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Free and binary rotation of polyatomic molecules™

V.K. Konyukhov

Abstract. A modification of the quantum-mechanical theory
of rotation of polyatomic molecules (binary rotation) is
proposed, which is based on the algebra and representations
of the SO(4) group and allows the introduction of the concept
of parity, as in atomic spectroscopy. It is shown that, if an
asymmetric top molecule performing binary rotation finds
itself in a spatially inhomogeneous electric field, its rotational
levels acquire the additional energy due to the quadrupole
moment. The existence of the rotational states of polyatomic
molecules that cannot transfer to the free rotation state is
predicted. In particular, the spin isomers of a water molecule,
which corresponds to such states, can have different absolute
values of the adsorption energy due to the quadrupole
interaction of the molecule with a surface. The difference in
the adsorption energies allows one to explain qualitatively the
behaviour of the ortho- and para-molecules of water upon
their adsorption on the surface of solids in accordance with
experimental data.

Keywords: polyatomic molecules, rotation of molecules, spin iso-
mers.

1. Introduction

It is true that modern quantum electronics has its origin in
radio spectroscopy—the science studying the radio-fre-
quency spectra of molecules. Radio spectroscopy was
developed in connection with the radio communication
and radiolocation at short wavelengths, when it was found
that signals could not propagate through the atmosphere in
many cases because of absorption by polar gas molecules,
which are always present in the atmosphere.

In this paper, a new variant of the quantum-mechanical
theory of rotation of polyatomic molecules is proposed. The
generally accepted version of the rotational motion of
molecules is presented in monographs [1—-3] and was not
noticeably changed since its publication [4].
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The free rotation model was successfully used to describe
rotating polar molecules in a low-density gas phase. This
model takes into account the interaction of the molecular
rotation with the spin and quadrupole moments of nuclei in
the molecule, with molecular vibrations, and with external
electric and magnetic fields, when these fields can be
assumed spatially homogeneous within the molecule. The
correctness of the theory of free rotation of molecules is con-
firmed by many examples presented in monographs [1—3].

The model of binary rotation of molecules considered in
this paper assumes that a molecule can rotate in the region
of the action of spatially inhomogeneous electromagnetic
fields when the molecular shape and its symmetry are
important. In the free rotation model, the molecular shape
plays no role because external fields are homogeneous, and
the interaction of the molecule with them can be described
with the help of dipole or magnetic moment vectors.

The symmetry of the molecular shape can be taken into
account in the molecular rotation only if the rotation group
acts as a group of transformations in the three-dimensional
physical space [the SO(3)] group because the symmetry
operations of the molecule (rotations, reflections, and
inversion) are realised in this space. Because the SU(2)
quantum group in the free rotation model does not act in
the three-dimensional space, it cannot be used to take the
full molecular shape into account.

In this paper, the F subgroup of the SO(4) group is
found which acts on a three-dimensional sphere like the
SU(2) group, where the rotational wave functions of a
polyatomic molecule are defined, and contains the SO(3)
subgroup. The construction of F is similar to the subgroup
of the proper Lorentz group, if only rotations in the three-
dimensional space are considered.

Strong and spatially inhomogeneous electromagnetic
fields exist near the surface of a condensed phase and
appear in collisions between molecules in gases. The concept
of binary rotation is applicable to a molecule in the state of
physical adsorption on the surface of a solid, when the
molecule interacts with the surface via the potentials of the
multipole expansion (in particular, due to the deformation
of the electron shell), but without the formation of the
electron shell shared by the molecule and surface particles.

The free rotation model for a polyatomic molecule has a
specific feature, which is most distinctly manifested in the
case of an asymmetric top: the rotational Hamiltonian is not
invariant with respect to spatial inversion operation I and its
eigenfunctions cannot be properly transformed under this
operation [5]. For this reason, radiative dipole transitions
between the rotational levels of the molecule with the equal
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quantum numbers of the angular momentum are allowed,
whereas they are forbidden in atomic spectra in accordance
with the Laporte selection rule (parity selection rule).

