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Atomic photoeffect in the pulsed fields
of a high-order harmonic and the fundamental wave

D.F. Zaretskii, E.A. Nersesov

Abstract. The atomic photoeffect is studied in the pulsed
fields of two coherent waves: a high-order harmonic wave and
the fundamental wave. Expressions are derived for the
intensity of the main peak and satellites in the photoelectron
energy spectrum for an arbitrary delay between the pulses.
The role of inelastic Coulomb rescattering of photoelectrons
from the residual ion in the fundamental wave field, in the
production of satellites is analysed.

Keywords: photoeffect, Coulomb rescattering, high-order harmo-
nics, pulsed fields.

1. Introduction

High-order harmonic generation in high-power laser field —
atom interactions has been adequately studied, both
experimentally and theoretically. From the practical view-
point, the generation of high-order harmonics of pulsed IR
laser radiation makes it possible to produce high-intensity
femtosecond pulses in the near- and far-UV ranges. Two
problems are currently of interest: the measurement of
harmonic formation duration and the measurement of the
relative phase of the fields of two neighbouring harmonics,
which is critical for efficient generation. The former
problem is of general physical significance and the latter
is of practical significance, because its solution is related to
the feasibility of investigation of attosecond high-order
harmonic pulse generation [1].

Because of the extremely short duration of harmonic
generation, the only technique that enables its experimental
evaluation is a cross-correlation experiment [2—4]. The laser
fundamental wave is split into two beams. One of them (the
higher-power beam) is employed as the pump wave to
generate high-order harmonics, which are then directed
to the gas medium. The second, relatively weak, pulse of
the fundamental wave is also directed to the same medium.
Therefore, the atomic photoeffect in the gas medium takes
place in the presence of two pulses: the high-order harmonic
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wave and the fundamental wave. Apart from the main
photoionisation peak, the photoelectron spectrum emerging
in this case also contains satellites, which are separated from
the main peak by a distance equal to the fundamental-wave
photon energy.

The amplitude of the satellites depends, in particular, on
the pulse durations and the time delay between them. This
dependence is exponential, the exponent being determined
by the ratio of pulse durations. The investigation of this
dependence under the conditions when the pulse duration of
the fundamental wave and the time delay are controllable
underlies the cross-correlation method for determining the
high-order harmonic pulse duration.

The dependence of satellite amplitude on the time delay
is commonly described using a phenomenological approach
[2—4]. However, this approach does not permit, in parti-
cular, determining the angular photoelectron distribution in
the satellites. Nor is it possible to determine the pre-
exponential factor as a function of the amplitude and
time delay. Note also that the results of the above-
mentioned papers, wherein pump waves of different inten-
sity were employed for harmonic generation, contradict
each other to a great extent.

In this paper we develop a consistent quantum-mechani-
cal theory of the atomic photoeffect in the fields of two
coherent pulsed waves — the high-order harmonic and
fundamental waves — with an arbitrary time delay between
them.

2. Formulation of the problem. Basic equations

The cross-correlation method for determining the duration
of a high-order harmonic pulse relies on the above-
threshold ionisation of atoms in the fields of two coherent
pulsed waves: the high-order harmonic wave with a
frequency @, and the fundamental wave with a frequency
o (Q, = sw, where s is the harmonic number). The medium
in cross-correlation experiments consists of rare-gas atoms
(He, Ar) with a high ionisation potential.

The fundamental wave intensity is assumed to be
moderate (1o ~ 10" — 10> W cm™?), when the Keldysh
adiabaticity parameter [5] 7~ 10 and the multiphoton
ionisation of the atoms by the field of this wave can be
neglected for a short pulse duration (z; ~ 100 fs—1 ps). On
the other hand, the high-order harmonic photon energy
should be high enough (2, ~ 30 — 50 eV) for the single-
photon ionisation of the atoms to occur with an appreciable
probability under harmonic field irradiation. The simulta-
neous presence of the two waves in the interaction volume
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results in the production of the main peak with an energy
gos = —(|Eo| + Up) +Q, and the satellites with energies
& = &, T now, in the photoelectron spectrum, where
|Eo| + U, is the electron binding energy in the atomic
ground state with the inclusion of the ponderomotive
potential U, in the fundamental wave field, and 7 is the
satellite order (below, we consider first-order satellites, when
n=1).

