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Abstract. Based on the analysis of frequency-nondegenerate
four-photon parametric scattering, the spectral-angular
dependences of the increments of perturbing modes are
obtained in the field of an intense light wave propagating in a
medium with cubic nonlinearity.
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The stability of a high-power light wave with respect to
small angular perturbations in a nonlinear medium was first
considered by Bespalov and Talanov [1]. By now an
extensive literature has appeared devoted to the study of the
spatial instability of light waves in various nonlinear media,
including media with cubic nonlinearity (see Ref. [2] and
references therein). The spatial instability was analysed in
these papers assuming that the frequency @ of small
angular perturbations coincides with the frequency w, of
the high-power wave. The spatial instability of a plane wave
can be described in this case as frequency-degenerate four-
photon parametric scattering (FPS), which enhances weak
angular perturbations in some regions of angles @, whose
values are determined by the radiation intensity [3, 4].

In real situations, small perturbations (noise) can have a
rather broad spatial and frequency spectrum, and in the
general case the problem of instability of a high-power light
wave in a nonlinear medium should take the non-degeneracy
of parametric interaction into account. Because of this, it is
reasonable to analyse the spectral—spatial instability by
considering frequency-nondegenerate FPS, which is one of
the mechanisms of frequency-angular diffusion of radiation
in a nonlinear medium. In this paper, we study, in the linear
approximation in the high-power wave intensity, frequency-
nondegenerate FPS in a self-focusing medium with cubic
nonlinearity. We calculated the intensities of weak perturb-
ing modes and used them to describe the development of the
spectral-angular instability of a high-power wave.
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In the case of frequency-nondegenerate FPS, the non-

linear polarisation P, of a medium in the field of
parametrically interacting waves
E—= 5067““}0[7,‘0") + Z Siefi(mitfkir) (1)
=
can be conveniently written in the form
Py =1 V|EPE = 1, E, b

where & is the amplitude of a high-power wave subjected
to instability; £, are the amplitudes of parametrically
coupled perturbing waves (|€.| < |&|); ko and k. are the
linear wave vectors; w, and w, are the frequencies of the
interacting waves satisfying the relation 2wy, = o, + w; and
43 is the cubic susceptibility of the medium. We will find
nonlinear polarisation using the known dynamic equation
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where 7, is the relaxation time of nonlinearity; ¢, =
ko —ki;Q=wy—w,; and |Q] € wy. In the steady-state
regime (for ¢ > t,), by substituting the solution of equation
(3) into (2), we obtain
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where 60 = Qty and 4, =2ky — k.

We assume that the unstable high-power wave with the
field amplitude &, propagates along the z axis. Then, by
using expression (4), the system of truncated wave equations
for the amplitudes of the interacting modes can be written in
the form

d&, . (2400 5 0. | EGET
=T+ 1), ®
d€t (24100 o na. (EPEL i

& 1’°<1+ia‘50| EtT ) ©

where & = &, exp{iyy 80|2z} is the amplitude of the high-




988

A.A. Afanas’ev, V.M. Volkov

power wave in the medium; y, :anox(3>/n%; ny is the
refractive index of the medium; 4 = k,®> is the linear
phase mismatch; and © < /2 is the angle between the
wave vectors ky and k..

From the solutions of the system of equations (5) and (6)
with symmetric boundary conditions £.(z =0) = &,

5+(Z)_2gr (4/2+1)z |:</1+_11 fi5>effz
. ]0 Iz
_(’L_lwia)e ] 0
£4(2) = 25_;ﬂeflu/z+zo>z Kh i —I&?ié) I
: I() —Iz
_(/L_ll—i—ié)e } ®)

we find the intensities /I, = |€i|2 of the perturbing modes

1,
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defocusing medla (4 < 0). It can be easily shown that the
relation 7, (6) = I_(—0) is satisfied in the case of symmetric
boundary conditions under study.

It follows from equations (9)—(11) that upon frequency-
degenerate FPS (6 = 0) in self-focusing media(xm > 0), the
angle @ corresponding to the maximum increment of
parametric amplification of perturbing components is deter-
mined by the expression [3]

0 = (2Uo/ko)"">. (12)
In defocusing media (X(3> < 0), additions to the wave
vectors of the interacting waves are negative, and spatial
phase matching cannot be achieved at any values of @, so
that no efficient amplification of spatial perturbations
occurs. It follows also from (9) that the parametric coupling
between interacting waves becomes insignificant in the
region of large angles ® > 0, and the expression for I.(z)
takes the form

0

I.(z) = I exp (j:ZIO 5 z). (13)

Figure 1 shows the dependences 7, of the output
intensities of weak waves on the frequency detuning o
for a given length z =2 cm of a nonlinear medium and
Iy=2 em !, calculated from (9) for I, =1 and different
values of 4 = ky@*. These dependences allow us to estimate
the spectral-angular characteristics of the gain of perturbing
components. One can see from Fig. 1 that, for @ = 0,
(4 =4), the maximum gain is achieved for the frequency-

degenerate FSP components (6 = 0). In this case, the profile
of the gain line is not symmetric with respect to 6 = 0 and
has a broader wing in the region of positive detunings
(0 > 0). As the angle © increases, the maximum of the
spectral density of the perturbing modes at the output from
the medium shifts to the point ¢ ~ 1 and their gain increases
considerably. Such a transformation of the gain profile is
caused by the weakening of parametric coupling between the
waves and the enhancement of cross interaction processes.
In particular, in the region of parameters under study and
for 4 = 12, the maximum gain corresponds to 6 = 1 and is
caused by two-wave mixing — the induced scattering of a
high-power wave by the travelling wave of the refractive
index of the medium [5]. In this case, the gain upon two-
wave mixing exceeds the increment of the parametric gain of
weak perturbing modes upon quasi-degenerate FPS.

Therefore, the spectral—spatial distributions of the
intensity of perturbing modes in the field of an intense
light wave propagated through a nonlinear medium repre-
sent a ‘cone’ structure, with the spectrum of frequencies
close to wy, i.e., |y — wy|ty < 1, concentrated in its core. As
the cone angle O increases, the maximum of the spectral
density of the perturbing components shifts to the point
0 = 1 and the spatial distribution of the spectrum becomes
diffuse. The results obtained in the paper clearly demon-
strate the development of the spectral —spatial instability of
intense light waves in cubic focusing media.
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Figure 1. Frequency dependences of the output intensity of weak per-
turbations for different angular perturbing modes.
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