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Precursor pulse and frequency modulation
of quasi-resonance self-induced transparency pulses
in the presence of irreversible relaxation

A.L. Vershinin, A.E. Dmitriev, O.M. Parshkov

Abstract. The quasi-resonance interaction of a laser pulse
with an inhomogeneously broadened quantum transition is
numerically simulated under conditions corresponding to the
experiment on the study of self-induced transparency in
rubidium vapours. It is shown that the experimental shift of
the pulse spectrum is caused by the initial stage of the
formation of a precursor pulse and the influence of
irreversible relaxation. It is found that the precursor pulse
is more stable to the destructive action of relaxation than the
2n pulse and appears even in the case when the input pulse
area is insufficient for the formation of the 2r pulse.
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1. Introduction

The discovery of the effect of self-induced transparency
(SIT) [1] stimulated theoretical and experimental inves-
tigations of the resonance coherent interaction of light with
an ensemble of two-level quantum objects [2—4]. The study
of SIT in a quasi-resonance case, when the central
frequency of the input pulse differs from that of an inho-
mogeneously broadened quantum transition, has required
the consideration of the possible frequency modulation of a
light signal. The theory developed in papers [S—10] has
shown that, if the input pulse area exceeds m, then, as in the
case of an exact resonance, one or several solitons, called 2x
pulses, are formed in the large-distance limit. Optical
solitons have no frequency modulation. However, during
their formation, the central radiation frequency shifts from
the central frequency of a quantum transition. In addition,
the numerical experiment [8] showed that during the
formation of a single 2n pulse from the input pulse with
an area lying in the interval m — 2w, an additional pulse
appears, which was called by the authors of Ref. [§] a
precursor pulse. The precursor pulse propagates faster than
the 2m pulse, it has a strong frequency modulation, and
disappears in the infinite-distance limit. The precursor pulse
was observed experimentally [11], however, its frequency
modulation was not measured.
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In experiment [12], which is recognised as the most
adequate confirmation of the SIT theory, the shift of the
central frequency of the pulse spectrum from the central
frequency of the quantum transition was measured. The aim
of our paper is to show that this frequency shift is caused, on
the one hand, by the formation of a frequency-modulated
precursor pulse and, on the other, by the SIT destruction
due to irreversible relaxation.

2. Basic equations

In experiment [12], radiation from a mercury laser excited
$7Rb vapours in a constant magnetic field whose strength
vector was directed along the propagation of the light pulse.
The Zeeman effect produced a quantum transition with
nondegenerate energy levels, which was resonant with laser
radiation. The lower level of this transition was the ground
level and corresponded to the 5s° Sip (M;=-1/2,
M;=3/2) state, while the upper level corresponded to
5p2P1/2 (M, =1/2, M; =3/2) state, where M; and M, are
the quantum numbers of the projections of the total
electronic and nuclear angular momenta on the direction of
the constant magnetic field. Let us denote these levels by
numbers 1 and 2, respectively. Between these levels, the
552 Syjp (M; = 1/2, M; = 3/2) level was located, which we
denoted by number 3. Under experimental conditions [12],
irreversible relaxation was manifested only as spontaneous
radiative transitions from level 2 to lower-lying levels 3 and
1.

We will choose the right orthonormalised basis ijk of the
laboratory coordinate system xyz so that the vector k is
directed along the direction of laser pulse propagation. Let
us introduce the notation

1 .
P = ﬁ (P12 — 117),712),

where p,j, and p,, are the x and y components of the
vector of the 1-2 transition electric dipole moment; w3; is
the central frequency of the inhomogeneously broadened
line of this transition; 7 is the characteristic time
determining the density of distribution of frequencies w,;
of the 1-2 transitions in atoms according to the expression

gloy) = \/lﬁ exp [ — T7(wy — wzo1)2];

T,; and T»; are the lifetimes of the level 2 for spontaneous
transitions to levels 1 and 3, respectively; and 73, is the
transverse relaxation time for the 1-—2 transition.
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Let us represent the strength of a circularly polarised
electric field used in experiment [11] in the form

E = u(i+ij)a(z, 1) exp {iw(g— tﬂ +c.c., (1)

where pu=h/2¥*Tlp|); a(z,f) and o are the complex
envelope and carrier frequency of the laser pulse, respec-
tively. Because the choice of the frequency w is somewhat
arbitrary, we assume for definiteness that this frequency is
equal to the carrier frequency of the incident laser
radiation.