If a molecule has a quadrupole moment, as, for example,
a water molecule, and is located in a spatially inhomoge-
neous electric field, then the rotational levels acquire an
additional energy in the case of binary rotation. The
electrostatic energy of the quadrupole moment remains
invariable upon the inversion of coordinates because the
quadrupole moment contains the pair products of the
coordinates of charges, and the derivative of the electric
field with respect to the coordinate is even relative to
inversion.

In this case, the theoretical analysis of the molecular
properties involves the use of the SU(2) group in the case of
free rotation and the SO(4) group in the case of binary
rotation. The representations of the SO(4) group and its
so(4) algebra were early used in the problem of a non-
relativistic hydrogen atom [6, 7]. The binary rotation model
allows one to observe analogies between rotations of
polyatomic molecules and a hydrogen atom, in particular,
the role of the Runge—Lentz vector.

There is another reason to analyse again the theoretical
foundations of rotation of polyatomic molecules. This is the
absence of the theoretical explanation of the recently
discovered effect of spin-selective adsorption of water
molecules on the surface of solids [8—10]. It was found
that water para-molecules with the zero nuclear spin retain
in the adsorbed state longer than water ortho-molecules
with the nuclear spin equal to unity. However, nuclear
forces, which act between the molecules and the surface, are
too weak to produce a significant change in the adsorption
energy of spin modifications. In this case, the rotation of
molecules in the adsorbed state plays a dominant role
because the molecular rotation is rigidly coupled with the
nuclear spin due to the Pauli principle.

2. Algebra of the binary and free rotation
operators

The algebra of operators and basis wave functions for
binary molecular rotation can be constructed in two ways.
The first method has been realised in Ref. [11] based on free
rotation, while the second method, which directly uses the
operators and representations of the SO(4) group, is
realised in this paper.

The relation between binary and free rotations can be
conveniently analysed using the so(4) algebra. The so(4)
algebra is six-dimensional and consists of the operators

0 0
Amn = Xp Km — Xm aixna
where Xx,,x, are coordinates of the four-dimensional
Euclidean space; m, n=1, 2, 3, 4. The basis operators
of the algebra should be chosen so that they can be divided
into two sets, each containing three operators:
[A23, A13] = Ay,

[A13,421] = Az, [Ar), A23] = Ay3

and
[A14, Agp] = Ay,

(A4, Ag3] = Azz, [Asz, A14] = Ay3.

The first three operators 4,;, A3, and A3, generate the
so(3) subalgebra and correspond to the components of the
angular momentum vector. Other three operators A4, A4,
and A4 are the components of the Runge—Lentz vector,
but they do not generate a subalgebra [7].

The operators 4,1, A»;, and A;; are the operators of the
angular momentum of binary rotation. The operators A,
Ay, Ay and B;, B,, B; of the angular momentum of free
rotation are formed as the sum and difference of the
operators from the first and second sets. In such a basis,
the so(4) algebra is decomposed in the direct sum of two
subalgebras, which are isomorphic to so(3) [12]:

1 1 !
A = E(A23 +Aw), Ay = Q(AB +Ap), A3 = §(A21 +A43)
and
1 1 1
B = E(,4123 —Ay), By = 5(A13 — Ap), B3 :E(AZI — Ag).

The operators A4;, A,, A3 and B;, B,, B satisfy the
commutation relations for angular momentum operators
and commute with each other. These operators correspond
to the components of the angular momentum in the
laboratory (immobile) and molecular (rotating) coordinate
systems, respectively.

It follows from the relations presented above that the
binary rotation operators can be obtained from free rotation
operators. If the operators in the laboratory and molecular
coordinate systems are added, the part of the operators
related to the Runge— Lentz vector disappears. This method
for obtaining binary rotation operators can be used when
the free rotation operators are represented by differential
expressions in the terms of Euler angles, and the Wigner d-
functions are used as wave functions [11].