The atom—wave fields interaction is described using a
pA gauge, in which the operators

5 ieAm(e1V)

vV, = o {expli(wt — kr)] +c. c.} f1(1), @))]

7y =i it — K0 %)
e

are considered, where k and K are the wave vectors of the
fundamental wave and the high-order harmonic wave; A4,
and A,, are the amplitudes of the vector potential of the
corresponding waves with unit polarisation vectors e; and
e, (we assume below that e; =e, =e); f1(¢) = exp[—(1—
Ar)z/rlz] and f>5(7) = exp(— 12/ 13) are the time envelopes
of the wave amplitudes, whose peaks are shifted by the time
delay Art.

Note that there exists another interaction gauge, which is
called the dE approximation. However, in Ref. [6] these two
gauges were shown to be equivalent in the dipole approxi-
mation used in our work. The adiabatic approximation
during the onset and termination of the fundamental wave
(wt; > 1) is assumed to be fulfilled. It permits separating the
rapidly oscillating factors in the electron wave functions of
the continuous spectrum.

The operator V, ~ A;A, plays an insignificant part in
satellite production and is therefore neglected in our
calculations (see the estimates below). The operator V, is
used in the first order of the perturbation theory when
calculating the probability amplitude of single-photon atom
ionisation by the high-order harmonic field, and the
operator ¥ is used when constructing the basis for electron
wave functions of the continuum in the field of a strong
wave (the Keldysh method [5]).The inclusion of Coulomb
interaction between the photoelectron and the residual ion
calls for a separate consideration and is discussed in greater
detail below in Section 4.

Note that there exist two satellite production mecha-
nisms. The satellites can appear both due to direct atom
photoionisation by the high-order harmonic field when the
effect of the strong fundamental wave is included, and due
to a stepwise transition with the initial harmonic-induced
atom ionisation followed by the inelastic Coulomb photo-
electron rescattering from the residual ion with a capture
(emission) of the fundamental-wave photon. In principle,
more complex versions of stepwise electron transitions to
the final satellite states are also possible through Coulomb
rescattering. However, these transitions arise when higher
orders of the perturbation theory are included. When the
fundamental-wave intensity is not too high, the contribution
of the above processes to the probability amplitude of
satellite production can be neglected.

The probability amplitude of direct atom photoionisa-

*“In our paper, the system of units is used in which i = ¢ = 1.

tion in the presence of both waves is given by the expression

Ap(c0) = —i [m dt(¥,| 7| W), 3)

where ¥, is the wave function of the atomic ground state
(the ls-state function of a hydrogen-like ion is taken in
specific calculations of the matrix elements);

¥,(r, 1) = exp[—i(e, — pr)] exp(iy sin @) @)

is the electron wave function of the continuum in the
fundamental wave field (the Volkov wave); y=
e(A1p)/(m.w) = 3o f1(1); yo = e(A1op)/(Mew); ¢ = wt — kr;
and g, is the energy of a photoelectron with the momentum
p- The function ¥, is then expanded into a series in terms
of the eigen-energy states (the well-known expansion in
Bessel functions [7]). The argument of the Bessel functions
is small for typical parameter values in cross-correlation
experiments: (yy/2) < 1, and the results of our work were
obtained in lowest-order approximations in this parameter.

The expression for the probability amplitude of direct
atom photoionisation (3) was derived by neglecting the
interaction of an electron in the continuum with the
Coulomb ion potential. However, it follows from cross-
correlation experimental data that the photoelectron ener-
gies are, as a rule, moderate: ¢, < 10 V. That is why the
inelastic Coulomb rescattering of the photoelectrons by ions
can make a significant contribution to the satellite inten-
sities.