Let us introduce dimensionless independent variables

t

s=aTlz, w:T—%, (2)
where
2 2
azfnw\p\ N; p=al?c;
ch

N is the total concentration of atoms on levels 1 and 2
before the laser pulse arrival. Let us also introduce the
quantities o (i, k=1, 2)

. 2p . z
0’21:0'12:@/’219?41’ 10 f—z y o Oii = Piis

where p; are the elements of the density matrix in the
Schrodinger representation for a two-level quantum system
simulating a ¥’ Rb atom. By using the first approximation of
the averaging procedure for the density matrix [13] and
truncated Maxwell’s equations, we obtain in the first
approximation [14] of the dispersion theory the system of
equations describing the interaction of a laser pulse with a
medium

da i [ ,
a:ﬁj o exp| — (e — &) ]de,

Oo . .
aiiur ieay = ia(oy — 027) — 705,

3)
Yy 1 . (
6—:)2 = _Elm(aaﬂ) — 002,
0o 1 .
a—LLl:EIm(aO'Zl).

Here, the notation

g0 =T(w3) — ), &= T(wy — o),

T

=2 0=T(Tx' +Ty') “)
21

7
is used, the parameter ¢, characterising the degree of
deviation of the carrier frequency of the incident laser
radiation from the central frequency of the quantum
transition. The terms —yog,, and —doy, in the second and
third equations of system (3) are introduced to take into
account spontaneous transitions in atoms from the level 2
to levels 1 and 3. Due to the presence of these terms, the

system (3) differs from the system of equations, whose
numerical solution predicted the formation of a precursor
pulse [8]. On the other hand, the theory based on system (3)
and the representation of the field in the form (1) allows us
to take into account the frequency modulation of the laser
pulse induced by the medium.

The system (3) was supplemented with the boundary
condition (s = 0)

a(s =0,w) = ay(w) (w=0), ®)

where ay(w) is the envelope of the incident laser pulse. As
the initial conditions (w = 0), the relations

ap(s,w=0)=0, o(s,w=0)=1,
(6)
O'zg(S,LU = 0) =0 (5 = 0))

were used, which correspond to the excited state of the
medium before the laser pulse arrival.

Boundary value problem (3), (5), (6) was solved numeri-
cally using the program presented in paper [15]. The results
of calculations performed with the help of this program well
agree with the analytic results of the SIT theory [1] and the
theory of nonstationary double resonance [16]. The problem
under study at y =9 =0 is equivalent to the well-studied
problem describing SIT. By accompanying each calculation
in which y and 6 are nonzero be the calculation for
y=0=0, we tested the results obtained by comparing
them with the analytic results of the SIT theory.

3. Parameters of the medium and characteristics
of the input pulse

Using the data presented in paper [12], we employed in our
calculations the following values of the parameters of the
resonance quantum transition: |p| = 6.16 electrostatic sys-
tem units, w9 =2.37x10"° s7!, Ty =42 ns, Ty = 84 ns,
and Ty, = 56 ns. The FWHM of the Doppler profile of the
1-2 transition equal to 550 MHz gives T = 0.48 ns. We
find from (4) that y = 8.6 x 10™> and 6 = 1.7 x 1072
For boundary conditions (5), we assume that

“
_7“)0) +exp<—3 w—Tw())] ()

ao(w) :h[exp(w

The dimensionless parameters 4, 7, and wy in (7) determine
the height, duration, and position of the input laser pulse
on the axis w. The pulse (7) has an asymmetric shape (close
to the shape of experimental pulses [12]), with a greater
steepness of the leading edge compared to that of the
trailing edge. The required value of the input pulse area is
provided by fitting the parameter 4. As the parameter 7 is
varied from 10 to 20, the FWHM of the function
lag(w = t/T)|* describing the laser pulse intensity lies
within 5—10 ns. Input pulses of such durations were
used in the experiment [12].

