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Transformation of pulses with the help of thin-layer interference

structures

Yu.A. Bobrovnikov, P.N. Gorokhov, A.V. Kozar’

Abstract. The propagation of phase-modulated optical pulses
through thin-layer interference antireflection structures is
studied. An analytic expression relating the parameters of the
incident and reflected pulses is obtained. The time dependence
of the phase modulation of the incident pulse was obtained
using this expression together with experimental data. The
splitting of the pulse after its reflection from the interference
structure into two pulses with different spectra allows the use
of these pulses in compressors to obtain ultrashort pulses with
different carrier frequencies.
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Thin-layer interference structures attract the attention of
researchers first of all because they allow one to control
directly the amplitude—phase characteristics of incident
ultrashort pulses. It is sufficient to mention chirping mirrors
used to compress phase-modulated (PM) pulses [1, 2]. One-
dimensional photonic crystals, which can be also classified
with thin-layer periodic structures, can be used for this
purpose as well [3, 4]. The phase of optical pulses in these
papers was controlled with the help of multilayer structures,
which have unique dispersion properties.

The authors of Ref. [5] studied the interaction of
varying-amplitude waves with antireflection thin-layer struc-
tures, which allow one to control the incident-wave
amplitude. The analytic expression obtained in this paper
for antireflection periodic structures of some types can be
used to analyse the time dependence of the amplitude of
transform-limited pulses. The solution of a similar problem
for such structures in the case of the waves with time-
dependent amplitude and phase is undoubtedly of interest.
Such a problem appears, for example, upon the interaction
of ultrashort PM pulses with periodic structures.

In this paper, we analyse the interaction of such pulses
with a broad class of antireflection structures, which are
known in the literature as thin-layer interference matching
devices (TIMDs). The theory of TIMDs (their amplitude—
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spectral, structural, and invariant properties) was developed
in detail by one of the authors in Refs [6—8]. A TIMD is a
multilayer periodic dielectric structure consisting of alter-
nating layers with low and high refractive indices and having
a total optical thickness D < 1/4 (where 4 is the wavelength
of monochromatic radiation for which the TIMD serves as
an antireflection element). Irrespective of the composition
and optical properties of its layers, a TIMD is equivalent in
the vicinity of the long-wavelength transmission peak to an
antireflection quarter-wave film with the refractive index
n :(nons)l/ 2, where ny and ng are the refractive indices of the
external medium and substrate, respectively. By changing
the relation between the thickness of the layers, the value of
ng can be varied in the range n{ < n, < n3, where n; and n,
(n; < ny) are the refractive indices of the TIMD layers [6].
The theoretical analysis of the interaction of a light pulse
with the TIMD in this case can be reduced to the analysis of
its interaction with an equivalent quarter-wave film. The
pulse reflected from the TIMD is subjected to the most
strong and interesting transformation, which we will study
below.

By neglecting losses and dispersion, we consider the
normal incidence of a plane wave packet on a single-layer
structure. Our analysis is based on the known expression for
the reflection coefficient for a single-layer film
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where ry = (nyg — n)/(ny +n) and ry = (n — ny)/(n + ng) are
the reflection coefficients for the external medium —film and
film —substrate interfaces, respectively; ¢, = 2nnd/A is the
phase thickness of the film; and d is its geometrical
thickness. We assume that the incident-wave amplitude is
normalised to its maximum. Expression (1), which is valid
for monochromatic waves, can be generalised, under certain
conditions considered below, for the waves with time-
dependent amplitudes and phases. Such a generalisation
was performed in paper [5] by representing expression (1) as
a sum of two waves reflected from a film and a substrate
with the phase difference equal to 2¢, = wyAt, where ), is
the average frequency of the wave (carrier frequency);
At = 2nd/c = T/2 is the time delay of the second wave with
respect to the first one; and 7T is the period of oscillations at
the carrier frequency.