In the first order in the Coulombian interaction, the
probability amplitude of satellite formation is given by the
expression

Ay(oc) = (-7 (Zf

| a1

t
XJ dtl<'fl;r|V2"flo>, (5)

where ¥, is the wave function of an electron of the
continuum in the intermediate state with ¢, p;
(¥, |V.|®,) is the Coulomb interaction matrix element,
which depends on the transferred momentum Ap=p —p’.

3. Probability amplitude of direct atom
photoionisation

The calculation of the matrix element of the operator V, in
the dipole approximation (p > sk) and subsequent integra-
tion in expression (3) lead to the expression for the
probability amplitude of direct atom photoionisation with a
photoelectron in the main peak (g, = &), where ¢, = ¢, for
n=0):
3/4 1/2
Alr=0) = 4 /maryedy(nag) ' (&> L())z
To (1 +2¢,/1p)

x exp|— (e, — &) 73 /4] cos Oy, (6)

where o is the fine structure constant; q, is the first Bohr
radius of a hydrogen atom; Ry is the Rydberg constant;
Iy = |Ey| is the binding energy of the atomic ground state;
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and 0, is the angle between the directions of photoelectron
momentum p and wave polarisation.

The exponential in expression (6) describes the photo-
electron energy spectrum in the neighbourhood of the main
peak, which arises when the atom absorbs a photon with a
frequency Q. We draw attention to the fact that expression
(6) was obtained in the zero approximation for the elec-
tron—fundamental wave interaction [a plane wave
approximation in expression (4)]. It is evident that this
approximation is insufficient to find, with the aid of
operator V, from formula (3), the expression describing
the electron transition to the satellites. However, even in the
first approximation in the parameter y, of the expansion of
expression (4), it is possible to obtain from formula (3) the
expression for the probability amplitude of direct atom
ionisation with the formation of satellites (the photoelectron
energy is ¢, = gy, £ w, where ¢, = ¢, for n = 1)

) x \/2 edi 3H)1/2
A(“‘ﬂ_*‘ﬂ“' ) _ \/%O(‘L']<l+—x> €A20 p (Tta())

(0P (RN (/1) (At/my)?
(me> (10) (1+81,/10)26Xp[ I +x }
x exp{—[e, — (e0, £ @) t{x/[4(1 + x)]} cos® Oy,  (7)

where x =15 /112 is a dimensionless parameter, which
should be derived from experimental data for the determi-
nation of the duration of high-order harmonic generation.

Note that the parameter x appears both in the exponent,
which describes the decay of the amplitude (7) with time
delay At, and in the pre-exponential factor. The exponential
itself arises in the natural way in the calculation of the
Fourier transform of the overlap function f;(¢) f5(¢) of the
wave envelopes and coincides with the phenomenological
result of Refs [2—4].

The expression for direct atom photoionisation with the
formation of satellites in the final state can also be obtained
[in the plane wave approximation in expression (4)] using
the operator Vi, =e*(4,4,) from a formula similar to
formula (3), by replacing V, by Vj,. Indeed, the time
dependence 1712(1) contains the combination of wave fre-
quencies required for atom photoionisation to the satellite
states. However, the ratio between the amplitude obtained
employing the operator V;, and the amplitude (7) is
determined by the quantity ~ w/¢, < 1 and suggests that
that the contribution of V7, to the satellite formation
probability amplitude can be neglected in this case.