The values of some parameters were taken from section
IV.8.2 in paper [12], where the results of experiments
performed in the quasi-resonance case are reported. For
example, for (w — wzol)/Zn = 0.7 GHz, we obtain from (4)
& = —2.1. According to the data presented in this section,
the value of o' L (where o’ is the linear absorption coefficient
at the laser frequency, and L is the length of a cell
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containing rubidium vapours) was estimated as ~ 7. At the
same time, the maximum concentration of $Rb atoms was
approximately 10"* cm ™, whereas the maximum value of L
was 10 mm. By using the first of the expressions in (2), we
can conclude that the dimensionless distance s correspond-
ing to the experiment is approximately 100.

4. Method for representing
the calculation results

The results of calculations are represented as functions
A (w), o (w), wy(s), and O(s), where

A (w) = |a(w,s = const)|, ¢,(w) = arga(w,s = const)

is the real envelope of a pulse and the phase addition to it
when s is fixed; wy,(s) is the dependence on s of the value of
w at which the envelope 4,(w) achieves the maximum value
Agm; and

smo

O(s) = J

—00

is the dependence of the area under the real envelope on s.
In this case, ©(0) is the area under the real envelope of the
input laser pulse. The pulse duration is characterised by the
dimensionless quantities t; and t,, which are defined as the
distances alone the axis w between the points at which the
function Ay (w)= 0.54,, and sech(1)A4,,, respectively.
When the pulse deformation during its propagation is
insignificant, we consider its velocity v in the coordinate
system ws, which is defined by the expression v=
(dwm/ds)_l. For a 2m pulse, the quantities 1,, A,, and v
are related by the expressions

exp [ — (e — 80)2]
4+ 15¢?

4
Asm =5 U= \/E{‘Qz

T2

00 -1

J ds} . (8)
—00
These expressions are used then to detect the 2 pulse in
numerical experiments. The symbol As denotes below the
dimensional duration of the pulse, which is used in paper
[12], and is defined as the time interval between two points
at which the function A2(w= t/T) achieves half its
maximum value.

Depending on s the shift Av of the centre of the pulse
spectrum with respect to the carrier frequency v = w/2n of
the input radiation is determined by the expression

= 211—Tji AFS(A)dA/JjC

Here, F,(4) is the square of the modulus of the Fourier
transform of the function E/(uT) at the point w — 4/T for
s fixed. If ggAv > 0 (¢9Av < 0), then the central frequency of
the pulse spectrum is shifted away from (toward) the
resonance with respect to the carrier frequency of the input
laser pulse.

Av F,(4)d4. 9

5. Results of calculations

Let us set the parameters 2 = 0.233, 7 = 14, and wy = 40 in
(7), which corresponds to the input pulse with @(0) = 1.1xn
and Ar = 7 ns. The choice of the value of ®@(0) close to 7 is
determined by experimental conditions. Figures la—c show
the functions A (w) and ¢ (w) for s = 100, 240, and 360.
The value s = 100 (see Fig. 1a), as mentioned above, cor-
responds to experimental conditions. For s =100, the
calculation gives Af=19.3 ns, which is almost three
times longer than the input pulse duration, whereas
Av = —12 MHz (the negative sign of Av means that the

4, (107%) @, /rad A, (107%) @, /rad 4, (107%) @, /rad
15 3 3
s =100 s =240 s =360
10 F in 2 b An 2k An
a b W c
5F 4 —-n 1F 4 -7 1F 4 -7
J 1 —3n 1 —3n /L 1 1 -3
0 300 600 w 0 300 600 w 0 300 600 w
Ay @, /rad Ay @, /rad Ay ¢, /rad
0.03 0.03 0.03
s =100 s =240 s =360
0.02 F in 0.02 2 in 0.02 F 2 4n
d e Fa\ f A
0.01 | 1™ 0.01 ] 0.01 -7
! 1
L —3n ! ! —3n L L —3n
0 300 600 w 0 300 600 w 0 300 600 w