By representing the complex amplitude of the incident
wave in the form A(¢) exp[—ip(¢)], where A(?) is the real am-
plitude and ¢(z) is the phase, we obtain, for ry = r; and wyAt
= 7 (the matching condition at the frequency wg) [5], the
expression for the complex amplitude of the reflected wave
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where ¢(1) = @(t) — @(t — Ar) is the additional phase shift

caused by phase modulation. The real part (envelope) of the
reflected wave or PM pulse [Ey(¢)] has the form
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In the absence of phase modulation [¢(f) = const], by
expanding A(t — Af) in a series in powers of Ar (assuming
that such an expansion is possible), we obtain the
expression for the envelope
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which was analysed in detail in Ref. [5]. Recall that ry in
(2)—(4) is the coefficient of reflection not from a film but
from the external medium—equivalent layer interface (with
the refractive index defined above). For a TIMD, it can be
conveniently written in the form ry = (1 — /%)/(14+ /%),
where y =ng/ny [5]. We will assume below that ny = 1.
Note also that expressions (2)—(4) are also valid for a half-
wave filter, for which ny = n, and Ar =T.

Consider now the applicability of the expressions
obtained above. As shown in Ref. [5], expression (4) for
the waves without phase modulation is valid for ¢ > Af (the
time ¢ is measured from the instant of the pulse incidence on
the structure), i.e., for the established interference regime. It
is obvious that the appearance of the discontinuity of the
amplitude A(?) or its derivative at any instant ¢ will result in
the destruction of this regime and its new establishment
during the same time interval. It follows from the calcu-
lation that for really used dielectrics with ng < 3.5, the
inequality ¢ > At can be replaced with high accuracy by a
less strict condition ¢ > 3A¢, which is equivalent to the
condition of a slowly varying amplitude. Similar arguments
are also valid for the time-dependent phase ¢(7). Therefore,
expressions (2)—(4) are valid for comparatively smooth
pulses without sharp variations in phases and amplitudes.

Consider the interaction of PM pulses having Gaussian
{A(r) = exp|—(1/1)*/2]} and  super-Gaussian  {A(7) =
exp|—(7/7)]} shapes of envelopes with a TIMD, assuming
that the phase modulation is quadratic ¢(7) = at> /2, which is
most interesting for applications [9, 10]. Figure 1 shows the
shapes of PM pulses reflected from a film deposited on a
substrate with n, = 3.42, which were calculated by the
spectral method. In both cases, the pulse duration t was
7T, the carrier wavelength was 4 = 1.5 pm; at? = 1 for the
Gaussian pulse, and at? =4 for the super-Gaussian pulse,
and the parameter p = 3. The envelope E; of the reflected
pulses is plotted using expression (3). The results presented in
Fig. 1 are obtained with the help of the Fourier transform of
the incident pulse written in the form E(f)=
A(1) exp[—i(wy? + @(1))]. The temporal profile of the reflected
pulse was written in the form
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where f(w) is the Fourier spectrum of the incident pulse and
r(w) is the coefficient of reflection from the TIMD defined
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Figure 1. Phase-modulated incident (/) and reflected (2) pulses with the
Gaussian (a) and super-Gaussian (b) envelopes. Reflected pulses are
magnified by factor of 7 (a) and 2 (b).

by expression (1). Figure 1 also shows the profiles of
reflected pulses plotted directly by using the expression
E(t) = Eg(t)exp ( — impt). One can see that the temporal
profiles of both pulses almost completely coincide with
those calculated by the spectral method from (5), which
demonstrates the high accuracy of their description by
expressions (3) and (4).

Phase modulation in Fig. la takes place for —1.57
< t < 1.57 (the origin of coordinates is made coincident
with the momentum centre). The envelope is described
within this interval by expression (3) and outside both
by expression (3) for ¢(¢#) = 0 and expression (4), in which
it is sufficient to take only the first term of the expansion.