The addition of the operators of the laboratory and
molecular coordinates to obtain the binary rotation opera-
tors explains the origin of the term ‘binary rotation’,
because the free rotation operators are related to infinite-
simal rotations of the laboratory and molecular coordinate
systems.

There exist three mutually commuting subgroups ¢, (a),
¢_(b) and e (a)e_(a) =F of the SO(4) group, which
correspond to the subalgebras A4,, 4,, 43 and B;, B,,
B;, as well as to the subalgebra A4,;, 4,3, 43. Here, a, b
are arbitrary three-dimensional vectors, which denote the
elements of the subgroups. In the latter subgroup, trans-
formations are performed successively [13].

3. Parity of binary and free rotation

The concept of two coordinate systems is always used in
problems on the rotation of solids. The first reference
system — laboratory coordinate system, is usually fixed to
the environment, while the second one — the molecular
coordinate system is coupled with a rotating solid. Let us
now stop the rotation of the molecular system at some
instant and fix the orientation of the molecular rectangular
coordinate system (ef, e3, e3) with respect to the laboratory
coordinate system (e, e,, e3), which coincided with the
molecular system at the initial moment. The scalar products
of the basis vectors of the two coordinate systems form the
transition matrix Q from the laboratory to molecular
system, which we call the direct rotation matrix
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(61/,82/,6';) = (61782763)Q’ (1)

It is assumed in (1) that the laboratory system is the
initial system and the molecular system is the final system.
Vice versa, we can assume that the molecular system is the
initial system and the laboratory system is final. Then,

(61762783) = (81/762/7612)Q71'

In this case, the position of a rotating body with respect
to the environment did not change, the mutual orientation
of the coordinate systems remained invariable, but the
inverse matrix Q' appeared in the mathematical descrip-
tion instead of the matrix Q. The question of a choice of the
rotation matrix (direct or inverse), of which of the coor-
dinate systems should be treated as initial or final is beyond
the scope of the situation described. If it is impossible to
make a certain choice, the dualism related to the definition
of the rotation matrix should be taken into account [14].

We will call the operation of the replacement of the
direct Q matrix by the inverse Q! matrix the reversion
operation R. Let us show that the operation R corresponds
to the inversion operation I known in atomic and molecular
spectroscopy. The Q matrix is an element of the SO(3) group
of the three-dimensional real orthogonal matrices. The
inverse element is the transposed Q matrix.

The central object in the proof of the equivalence of the
reversion and inversion operations is a three-dimensional
sphere S; of unit radius in the four-dimensional Euclidean
real space E4. In this case, first, the points of the sphere S;
are in the one-to-one correspondence with the elements of
the SU(2) group [16], second, the sphere S; transforms to
itself upon the transformations of the SO(4) group, and,
third, the representations of the SU(2) and SO(4) groups are
constructed by using the functions and homogeneous
harmonic polynomials on the sphere S; [15].

The unitary unimodular 2 x 2 matrix g€ SU(2) is
specified by two complex numbers u# and v [16]:

u v

-0 U

X2 +1X1

£= )C4—i)€37

7‘ X4 +1x3
| = —ixy)
2

> + o) =1, xj+x3+x3+x =1,

where x4, X3, X,, and x; are coordinates in the E, space, the
end of the radius vector with these coordinates lying on the
sphere S3; the bar denotes complex conjugation. The
inverse matrix g ' is obtained by conjugating the complex
number u and changing the sign of the number v [17]:

X4 — iX3
Xy — ix1

—(x2 +1ixy)
X4 =+ ix3 ’

A3)

Matrix (3), containing the coordinates x4, x3, X5, and x;
differs from matrix (2) in that the coordinates x|, x,, and x;3
of the three-dimensional subspace E; have the opposite sign.
Therefore, the reversion operation R(g) = ¢ ' applied to the
g matrix is equivalent to the reversion operation [ in E; C E4.