Figure 1. Real envelopes A; (thick curves) and phase additions ¢, (thin curves) for different distances s and the input pulse area equal to 1.17 in the

presence (a—c) and absence (d—f) of relaxation processes.
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centre of the pulse spectrum is repulsed from the
resonance). These results are in good agreement with the
experimental data reported in section IV.8.2 of paper [12].
Figures 1b, ¢ present the results of calculations performed
for distances that greatly exceed experimental distances.
Figures 1d—f show the functions 4,(w) and ¢ (w) for the
same values of s as above, but calculated neglecting
relaxation (y = = 0). One can see that the pulse decom-
poses during its propagation into two separate pulses, which
are denoted by numbers 1 and 2 according to the order of
their propagation. The first pulse is substantially weaker
than the second one and propagates at a greater velocity.
The dependences ¢ (w) show that the spectrum of the first
pulse has the frequency modulation (d¢,/dw # 0), whereas
the spectrum of the second pulse has no modulation. As s
increases, the shape and height of the second pulse are
virtually invariable. For s = 360, 7, = 212 and A, = 0.0187
for the second pulse. Figures 2 and 3 show the dependences
O(s) and wy,(s). One can see that the area O(s) approaches
2n at large s. A linear dependence wp,(s) observed for
s> 100 means that the velocity of the second pulse is
constant, and according to this dependence, v = 0.382.
By substituting the above-presented values of 7,, Ay,
and v into (8), we obtain approximate inequalities, which
are fulfilled with the relative error of 1 %. All this suggests
that the second pulse is the 2 pulse. Then, according to
Ref. [8], the first pulse is the precursor pulse. For the
precursor pulse, as follows from the calculation,
Av ~ —100 MHz; however, because of the presence of

O

3 1 1 1 1
0 100 200 300 s

Figure 2. Dependence of the area @ under the real envelope on the
distance s for the input pulse area equal to 1.17.

Wy

600

300

0 100 200 300 s

Figure 3. Dependence of the time position w,, of the maximum of the
real envelope on the distance s for the input pulse area equal to 1.1m.

the 2n pulse without frequency modulation, the train of
two pulses has the frequency shift with a significantly
smaller modulus (Av ~ —90 kHz for s = 240). The precur-
sor pulse, as the 2w pulse, has the symmetric bell-shaped
envelope, however, unlike the 2m pulse, it decays during
propagation even in the absence of relaxation processes.

By comparing Figs 1 b, ¢ with Figs 1 e, f, one can easily
see that, taking into account relaxation for each fixed value
s, the pulse is located on the axis w at the same place where
the precursor pulse is located for the given s in the absence
of relaxation. For example, for s =360 (Figs lc, f), the
abscissas of the tops of these pulses and their durations 7;
are equal to 130 and 40, respectively. For both pulses,
Av ~ —100 MHz. All this suggests that relaxation processes
at large distances suppress the formation of the 2m pulse but
allow the formation of the precursor pulse.

At the distance s ~ 100, corresponding to the experi-
mental conditions [12], the process of transformation of the
laser pulse to the precursor pulse is still in the initial stage.
This follows from a small shift (|Av| =12 MHz) of the
central frequency of the pulse spectrum compared to a
similar shift (JAv| ~ 100 MHz) for the precursor. A compa-
rison shows that, for s being fixed, the pulse intensity in the
presence of relaxation is approximately half as much as for
the precursor pulse in the absence of relaxation. This means
that relaxation processes result in an increase in the decay
rate of the precursor pulse during its propagation.

Let us present the results of calculations for the
parameters in (7) h=0.181, t =14, and w, = 40, corre-
sponding to @(0) = 0.9t and Az =7 ns. It is known [1, §]
that for such a value of @(0) the 2 pulse cannot be formed
even in the absence of relaxation. The calculation in the
presence of relaxation and s= 100 gave the value Av =
—17 MHz, which lies in the region of experimentally
observed values [12]. Figure 4 presents the functions
Ay(w) for s = 360 in the presence and absence of relaxation.
The values of wy,(s), Az, and Av for both pulses are virtually
the same, and Av ~ —100 MHz. The position of these pulses
on the axis w is the same as for the precursor pulse in
Fig. 1f. This means that the precursor pulse also appears for
0(0) < m, and this pulse is responsible for the frequency
shift observed in experiments. Note that the calculations
performed in paper [8] predicted the appearance of the
precursor pulse only when the condition n© < @(0) < 2w was
fulfilled.