4. Probability amplitude of atomic photoeffect
with the inclusion of Coulomb photoelectron
rescattering from the residual ion

If we restrict ourselves to the process in which a photo-
electron captures one photon of the fundamental wave,
then by expanding function (4) in parameter y, in the
lowest order, we obtain from (5)

/I(a,,:s“,\:tw) — 7J dp,

o AyO /
e j a2y (Ap) v (p")

2

—00

X exp{i[sp - (Sp’ + w)]t}fl ([)F(Z)7 ®)

where V,(Ap) and V,(p') are the matrix elements of the
corresponding operators;

F) = | dnyexpiitey — sonl (1) ©)

The stepwise process responsible for the amplitude (8) is
shown in Fig. 1. The integrand (8) containes the product
f1(OF(t), and therefore the main contribution to the
amplitude A»~®*®) is made by the function F(¢) in the
domain |7] <t; in the neighbourhood of 7= At. This
circumstance permits reducing the integral (9) to a tabular
one [7] by the change of variable t; = t+¢’. We perform
calculations to obtain for F(¢) the expression

Flo) = Yoy exp {J%}

(g — So.v)flﬁ] }7 (10)

t
1+ —
X{ " Ll\/J_C 1 2
where @(u) is the probability integral [7]. The time
dependence of the function F(¢) is contained in the real

part of the argument u of the probability integral; the
imaginary part of the argument coincides with the

exponent, which describes the energy spectrum ¢, of the
intermediate electron state.
I
I
I
I
Q : +w
I
I
I
I
2 ®
|0> I}Z &pr = & I}c &p = &os to

Figure 1. Feynman diagram describing the atomic photoeffect. The
summit, which is represented as a triangle with a wavy line, corresponds
to the interaction of an atom in the ground state |0) with the high-order
harmonic field (the operator 7,) in the presence of the fundamental
wave, resulting in the electron transition to the intermediate state with an
energy ¢, in the continuum; the summit depicted with a dashed line with
a circle (the operator V,) describes the inelastic photoelectron
rescattering by the Coulomb potential of the residual ion with the
capture (emission) of one photon of the fundamental wave, which
transfers the electron to the final state (the satellites with energies
&, = &p, £ ).

The subsequent calculations of the amplitude (8) are
reduced to the substitution of (10) into (8) with the
subsequent determination of the time interval by the method
of steepest descent [8]. The calculation is described in detail
in Appendix I, and the result obtained is

Je=ato) _ 1 (Ry 1))/ edy ey

34172
=_ 4, X
T o m, (mag)
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(%) Lo o(5)

x exp|—(z — 20) Ry’ eix/4 exp{ilzo — (= £ ¢)|Ry At}

x exp{—[z) — (z % q)]"Ry’} /4}Jy, (11
see Appendix 1). After cumbersome
of tabulated integrals in

(for the notation,
although easy calculations
expression (Al.5), we obtain

o = —4(%;/2 [Fo(z) + Fi (2) cos” 0], (12)
where

Fy(2) = 2(202) (20 +2) = (2 — 2 Iny];

v=(VZ +V2)/(VZo — V7);
Fi(2) = 2[2(292) * (2 — 32) — (23 + 2Z9z — 3z2) In|v]].  (13)

Substituting (12) into (11) leads to the following expression
for the amplitude of the process under consideration:

3/4
=t o) _ (Ryt)’ Jx edjgedy (rad)? <&> /

4 o  m, 1
o0
XJ dz
0

x exp{i[Z) — (z £ q)]Ry At} exp{—[Z) — (z £ ¢)]'Ry’c{ /4}

[Fo(z) + Fy(z) cos” 0]
(1+Ryz/l)’z)”

{1+ @u(2)]}

x exp[—(z —zo)ZRyzrlzx/4]. (14)
The integral in expression (14) is also calculated by the
method of steepest descent, and the details of this
calculation are given in Appendix 2. After the substitution
of (A2.4) into expression (14), we find the final expression

for the probability amplitude of satellite formation:

X 12 €A10 €A20
14+ x o m

(rai) "

/I(Snzﬂo.‘i ) \/—Ry 7 <

y ( Ry )3/4 Fy(2) + Fi(20) cos” Oy
Io (1+Ryzo/1p)’z)"

xRy’t2— 2 Lo | - At g
y‘“4(1—&—)() P T ) 1+x]

Comparison of expressions (7) and (15) shows, in
particular, that the corresponding amplitudes decay simi-
larly with increasing time delay At, irrespective of the
satellite formation mechanism.

exp { — 20— (20 £ )

(15)

5. Number of photoelectrons emitted by an atom
per one pulse

We give formulas for the number of photoelectrons emitted
by an atom per one pulse into the main peak (¢, = &),) and

the satellites (¢, = ¢y, £ w). These formulas are obtained in
a conventional way by integrating the squared modulus of
the amplitudes (6), (7), and (15) taking into account the
statistical weights of electrons in the final state. The final
results are given in the ordinary system of units.