The transformation of the operators 4,,, of the so(4)
algebra under the action of the reversion operation R
provides the basis for the classification of free and binary
rotation operators. This operation form, together with the
identical operation, the group of two elements. The group
has two irreducible one-dimensional representations: sym-

metric (even) and antisymmetric (odd). If the operator
contains the coordinate x,, it is odd, if it contains only
coordinates x3, x,, and xj, it is even.

The operators, which are the linear combinations of the
even and odd operators, for example, 4, 4,, A; and By, B,,
Bs, cannot be classified according to its parity because they
cannot be transformed in the representations discussed
above.

In the case of binary rotation, the components A4,;, A3,
and A3 of the angular momentum operator are transformed
in the symmetric representation. The rotational Hamilto-
nian composed of the components of the angular
momentum is transformed in the same representation.

In the case of free rotation, the concept of parity does
not exist. For example, the operators 4, A,, A3 and By, B,,
Bj; are the components of the angular momentum, but they
have no the parity quantum number.

4. Wave functions of free and binary rotation

The basis functions from which the eigenfunctions of the
rotational Hamiltonian are constructed, belong to the
spaces of irreducible representations of the SO(4) group
in the case of binary rotation and of the SU(2) group in the
case of free rotation. This section is devoted to analysis of
the dependence of these functions on the reversion
operation. We consider the relation between homogeneous
harmonic polynomials [SO(4) group] and the Wigner d-
functions [SU(2) group] because both classes of the
functions are defined on the sphere S;.

The basis polynomials of the representation space of the
SO(4) group are specified by three integers kg = k; =k,
[15]. The number k, defines the dimension (ky + 1)* of the
representation space and the power k&, of basis polynomials.
The number k; is interpreted as the quantum number of the
square of the angular momentum. The number k, can be
positive or negative and is the quantum number of the
projection of the angular momentum on the axis Oz of the
orthogonal coordinate system in the subspace E;.

As an example, we consider the normalised basis
polynomials of the ky =2 representation of the SO(4)
group. The polynomials are written in the form of a linear
combination making them the eigenfunctions of the oper-
ator A5;. The polynomials are also the eigenfunctions of the
square operator of the angular momentum L>= A5+
A" + 453 and the inversion operator 1. The prime means
that the operators are Hermitian, i.e., of the form i4,,,,. The
fact that the polynomials are the eigenfunctions of the
operators is reflected in their indices. The first index is k),
the second index is the quantum number of the square
operator, and the third index is the quantum number of the
operator A

(222) = V3(x, +1ix1), (211) = 24/3x4(x; +ixy),

(221) = 2¢/3x3(x5 +ix1), (210) = 2¢/6x,4x3,
(220) = v2(2x3 — x3 — x), (21 = 1) = 2V3x4(x; —ixy),
(22 — 1) = 2¢/3x3(x, — ix;), (200) = 3x3 — x3 — x3 — x7,

(22 —2) =3(x; —ix;)%



Free and binary rotation of polyatomic molecules

1025

It is important that one representation of the SO(4)
group contains polynomials with different quantum num-
bers k; of the square operator of the angular momentum
ko = ky = 0, which distinguishes them from the representa-
tions of the SO(3) and SU(2) groups. Each finite-
dimensional representation of the SO(3) and SU(2) groups
contains polynomials and functions only with one value of
this quantum number.

The behaviour of the basis polynomials of the repre-
sentations of the SO(4) group with respect to the reversion
operation R is determined by the same rule as for the
operators of the so(4) algebra. Note that polynomials with
even values of k; are symmetric and with odd k; are
antisymmetric with respect to the inversion operation I.

It is interesting to analyse the passage from the basis
polynomials of the representations of the SO(4) group to the
matrix elements of the representations of the SU(2) group
by the example of the ky = 2 representation of the SO(4)
group. The first condition is an equal number of basis
polynomials in the k; = 2 representation of the SO(4) group
and the d-functions in the weight j representation of the
SU(2) group. Because the number of elements in the
representation matrix of the SU(2) group is (2j+ 1)°, we
have

. 1
(ko+ 1) =(Q2j+1), j= ko.