4,107 |

0 100 200 w

Figure 4. Dependences of the real envelope A4 at the distance s = 360 on
w for the input pulse area equal to 0.97 in the presence (/) and absence
(2) of relaxation processes.
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Our calculations showed that the qualitative features of
the evolution of the input pulse preserved when its duration
At was further decreased. However, the frequency-shift
magnitude increases. Thus, for @)= 1.1t and Ar=
5ns, we have Av=-20 MHz at the distance s = 100.
An increase in the input pulse area results in a decrease
in |Av|. For example, for ©(0) = 1.4n and Az =5 ns, the
calculation gives Av = —5.5 MHz for s = 100. The decrease
in |Av| is qualitatively explained by the fact that self-induced
transparency is not efficiently enough suppressed by relax-
ation processes with increasing ©(0).

Note that the precursor appears within a rather broad
range of variations of ©@(0). Figure 5 shows the dependences
Ay(w) for s = 360 for the input pulse with @(0) = 3.51 and
At=5ns (h=1.0 and 7= 10), which were calculated
taking relaxation into account or neglecting it. The first
pulse from the origin in Figs 5a, b is the precursor pulse, for
which Av ~ —100 MHz. The second and third pulses in
Fig. 5a are 2m pulses, the top of the second pulse lying
beyond the figure. The second pulse in Fig. 5b is not a
soliton and decays with distance faster than the precursor
pulse.

Ax B A.\' I
0.12
0.008
0.08
0.004
0.04 -
e 1 1 1 1 1
0 100 200 300 w 0 100 200 300 w
a b

Figure 5. Dependences of the real envelope A4 at the distance s = 360 on
w for the input pulse area equal to 3.5m in the absence (a) and presence
(b) of relaxation processes.

6. Conclusions

Our calculations have shown that upon quasi-equilibrium
interaction of radiation with an inhomogeneously broad-
ened quantum transition, a precursor pulse appears when
the area of @(0) of the input laser pulse can be both smaller
and larger than m. A distinct feature of the precursor pulse
is its strong frequency modulation, which is manifested as
the repulsion of the central frequency of its spectrum from
the resonance (Av~ —100 MHz). In the absence of
relaxation, the precursor pulse decays because of the
Doppler spread of resonance frequencies. When ©(0) < nt
almost total radiation energy is contained at large distances
in the precursor pulse.

When ©(0) > r, the precursor pulse is accompanied by
one or several 2n pulses. Because the 2n pulse in our case is
somewhat more intense than the precursor pulse and has no
frequency modulation, the value of |Ay| for a train of pulses
is considerably lower than that for the precursor pulse. The
presence of even weak influence of relaxation processes (0,
y < 1) results first of all in the suppression of SIT. The
precursor pulse, despite the increase in its decay, contains
the total energy at large distances. At the distance corre-
sponding to the experiment described in section IV.8.2 of
paper [12], the process of transformation of the pulse to the

precursor pulse is in the initial stage. Therefore, Av changes
from —20 to —10 MHz if ©(0) is close to n. As ©(0)
increases, the value of |[Av| decreases because the distance at
which relaxation can suppress SIT increases. Note that
precursor pulses obtained in our calculations have a
symmetric bell-shaped profile, which is similar to that
observed in experiment [11], whereas calculations performed
in paper [8] gave a complicated asymmetric structure of the
precursor envelope containing many peaks.

The results of numerical experiments presented in the
paper are restricted by the only set of numerical values of
the parameters of the resonance medium and a limited range
of the input laser pulse parameters. Therefore, it is interest-
ing to study the dependence of the laser pulse evolution on
the degree of deviation of this pulse from the resonance and
its possible modulation. We plan to continue studies in this
direction.

References

1.  McCall S.L., Hahn E.L. Phys. Rev. Lett., 13, 908 (1967); Phys.

Rev., 183, 457 (1969).

