity.

Note in conclusion that the results presented in Figs 2—
5, which were obtained for certain laser parameters, are of a
quite general type. We have found that the variation in the
laser parameters causes only some quantitative changes in
the results, retaining their qualitative behaviour invariable.
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Appendix

Derivation of the system of equations
for the complex amplitudes of the modes

The transverse distribution of the field u(x,y) in the
resonator and the mode (effective) permittivity &(w,N)
are found as the eigenfunction and the eigenvalue of the
equation

CHCE

(v e
w?

—l—c—z [e(x,y,0,N) —&(w,N)u(x,y) =0 (AD)
with the boundary conditions at the laser facets. The
solution of equation (A1) is a separate problem, which can
be solved, for example, by the method described in
Ref. [17].

The mode gain g(w, N) can be expressed in terms of the
effective ~ permittivity in a standard way as
glo,N)=—Quw/c) Im[é(w,N)]l/z, and the effective refrac-
tive index 7 is 1 = Re[&(w, N)) 7,

Function (2) is the solution of the wave equation (1)
under the condition

Wo

2
Bi = (7) H(0, No), (A2)

which, together with conditions (3) and (4), and equation
(10), determines the laser mode frequency and the threshold
carrier concentration Nj.

By substituting expression (5) for the field into the wave
equation (1), taking into account (23) and the expression
V,u(2) = riePr*4 e 7n* where f,, = B, + mm/L, we obtain
the system of equations for the complex amplitudes of the
modes

1 ( 210t P
E{Mcm(z) + [%S(wm) —/33,} Cm(l)}Vm(Z)

c

1, . de” o
X”(XJ)—C—ze " (o + l)mw [ON(r, 1) Eo(r, 1)), =0, (A3)
where i, = [{(e,)]'; fig, = [+ (@/0w)0], ;  and

o« = (de’/dN)(de" /AN)""; [SN(r, 1)Ey(r, 0, is the compo-
nent of this expression at frequencies near w,,.

The representation of the field in form (5) gives formally
a certain arbitrariness in the choice of frequencies w,,, which
is restricted only by the requirement that the amplitude
C,,(t) should be ‘slow’. The mode interval w,, — w,,_;
changes weakly with m (compared to the interval w,,—
W, itself), so that we can assume for m > 0 that

Wy, = Wg + £,

W_py = Wy — Qma
by determining Q,, from the condition

~ 2 Wy, .
F(wm) - ﬁm = m, - lAma
c c

(A4)

‘8
SR

where 4,, is a real quantity. This equation also determines
the mode gain for the mith mode. For the —mth mode, we
can write

2

i 2gp(—
C_Zm E(wfm) - ﬁzm = w_":/_n_m ( él’é ) Km + A4 7;71) 5 (AS)

w

where 4_,, and x_,, are also real quantities.

The quantities 4,,, 4_,, and k,, introduced this way
coincide with the mode gain deficits and the frequency
asymmetry in the location of the modes with respect to the
lasing mode, respectively. They characterise the spectral
properties of the active medium, including its dispersion,
and of the resonator at the lasing threshold, i.e., they are the
parameters of the laser as a linear system. This is confirmed
by the form of equations obtained for the mode amplitudes.

For the complex frequencies ), of the subthreshold
modes at the lasing threshold, we have

w;n =w, + Qm - i(c/zﬁgr)Am
for the blue spectral region (A6a)
and
wLm = Wy — 'Qm —Km — i(C/Zﬁgr)Afm
for the red spectral region. (A6b)
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The positions of the modes and their gain deficits at the
lasing threshold are shown schematically in Fig. 1.

By neglecting the dependence of the coefficient at C,,()
on m in equation (25), multiplying it by V,,(2)u(x,y), and
integrating over the resonator volume, we obtain, using (12),
(26), and (27), the system (13) with the coefficients 4,, and
B, described by the expressions

_ 8imhay (0, — o) [ Vo(2) V(@) u(x, »)fyn (r)dV

" Gocen 2)u(x, y)Pd ’
0 JWVn(@u(x,y)"dV A7)
B — Sinth(wm - CO()) f VO(Z) Vm(z)[u(x7y)}zf—m(r)dV
" Gocn [Vu(E)u(x, ))dV ’

where n and G, are the refractive index and the character-
istic value of the gain in the active region; integration here
is performed over the active region.
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