Because in the case of free rotation, the representation
weight j (the quantum number of the square of the angular
momentum) is an integer, the expansion of basis poly-
nomials in the d-functions can be performed only when kj is
even. This means that binary rotation can pass to free
rotation and back, when the first index k, of the repre-
sentation of the SO(4) group is even. If k, is odd, the
transition is forbidden. For this reason, the binary rotation
states with odd kg are isolated from free rotation and exist
independently. The first such representation with the min-
imal value ky = 1 is considered in section 7.

The explicit expressions for the d-functions in terms of
polynomials in the case j = 1 can be obtained by comparing
the matrix elements of the representation of weight j =1,
when they are expressed in terms of the complex numbers u
and v, which in turn are expressed [see (2)] via the
coordinates x4, x3, X», and x; on the sphere S;:

2

dyy dyy  diy i —V 2o v
d()] do() d(),] = \/Efll) | u |2 — | v ‘2 —\/EZ/ID =
d—ll d,]() d—l—l U2 2uv uz
U +ic(210)  —c¢((21 = 1) —i(22 — 1)) (22 -2)
o ((211) —i(221)) c%(ZOO) +2¢16(220)  —c (21 = 1) +i(22 - 1)) |,
,(222) ¢ ((211) +1(221)) W —ic (210)

where ¢; = 1/V6; ¢ = 1/3/3; ¥ = ¢1(200) — ¢;¢,(220).

The analysis of the matrix of the j =1 representation
shows that a part of the matrix elements are linear
combinations of the even and odd basis polynomials.
For this reason, the concept of parity does not exist for
these functions. Because neither the free rotation operators
Ay, B, (k=1, 2, 3) nor a greater part of the d-functions
have parity, the concept of parity cannot be used in the case
of free rotation of molecules.

The squares of the operators A and B are identical
(47 = B,

1
A* = —(A33 + ATy + 43)) +Z(A%4 + A} + A7),

&=

Ay Ay + A13As3 + Az Asz = 0.

Upon the action of the operators 4> andB? on all the d-
functions of the representation of the weight j = 1, the same
factor j(j+1) appears. In other words, the (2j+ l)z-fold
degeneracy in the operators 4° and B? appears. The d-
functions can be distinguished with the help of the
eigenvalues of the operators 43 and B;, which commute
with each other and the operators 4> and B*:

1
Ay =5 (A +Az), B :z(Azl — Ag).

N —

The operators A; and B; are the projections of the
angular momentum on the axes Oz and Oz’ of the
laboratory and molecular coordinate systems.

5. Hamiltonians of binary and free rotation

The rotational Hamiltonians of polyatomic molecules
represent a linear combination of the components of the
angular momentum with positive coefficients. The linear
combination contains squared operators of the compo-
nents. The coefficients of the linear combination,
representing rotational constants, are inversely proportional
to the principal inertia moments of a molecule. In the
general case of an asymmetric top, all the three rotational
constants are different. For example, in the case of binary
rotation,

H= XIA% + XzAllé + X3A/1§- 4

The components of the angular momenta can be related
to the rotational constants by different methods [18]. Here
we assign the operator 4,3 of rotation around the axis O'x
to the smallest inertia moment of the molecule (the greatest
71)- The rotational constants y, and y; (y, > y3) correspond
to the two remaining operators.

In the case of binary rotation of symmetric top mole-
cules, a complete set of commuting operators consists of the
rotational Hamiltonian A, the angular momentum operator
L?, the operator of projection on the molecular axis A,
and the inversion (parity) operator I. If the top is asym-
metric, the projection operator is excluded from a complete
set.

In the case of free rotation, the operators By, B,, and B;
should be substituted into (4) instead of the operators 4,3,
A3, and A,; because these operators correspond to
infinitesimal rotations around the axes of the molecular
coordinate system.

Two sets of the angular momentum operators, which are
involved in the problems of free rotation of molecules,
appear due to the rotational invariance [19]. The rotational
invariance is manifested, first, in the degeneracy of the rota-
tional levels in the first lower index of the d-function and,
second, in the description of the top rotation simultaneously
by the operators 4, and B, (k =1, 2, 3). The rotational
Hamiltonian H is constructed using operators Bj, while
operators A, determine the projections of the angular mo-
mentum on the axes of the laboratory coordinate system.
The invariance of the Hamiltonian H with respect to rota-
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tions means that the Hamiltonian commutes with any ro-
tational operator in the laboratory system, including infi-
nitesimal rotations, to which operators 4, correspond [20].

In the case of free rotation, a complete set of commuting
operators, except the rotational Hamiltonian, consists of the
square operators A2 or B” of the angular momentum and
two projection operators on the molecular (Bs) and labo-
ratory (4;) coordinate axes. If a top is asymmetric, the pro-
jection on the molecular quantisation axis is not preserved
(the operator B; does not commute with the Hamiltonian
H) and therefore is excluded from the complete set.

The eigenfunctions of the rotational Hamiltonian for
asymmetric top molecules can be classified over the repre-
sentations of the D, group. The classification is based on the
invariance of the Hamiltonian (4) with respect to the
operation of the D, group containing four elements [21].
The three elements of the group are interpreted as rotations
through the angle m around the coordinate axes in the three-
dimensional space, i.e., D, is a finite-dimensional subgroup
of the SU(2) group. The representations A, B;, B, and B;of
the commutative group are one-dimensional, and their
number coincides with the number of elements of this group.

In the case of binary rotation, the D, group extends due
to the reversion operation R, which is permutable with the
rotational operators. Then D, group contains eight elements
and the same number of one-dimensional representations A,
By, B, By, A', B{, B5, Bj. The prime denotes the repre-
sentations that are symmetric the operation R.

The eigenfunctions of the rotational Hamiltonian are the
linear combinations of the basis functions. The results of
comparison of binary and free rotations for the lower
rotational levels of water molecules are presented in Table 1.

Table 1.
Rotation Rotational level
Level Energy - -1
Binary Free energy / cm
Lo x1+x xpxs (Bl)  dyo (B) 424
Ly x1+x xxy  (B)  dy+dioy (By) 371
Lo 2+ xgxy (Bi)  dyy—dyy (Bj) 238

In the first column of Table 1, the generally accepted
notation of the rotational levels (and of the eigenfunctions
of free rotation) are presented for an oblate asymmetric top
[18], when the rotational constants y; > y, > y3 correspond
to the molecular coordinate axes O'x, O'y, and O’z. In the
second and third columns, the eigenvalues (rotational level
energies, which are common for binary and free rotation)
and the proper polynomials (without the normalising factor)
of the rotational Hamiltonian (4) are given. In the fourth
column, the eigenfunctions of the Hamiltonian are presented
(without the normalising factors) for the case of free
rotation of molecules. The first subscript of the d-functions
is related to one of the degenerate functions. The classifi-
cation of the eigenfunctions of free rotation is performed in
the representations of the D, group. In the last column, the
rotational level energies are presented.

6. Quadrupole interaction of molecules
in the case of binary rotation

A specific feature of binary rotation compared to free
rotation is the appearance of the additional potential energy
of the rotational levels of the molecule due to the

quadrupole moment when the molecule finds itself in a
spatially inhomogeneous electric field. The energy of
quadrupole interaction can be negative or positive, by
increasing or decreasing, respectively, the potential energy
of adsorption of molecule on the surface of a condensed
medium.

Consider the quadrupole interaction between molecules
during their binary rotations by the example of water
molecules, because the quadrupole energy can substantially
affect the process of separation of spin modifications.

The tensor Q,, (a, b = x, y, z) of the quadrupole mo-
mentum of the molecule proves to be diagonal if the
molecule has the spatial symmetry of the electron shell
and the nuclear core. A simple model [22] for the calculation
of a water molecule shows that the nondiagonal elements
(a # b) of the tensor vanish, while the diagonal elements
(a=b) are close to the experimental values [22] Q.. =
5.18 x 1072 esu cmz, 0,, =573 x 1072° esu cmz, and
0..=—6.56 x 1072 esu cm”.

The operator Hy of the interaction of a constant dipole
moment of a molecule with an external electric field is
constructed in the theory of rotation of polyatomic mol-
ecules as follows. The vector d of the dipole moment of the
molecule is defined in the molecular coordinate system and
the electric field vector E is defined in the laboratory
coordinate system, so that the operator Hy = Ed certainly
contains the transformation matrix SO(3, R) from one
system to another. In rotational spectroscopy, this matrix
is called the direction cosine matrix [18].

Numerous spectroscopic observations of free rotation of
molecules show that the SO(3, R) matrix, more exactly its
elements a,,,, acting as operators, correctly describe the
dipole interaction of the molecule with an external electric
field [2, 3]. Here, we assume that, in the case of binary
rotation, the quadrupole interaction of the molecule with an
external field is also determined by the matrix elements of
the SO(3, R) matrix.

The operators of the quadrupole moment are determined
by the decomposition of the symmetric part of the SO(3, R)
matrix into irreducible representations of the SU(2) group of
weights j =0 and j = 2:

> 2 2 2
Too = ay +axn + a3z = 3x3 — X3 — X3 — X1,

Ty =1/2[(ay — ap) +i(ay +ap)] = (x; +ix,)%,

Ty =1/2[(a31 + a3) +i(as + ax)] = 2(x; +1ixy)x3,
(5)
Ty = 1/V6(2a33 — ay — ax) = 1/\/6(2-V§ —x3 - X%),

Ty =1/2[=(as1 + ai3) +i(as + ax3)] = 2(x1 — ix2)x3,

T, =1/2[(an — an) —i(ay +an)] = (x; —ixy)™.

The matrix elements of the operator T are calculated
using the same rules as in the determining of the normalised
factors for the basis polynomials. The coordinates are
expressed in terms of the angular variables and integration
is performed over the surface of the sphere S; [14].

Because only the diagonal components of the quadru-
pole moment tensor of a water molecule are nonzero, only
the operator Ty is used from all operators (5). The operator
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T, is added to the Hamiltonian (4). The matrix elements of
the operator 7|, are found from the proper polynomials of
the rotational Hamiltonian. Because the operator Ty is
symmetric (type A), the initial and final polynomials enter-
ing the matrix element are identical and belong to the same
rotational level of the molecule. Radiative transitions, which
correspond to the operator T, are not considered here.
Table 2 presents the matrix elements of the operator 7
(the last column), which were calculated from the proper
polynomials of the rotational levels from Table 1.

Table 2.

Level Energy [}jcr)cl’}?rfcr)mial Matrix element
(21 B)) YAl és 2V6x4%3 -1/(2v6)

(21 B3) 0+ 2V/6x4x —1/(2V6)

(21 B3) 1o+ 13 2v/6x4x, 1/v6

The quantum numbers k, and k; and the type of
representation in the D5 group are indicated as the indices
of the proper polynomials (the first column). The proper
polynomials of the Hamiltonian (4) presented in the third
column have normalisation factors.

To estimate the quadrupole energy of a water molecule,
we assume that the electric field near a solid is produced by a
single electron and has the spherical symmetry. The quadru-
pole energy U of the molecule for T, = 1 is a function of the
distance r from a nucleus producing the field

U= r% (ZQZZ - ny - Qxx)' (6)

The quadrupole energy of a rotational level is obtained
by multiplying (6) by (7,). The potential energy in the filed
of a negative charge U > 0, so that the rotational levels
(21 B]) and (21 B3) acquire an addition to the adsorption
energy, whereas the adsorption energy for the (21 B3) level
becomes smaller. The value of this addition becomes equal
to the rotational level energy at a distance of 8 A from a
charge on the surface.

7. Isolated lowest states in the case
of binary rotation

It was pointed out in section 4 that polyatomic molecules
have the binary states from which they cannot pass to the
free rotational state. Such transitions are forbidden because
the quantum number of the square of the angular
momentum should be an integer.

The simplest possible state corresponds to the kg =1
representation of the SO(24) group. The dimension of this
representation is (ky + 1) =4 and it contains three basis
polynomials with the quantum number k; =1 and one
polynomial with k; = 0:

(11 B}) = 2x,, (11 B]) = 2x3, (11 B}) = 2x5, (10 4) = 2x,.

Table 3 presents the parameters characterising a water
molecule in the binary rotation state with ky = 1.

The energies of rotational levels coincide with those for a
free molecule with the angular momentum j =0 and j =1,
but the levels with j=1 do not have the three-fold
degeneracy inherent in free rotation.
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Table 3.

Rotational Dipole Matrix
Level Energy level ener- moment

1 element

gy /em component
(11 Bj) ntr o 424 I 4/(3V6)
(11By) n+n 371 I -2/(3V6)
(11 B3) Lt 238 iy ~2/(3V6)
(10 4) 0 0 - 0

The last column of Table 3 contains the matrix element
of the quadrupole interaction operator. All the four levels
with kg =1 are populated by water molecules at room
temperature with the same probability (the level energy is
much lower than k7). Therefore, a total addition to the
energy of all the rotational levels caused by quadrupole
interaction vanishes.

The rotational states can be classified according to their
spin modifications, the (10 4), (11 B;) states corresponding
to para-water and the (11 B3), (11 B{) states corresponding
to ortho-water. The classification of the polynomials to
symmetric (para-water) and antisymmetric (ortho-water) is
performed in accordance with the operation R, which
interchanges the coordinates x of protons (see Table 1).
Para-molecules acquire the quadrupole addition to the
potential adsorption energy due to the (11 B;) level, while
the average adsorption energy for the (11 B3) and (11 By)
levels of water ortho-molecules becomes lower. This exam-
ple shows that the quadrupole energy of rotational levels
can change adsorption of water molecules in the way
required to explain the effect of spin-selective adsorption.

8. Conclusions

We have considered above two approaches to the problem
of rotation of polyatomic molecules. They can be treated as
two representations (in terms of quantum mechanics), in
which free and binary rotations have coincidences and
differences. Some examples are presented below.

The eigenvalues of the rotational Hamiltonian coincide
for the two representations, so that the rotational energy
level diagram is the same for free and binary rotation.
However, the behaviour of the eigenfunctions and proper
polynomials is substantially different. In the case of free
rotation, each rotational level, except the ground-state level,
is degenerate. The multiplicity of the degeneracy is deter-
mined by the quantum number of the angular momentum.
In the case of binary rotation, only one proper polynomial
belongs to each rotational level, if one representation of the
SO(4) group is sufficient for the solution of the problem. If
two or several representations are used, then some rota-
tional levels become degenerate, and the ground rotational
state has the highest degeneracy.

The interaction of a molecule with an external electric
field via the quadrupole moment imparts an additional
energy of different signs to the rotational levels only in the
case of binary rotation. The energy addition due to the
quadrupole moment can be comparable to the rotational
energy of the molecule.

The two representations of the rotation of a polyatomic
molecule can be simply described as follows. In the case of
free rotation, there exist two coordinate systems and the
reversion operation, which transforms the rotational Hamil-
tonian and wave functions from one coordinate system to
another. This transformation does not lead to any con-
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servation law and therefore it is neglected in the common
treatment of rotational motion. In the case of binary
rotation, there exist one coordinate system and one Hamil-
tonian, which is invariant with respect to the reversion
operation, so that the concept of parity can be introduced.
The rotational energy of the molecule and the proper
polynomials of the rotational Hamiltonian can be classified
in the case of binary rotation in the same way as in atomic
spectroscopy.
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