The analytic expressions obtained above allow one to
determine the development of the phase modulation of PM
pulses. This follows from the fact that information on the
phase modulation for the amplitude (and intensity) in (3) is
preserved in the form of the function ¢(¢). If the envelopes
of the incident and reflected pulses A(f) and Ey (),
respectively, are obtained by correlation methods, then
the phase function ¢(7) can be determined from (3).

In practice the situations are often encountered when
PM pulses have a flat or almost flat top [10]. In the region of
a flat top, A(t) = A(t — At) = A, (in our case, Ay = 1), and it
follows from (3) that the shape of the envelope of the
reflected pulse is determined only by the phase function ¢(z).
This explains an almost linear dependence E,.(f) in the
central part of the reflected pulse (see Fig. 1b). Indeed, for
small values of ¢(f), we can simplify (3), assuming that
cos (1) ~ 1:
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In the case of quadratic phase modulation, ¢(7) = atAt —
0.5x(A1)%, which gives a linear dependence Ey,(¢). The time
in these expressions is measured with respect to the pulse
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centre. When phase modulation is weak, we can use the
expansion of ¢(¢) in a series in powers of Az. Then, we
obtain from (6) the expression for the envelope of the PM
pulse in the region of a constant amplitude
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which is similar to expression (4) for pulses with a constant
phase. When ¢(7) is small, we can set ¢(r) = (de/dr)Az
= dw(t)At, and, using (6) or (7), obtain at once the time
dependence of the frequency modulation dw(#) in the region
of the flat top of the pulse. In the general case, when the
envelopes A(¢7) and E,.(¢) are known, we can obtain directly
from (3) the equation ¢(7) = @(t) — @(t — At) =
F[A(?), Ey(2)] as a function of envelopes, and by solving
numerically this equation, to determine the function ¢(z).
This equation can be reduced to the differential equation,
which is analogous to expression (7), by representing ¢(¢) as
a power series, in which we can retain only the first
expansion terms.

Let us point out also the possibility of practical
applications of pulses transformed in TIMDs. One can
see from Fig. 1 that a pulse reflected from a TIMD is split in
fact into two pulses, one of which mainly contains high-
frequency and another low-frequency components of the
spectrum (Fig. 2a). This allows TIMDs to be used in
compression schemes to obtain compressed pulses with
different carrier frequencies. Figure 2b presents the calcu-
lated shapes of reflected pulses shown in Fig. 1b after their
propagation in a medium with the normal dispersion of the
refractive index n(w). We used the Lorentzian profile of
dispersion, as in paper [4], and the parabolic approximation
of the wave vector k(w) in the vicinity of @y [9]. The
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Figure 2. Spectra of the incident (/) and reflected (2) pulses shown in
Fig. 1b (a), and transformed reflected pulses after compression (doubled)
(b, ©).
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evolution of a pulse propagating in a dispersion medium is
described by the expression [9, 10]

+00
E(t,z) = J Sf(w)r(w) exp[—i(wt — k(w)z)]dw,
where f(w) and r(w) are defined in (5). The value of z was
determined near the point of the maximum pulse com-
pression [10]. Therefore, we used in fact in our calculations
the model of a perfect quadratic compressor.

The left pulse in Fig. 2b was obtained by equating to
zero the low-frequency part of the spectrum of the reflected
pulse shown in Fig. 2a, beginning from w,, the right pulse
was obtained by equating to zero the high-frequency part of
the reflected pulse. Figure 2b shows that such a trans-
formation of the spectrum does not distort noticeably
the shape of compressed pulses. The interesting feature
of these pulses is the dependence of the filling frequency on
a, i.e., on the phase-modulation rate. For example, for the
value of o and characteristics of the incident pulse used in
calculations, the frequency shift Aw with respect to w, for
both pulses was £0.4w,. The duration of the pulses obtained
in this case did not exceed the duration of the compressed
incident pulse.

Therefore, our analysis have shown that TIMDs can be
used both to study the time dependence of the PM pulse
phase and to obtain ultrashort pulses with the properties
mentioned above.
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