The expression for the number of photoelectrons emitted
by the atom per pulse within a unit solid angle £, into the
main peak in the case of direct ionisation by the high-order
harmonic field follows from expression (6) and has the form

dN<S":g°‘>7 2 2Ry 1, [ edy \* mec?
de, \= B o\mee?) I

% (803'/[0)3/2
4
(1 + o5/ 1)

The corresponding expression for the number of photo-
electrons that make up satellites due to direct ionisation in
the fields of two waves is derived from expression (7) and is

dN(sI,:sm;thw) B z 1/2 RY‘L’] X 1/2 6‘A20 2
dQ, T A\n h 1+x mgc?

y (eAmf Cos/ )"y 7y
o )L e, (1 £ D))

e At 2
<p| — (2
p T 1+ x

where 7 = hw/sm is a dimensionless parameter (0 < 7 < 1);
the plus sign in expression (17) corresponds to the rlght
satellite with an energy &, = &y, + fiw = &,(1 4+ 7) and the
minus sign to the left satellite with an energy ¢, = &,(1 — 7).

The expression for the number of photoelectrons that
form satellites and are emitted into a unit solid angle can be
derived from expression (15) and is

cos 0.

(16)

} cos* 0, 17)

[Fy(Z0) + Fi(Zy) cos” 0]
)
2o

dQ

dN(s,,:sO\i how) 00
7]
P 0

X exp { — [0 — (20 % q)]zRyzrf—z(lix) }dzo. (18)
The result of integration depends on the location of the
main photoelectron peak relative to the ionisation thre-
shold. When the final photoelectron energy is high enough,
when &g, > hw (the parameter zy; = ¢ > 0) and the saddle
point of the phase of the exponent in expression (18) resides
within the range of integration over the final photoelectron
energy z,, from expression (18) we obtain

dN(sp:sgAih(u) _ 2 1/2 Ryfl X 1/2 €A20 2 eAlO 2
dQ, T h l+x mgc? ho

(0,/10)"” (@ 5;)} p{_(A_) 1i

(1 +803/10) (
e (7) = FS(7) + F () cos® 0y = (1 + 1)1 +7/2)

} (19)

“\1/2
W‘ —2{(1 L0215 72)

(1+£7)2 41
(1+7)7? -1

—(7/2)*In

+7(1+7/4)In (20)

] cos? 0,
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and it is implied that # < 1.

We make a comment concerning expression (19). Strictly
speaking, the formula for satellite intensities resulting from
the integration with respect to Z, is expressed in terms of
parabolic cylinder functions D,(w) [7]. However, for
g0 > how the argument w of these functions is large in
the adiabatic approximation (wt; > 1), making it possible
to resort to the well-known asymptotic representation for
the functions D, [7]. This procedure is equivalent to
employing in expression (18) the & approximation for the
exponent containing Zz,. The result of calculations is
expression (19), which is universal in character and from
which there follows a formula for satellite intensities in the
case of high-lying photoelectron peaks for 7 ~ 0:

d]\”[(sl,:s[)\;thw) B z 1/2 Ryr1 X 1/2 €A20 2 6’/410 2
de, T \n 7 1 +x mec? I
(e0s/ [0)3/2 A\ 2 29 \2
_— — | — 1-2 .21
X exp o) T ( cos” 0) 21

(1 + 803/10)4

The situation for 7= 1 deserves special consideration,
when &y, & hiw (the production of the left satellite takes place
at the threshold of ionisation) and the saddle point of the
phase of the exponent in expression (18) for this satellite
resides at the limit of the integration domain. In this case,
the multiplier by the exponent in expression (18) should be
expanded into a series about the point Z; =~ zy — ¢ = 0. The
expression for the intensity of the left satellite can be found
with the aid of tabulated integrals [7] and has the form

dN(s,,:sO‘—hw)(l) 4 R)’T] 1/2 X 1/4
dQ n< h > (l—l-x)

P

X(eAzoy(eAm)Z(y)W eos/Io
mee? ) \ o ) \ Do ) (1+ g0,/ To)*

x(1—2c0s200)2exp{—<f>2 2 ]

22
7, ) 1+x @2)

The expression for the intensity of the right satellite is
defined by expressions (19) and (20), in which one should
take the upper sign and assume 7 = 1.

6. Analysis of results

We perform a comparative estimate of the intensities of the
satellites and the main peak resulting from direct atom
ionisation [expressions (16) and (17)]. The ratio between
these quantities depends on the fundamental wave intensity,
and the estimate will therefore give the value of required
power at which the peak heights become equal. It follows
from (16) and (17) for At =0 and 6, = 0 that

N(“ip:ﬁo.vih“’) N az €A10 2
N(Sp: £05) i10) ’

(23)

For the 800-nm radiation of a Ti: sapphire laser, the ratio
(23) achieves unity for the intensity I; ~ 2 X 102 W cm ™2,
which corresponds to the experimental estimate of Ref. [3]
obtained from the ponderomotive shift of photoelectron
peaks.

We give the expression for the intensity ratio between the

satellites produced due to Coulomb photoelectron rescatter-
ing from the ion [formula (21)] and those due to direct
ionisation [formula (17)] in the case of high-lying peaks
(f=0):

dN (ep=t0, % hm)(o)/dQ B 1
ANGE(0)/08,  all

(1 —2cos? 0)>
cos* 0,

(24)

From expression (24) it follows that, with increase in main
peak energy ¢y, (for instance, by going over to harmonics
with higher numbers s), the relative contribution to the
satellite production made by the Coulomb interaction of
electrons in the continuum with the residual ion decreases,
as would be expected. In particular, for He atoms ([, =
24.6 eV) [3] this takes place for s > s, = 2[,/(fiw) =~ 31.

Note that the inclusion of Coulomb interaction in this
case significantly changes the angular dependence of photo-
electrons in the satellites. In the case of direct ionisation,
photoelectrons are primarily e%'ected along the wave polari-
sation direction (dN r=twho /dQ, ~ cos*0y) (this result
was earlier obtained in Ref. [9]), while in the rescattering
we have the expression

dN<8”:£U“i ho) (0)

de,

~ (1 —2cos®0,)*.

It follows from expression (24), in particular, that the
satellite formation in the direction 0y = n/2 (i.e., in the
transverse direction relative to the wave polarisation
direction) takes place only due to inelastic Coulomb
rescattering. We emphasise that this is true for satellites
assuming that the ground state of the atom is the s state.

We give a comparative estimate of the heights of the
satellite peaks arising from inelastic Coulomb rescattering
[formula (19)] and direct photoionisation [formula (17)] in
the general case, when 7# 0 and 7 # 1:

dNG=ertel 40, 1 (@@
dN G=ahe) /dQ, " eo/Io (1+£7) cos* 0y

(25

In going over from the exact formula to approximate
expression (25) we omitted the terms ¢,/1, and 7, which are
small compared to unity. We employ the experimental
parameters of Ref. [3] (4= 800 nm, s =19, g, =4.7eV,
I, = 24.6 3B, 1 = 0.33) to obtain from expression (25) the
following expressions for the right satellite and the left one,
respectively:

AN /dQ, (1 —3.0cos” )’ 26)
dN(/dQ, cos* 0 ’

dN"/de, 15 (= 0.83 cos” 0)* o
dNO/de, T T cos* 0, '

In the special case when 6, = 0 (when photoelectrons are
detected along the wave polarisation direction), the ratios
(26) and (27) are equal to 8 and 0.4, respectively. We note
that, according to expression (17), the right satellite always
prevails over the left one in the case of direct photo-
ionisation and the parameters adopted:

dNT/dQ, (1+1)?

~ =~ 5.
dNGI/dQ, (1)
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Naturally, the heights of the satellite peaks become equal
when 7 — 0. One can easily see that the abnormally small
ratio (27) for the left satellite is related to the angular
dependence of the satellite intensities.

To illustrate, for the parameters adopted we give the
polar diagrams which define the angular dependences of the
intensities of the satellites arising from inelastic Coulomb
rescattering (Fig. 2). Of course, the asymmetry of the peaks
noted in our work can be experimentally observed only
when the high-order harmonic wave is a monochromatic
wave with a definite number s.

ZA

ZA

Figure 2. Polar diagrams describing the angular dependences of the
intensities of the left (a) and right (b) satellites. The relative peak
intensities are drawn to scale.

Note in conclusion that the results obtained in our work
can provide a quantitative estimate of satellite intensities
when the Born approximation is applicable for the photo-
electron energies &y, > I,. However, the qualitative results
concerning the angular photoelectron redistribution in the
satellites taking into account the Coulomb electron rescat-
tering from ions are independent of electron energies. For
this reason, the above quantitative estimates based on the
experimental data [3] for gy < [, are illustrative in cha-
racter.
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Appendix 1

The substitution of (10) into (8) reduces the time integral to
the expression

J,:J dt{l+<13<

)} exp (1), (ALI)

X

where 1, is the value of ¢ at which the argument of the
probability integral vanishes;

(1 —Ar)?

2
T

o) =ile, — (e, £ )]t —

A (Al.2)

is the phase of the exponent.
The integral (Al.1) is calculated by the method of
steepest descent and has the form [7]

)] expaie

where 7, = At +ife, — (& + w)]11/2 is the coordinate of
the saddle point obtcunedy from the condition d¢(z,)/dt =

Substitution of expression (A1.3) in expression (8) leads
to the expression coincident with formula (11):

J, ~ /7t [1 +d5< (A1.3)

71 (e, =gps @ 1 edjged
A(ep=tost ):E(Ryﬁ)z\/; wlo mzo (nag)l/z

€

(P) e [ e(52)

x exp|—(z — z0) Ry’ tix/4 explilz) — (= + ¢)|Ry Ar}

x exp{—[z) — (2 £ 9)"Ry’t7 /4}Jy,, (Al4)
where we introduced dimensionless energies for convenience
of calculation: Z, =e¢,/Ry, z=¢, /Ry, z;=¢,/Ry and

¢ = o/Ry. The integral

o = J[ (eep)(eeny) e, (A1.5)

Zo + 2z — 24/Zpz cos(e, eI,/)}l/z !

(where en, = Ap/lp—p'|) is calculated over all possible
angles of electron ejection in the intermediate state with a
momentum p'.

Appendix 2

We represent the integral in expression (14) in the general
form as

J. wa(z) exp (2)dz

0

(A2.1)

where f(z) is the preexpotential multiplier (14) and the
phase of the exponent is
o —z9)"Ry“tix
$) =il — (£ Ry &y - EZ 20 RYri
[ PRy
7 .

(A2.2)

The integral (A2.1) is calculated by the method of
steepest descent [7]; the coordinate of the saddle point is

2AT
Ryt (x+1)

_z2X+Z0Fq
T l4x

1
=z +o<w—fl>. (A2.3)
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By integrating (A2.1), we obtain the expression

_ 4y/n Fy(Z) + Fi(2) cos’ b,
T Ryt (14" (1+Ryzo/h)’5"

X exp { _ [y~ (= q)PRy’rix }

4(1 4 x)
At 1
xexp{— (?>l+x}’ (A2.4)

in which the argument z of the functions Fjy(z) and Fi(z)
(13) was taken for z = z.
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