2. Kryukov P.G., Letokhov V.S. Usp. Fiz. Nauk, 99, 169 (1969).

3. Allen A., Eberly J.H. Optical Resonance and Two-Level Atoms
(New York: Wiley, 1975; Moscow: Atomizdat, 1978).

4. Lamb G.L. Jr. Rev. Mod. Phys., 43, 99 (1971).
5. Diels I.C. Phys. Lert. A, 31, 120 (1970).
6.  Matulic L. Opt. Commun., 2. 249 (1970).
7. Matulic L., Eberly J.LH. Phys. Rev. A4, 6, 322 (1972).
8. Diels J.C. Hahn E.L. Phiys. Rev. 4, 8. 1084 (1973).
9.  Deck RT., Lamb G.L. Jr. Phys. Rev. A, 12, 1503 (1975).
mE=10. Kaup DJ. Phys. Rev. A, 16, 704 (1976).

11.  Diels J.C., Hahn E.L. Phys. Rev. A, 10, 2501 (1973).

12.  Slusher R.E., Gibbs H.M. Phys. Rev. A, 5, 1634 (1971).

13.  Butylkin V.S., Kaplan A.E., Khronopulo Yu.G., Yakubovich E.I.
Rezonansnye vzaimodeistviya sveta s veshchestvom (Resonance
Interactions of Light with Matter) (Moscow: Nauka, 1977).

14.  Akhmanov S.A., Khokhlov R.V. Problemy nelineinoi optiki.
1961-1963 (Problems of Nonlinear Optics. 1961-1963) (Moscow:
Izd. Akad. Nauk SSSR, 1965).

M=15. Dmitriev A.E., Vershinin A L., Parshkov O.M., Pisnoi A.L.
Kvantovaya Elcictron., 32, 33 (2002) [ Quantum Electron., 32, 33
(2002)].
16. Dmitriev A.E., Parshkov O.M. Kvantovaya Elektron., 20, 447

(1993) [ Quantum Electron., 23, 385 (1993)].


http://dx.doi.org/10.1070/QE2002v032n01ABEH002122
Administrator
��9�
9	˜ ��˛�' 3	
�(9�9� ��&�' �$
�(01˜ ����' �9��19 ��&�

Administrator
�˘����˘��� ˇ��ˆ�
���' +˛' ˚˚ +����- A ˜
���
� ˇ����
��%& +˛' ˚˚

Administrator
+����-B�

http://dx.doi.org/10.1103/PhysRevLett.18.908
http://dx.doi.org/10.1103/PhysRev.183.457
http://dx.doi.org/10.1103/PhysRev.183.457
OMIS
�#�$%% ��&�' !$(� ˛�&� "#��� ˛�˘� $����' ˜+' )�* +ˇ),ˆ-� "#���

OMIS
˛�˘�' ˜2+' 
�ˆ +ˇ),)-�

http://dx.doi.org/10.1103/RevModPhys.43.99
OMIS
&$�� 2�&� 4
� ˛�˘� ,�	� "#���' ,+' )) +ˇ)ˆˇ-�

http://dx.doi.org/10.1016/0375-9601(70)90177-5
OMIS
�9	%� 4��� "#��� $���� ˚' +˜' ˇˇˇ +ˇ)ˆ�-�

http://dx.doi.org/10.1016/0030-4018(70)90119-7
OMIS
�$��%9# &� )��� -���
��' ˛' �
) +ˇ)ˆ�-�

http://dx.doi.org/10.1103/PhysRevA.8.1084
OMIS
�9	%� 4���' !$(� ˛�&� "#��� ˛�˘� ˚' 2' ˇ�*
 +ˇ)ˆ˚-�

http://dx.doi.org/10.1103/PhysRevA.12.1503
OMIS
�	#0 ;�<�' &$�� 2�&� 4
� "#��� ˛�˘� ˚' ˜˛' ˇ��˚ +ˇ)ˆ�-�

http://dx.doi.org/10.1103/PhysRevA.16.704
OMIS
.$�= ��4� "#��� ˛�˘� ˚' ˜0' ˆ�
 +ˇ)ˆ,-�


