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Selection of optical modes in a ribbon fibre with a modulated gain

D.V. Vysotskii, A.P. Napartovich, A.G. Trapeznikov

Abstract. The gain spectrum of optical modes is theoretically
analysed in an antiwaveguide ribbon fibre in which the
amplifying regions are made coincident with periodically
arranged regions of a reduced refractive index. A class of
resonance periodic structures is selected in which the gain of
one mode with the field uniformly distributed over channels
exceeds the gain of all other modes by the value independent
of the number of channels up to their critical value, which was
also found analytically.
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1. Introduction

In Ref. [1], a new design of an active optical fibre was
proposed which seems promising for scaling the output
power of a fibre laser by increasing the width of a ribbon
fibre retaining single-mode lasing at the same time. The gain
in such a fibre is assumed to be localised in periodically
arranged regions with a reduced refractive index, which
gives grounds to call it an antiwaveguide fibre.

The authors of paper [1] concluded that a fibre in which
the modulation of the refractive index does not exceed 0.001
is most efficient. However, it is difficult in practice to
modulate the refractive index with such a small amplitude.
In addition, a weak modulation of the refractive index
results in an enhanced sensitivity of the characteristics of
optical modes to random variations in the refractive index.

The laser structure of a similar geometry was considered
earlier and realised in diode laser arrays (see Ref. [2] and
references therein). The numerical study [3] of such struc-
tures performed in the approximation of the effective
refractive index revealed the so-called resonance structures
in which the width of the active element and the distance
between the elements are multiples of the corresponding side
wavelengths (recall that waves in an antiwaveguide grating
propagate over the entire grating, undergoing reflection and
refraction from boundaries of the elements). It was pointed
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out that, to achieve single-mode lasing, it is necessary to
introduce selecting losses between the elements (it is difficult
to perform the spatial modulation of the pump current in
diode lasers). The analytic study in the approximation of the
effective refractive index [4, 5] gave a deeper qualitative
understanding of the requirements imposed on the structure
geometry. The explicit expressions were obtained for the
side radiative losses of the resonance mode [4] and the loss
discrimination of the nearest mode [5].

Because the refractive-index nonlinearity in semiconduc-
tors is substantially greater than in glass fibres, the
characteristic modulation amplitude of the refractive index
in laser diodes is greater than that in the fibre. Usually, the
active structure (laser diode itself) is placed on a substrate so
that the side boundaries of the chip are located far from the
pumped region and are made mat to avoid the influence of
poorly controlled reflection of laser radiation from the
boundaries. Because the active core of a fibre laser is
surrounded by a cladding with lower refractive index, total
internal reflection of light takes place at the core—cladding
boundary, i.e., side radiative losses are absent. These
differences in the physics of processes make actual a
more general formulation of the problem.

In this paper, we analysed theoretically the possibilities
of maintaining mode discrimination in an antiwaveguide
grating with increasing its size. General criteria are for-
mulated which allow the selection of the grating parameters
so that the fundamental mode will be distributed uniformly
over all the elements. This excludes effects caused by the
inhomogeneous gain saturation. The relation is obtained
between the step in the refractive index at the boundary of
the active element and the geometrical parameters of the
grating, which provides the maximum discrimination of
adjacent modes preserved with increasing the grating size.

2. Band structure of the spectrum of optical
modes

The structure under study is shown schematically in Fig. 1.
Radiation propagates along the z axis. We assume that the
reflection of light from flat boundaries in the transverse
direction (along the y axis) is perfect. The thickness of a
ribbon waveguide is assumed small, so that we may restrict
our consideration to one transverse mode. Then, the field of
an irradiated mode can be averaged with the profile of the
refractive index in the transverse direction (model of the
effective refractive index). In the transverse direction (along
the x axis), the ribbon fibre has a periodic modulation of
the refractive index and gain (losses). This structure belongs
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Figure 1. Scheme of the cross section of a ribbon fibre and profiles of the
effective refractive index and the gain; (/) external cladding with the
refractive index n; (2) optical fibre; (3) active cores.

to the class of photonic crystals, which are actively
discussed in the last years [6]. Photonic crystals attract
great interest because they allow one to change substan-
tially the dispersion properties of waves propagating in
them due to the presence of forbidden bands. In particular,
doping photonic crystals with defects makes it possible to
localise the field near these defects and form waveguides
confining the field in a broad wavelength range. The
appearance of forbidden bands in the spectrum of waves
propagating in the side direction in a ribbon laser is
undesirable because it results in the division of the structure
into independent domains. Our aim is to find the
parameters of structures at which forbidden bands are
absent.

Radiative losses through resonator mirrors can be
replaced by losses uniformly distributed over the volume.
Under above assumptions, the field can written in the form
U(x) exp (£ifz), where U(x) satisfies the Helmholtz equation

2
37[2]+ U [k*e(x) — B*] =0, (1)
where f is the propagation constant; k = w/c is the wave
number in vacuum; &(x) is the dielectric constant
[e(x) = (n; +in”)* in passive regions and e&(x) = (no+
in” —in,)* in active regions]; n” corresponds to distributed
losses; n, corresponds to the gain; n, and n; are the
refractive indices in the active and passive regions,
respectively. The propagation constant f§ in the model of
a laser with distributed losses is real and is quantised in
accordance with the boundary conditions on mirrors,
resulting in a discrete spectrum of longitudinal modes.
We will assume below that the spectrum of longitudinal
modes is sufficiently dense and will neglect the discreteness
of p.

The method of solution of Eqn (1) is well known. Let us
introduce the basis functions f and g, which are linearly
independent solutions of Eqn (1) in a cell. Then, any
solution can be written as a linear combination of these

functions U = a;f+ b;g, where the coefficients a; and b;
depend on the cell number j. The condition of smoothness of
the solutions on the boundaries of the grating period leads
to the recurrent relation a;, = Ta;, where T is the
unimodular (det7 = 1) coupling matrix, and the vector a;
is composed of the coefficients a; and b;.

We can study the band structure of optical modes of a
ribbon fibre by neglecting effects of the field gain. The
spectrum of optical modes is determined by the eigenvalues
of the matrix T, which can be written in the form exp ( £ iS).
A convenient characteristic is the spur of matrix 7,
SpT = 2cos S, which is expressed in terms of the structure
parameters. In particular, the allowed band is determined by
the condition [Sp7|< 2. The opposite inequality corre-
sponds to the forbidden band. The equality |Sp7] =2
(i.e. S = Kn, where K =0, 1,...) determined the boundaries
of the bands. By using the known expression for the spur of
the coupling matrix, we obtain the equation

cos S = cos(gd) cos(ps) P

2, 2
;qq sin(gd) sin(ps) (2)

for the ribbon structure with the step modulation functions
of the gain and refraction, where d and s are the lengths of
the active and passive regions of a cell; ¢ and p are the
corresponding transverse components of the wave vector.

The equation for the band boundaries cos S = —1 can be
simply reduced to the form

2 2
Kml)mw} _Kl_’_])mu} —0. (3
q 2 q 2

The expression in the left can be represented as a product of
two factors, the vanishing of each of them corresponding to
the forbidden band boundary. The requirement that both
these factors vanish simultaneously determines the parame-
ters of the structure in which the forbidden band is absent.
This requirement is equivalent to the simultaneous vanish-
ing of expressions in the square brackets in Eqn (3), from
which it follows, first, that pgs + ¢od = n(2m + 1), where m
is an integer, i.e., the total phase shift of the wave after
propagation through the cell is equal to an odd number of
n. The second condition for p # ¢ has the form pys — god =
n(2/ + 1), where [ is an integer. The simultaneous fulfilment
of these two conditions means that half-integers of side
wavelengths fit within the active element and the gap
between the elements. Such structures were studied in diode
laser arrays [2].

The condition p = ¢ corresponding to the absence of
modulation of the refractive index also leads to the
disappearance of forbidden bands. It is this variant, i.e.,
the limit corresponding to a homogeneous fibre that was
considered numerically in Ref. [1]. In this case, the confined
modes have a simple form sin (nmyx/L), where myq is the
mode number and L is the width of the fibre ribbon. If the
gain is periodically modulated over the width with the
period A = L/N, then the integral of the overlap of the
mode intensity with the gain grating proves to be maximal
for the mode with the same period. Because of the
orthogonality of trigonometric functions with different
periods, the difference in the overlap integrals is preserved
when N tends to infinity despite the condensation of the
mode spectrum. For example, for the gain modulated by the
function [1—cos(nx/A)]/2, the overlap integral is 0.5 for all
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the modes except the mode my = N/2, for which it is equal
to 0.75. Tt is this effect that lies in the basis of the
construction analysed in Ref. [1]. For a finite number of
active channels, the difference in the overlap integrals is
preserved for small An = n; — ng.

The question arises of whether the effect of a finite gain
discrimination of optical modes is preserved in constructions
where the step in the refractive index on the active region
boundary is not small but the forbidden band is also absent?
This question was not considered in Ref. [5] that was
devoted to the analysis of the discrimination of adjacent
modes over losses in finite antiwaveguide resonance gra-
tings. Note also that radiation incident on the side external
faces in diode laser arrays is scattered and lost, resulting in
additional losses.

3. The gain spectrum of optical modes

The parameters of the structure should be selected bearing
in mind that it is necessary to suppress the inhomogeneous
saturation of the gain in the medium, which is the main
mechanism destroying single-mode lasing. It is obvious that
the most favourable situation appears when the field of the
generated mode is distributed uniformly over the structure
cross section. In addition, the gain degeneracy of the modes
should be avoided. Both these conditions are fulfilled in
resonance structures mentioned above, which were studied
earlier in the development of diode laser arrays [2—5].

Let us find the gain spectrum of different modes in the
resonance structure. The dependence of the gain on the
mode number appears due to different overlaps of mode
fields with the gain concentrated in active elements.

Because the imaginary parts &(x) are usually small
compared to the real ones, we can use for the wave vectors
the approximate relations

q* = k*ng — B + 2ik*non” — 2ik*ngny,
“)
prkind — B2+ 2iknn".

By excluding the propagation constant from these expres-
sions, we can find the relation between the wave vectors. It
is determined by the step of the real and imaginary parts of
the refractive index

PP —q =k (nf — ng) + 2ik*ngng ~ 2k ng(An + ing). (5)

We took into account above that the step An in the
refractive index between the active and passive regions is
usually small. The fundamental antiphase mode in the
resonance structure has the form shown in Fig. 2. It consists
of the parts of cosine curves in active regions and intervals
between them (see Ref. [7]). The angular distribution of
radiation from one active element has the lowest divergence
when one half-wave fits within the element. Then, the field
inside the element is proportional to cos(nx/2d) (x is
measured from the element centre), i.e., gy = n/d. In the
region between the elements, py = 2nm/s; then, the sizes of
the active and passive regions and the step in the refractive
index are related by the expression

4m* 1 8ny(An)
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Figure 2. Distributions of the field U(x) of the antiphase mode and the
refractive index n(x) in cells of resonance structures with m = 1 (a) and 2

(b).

Condition (6) determines resonance structures in which
the forbidden band disappears. The integral of overlap of
the gain in the form of a step of unit height and width d with
the antiphase mode is

(5/61)3}_l

4m?

ry= {1 + (7
(a similar expression was obtained earlier in Ref. [7]). To
find the gain discrimination for the adjacent modes, it is
necessary to calculate the integral of overlap of the intensity
of the corresponding mode with the gain profile, which
requires the calculation of the intensity profiles for adjacent
mode in the explicit form. The discrimination can be also
obtained by solving the dispersion equations (see Appendix)
if the spectrum of optical modes is known. It is expected for
a grating containing many eclements that the integral of
overlap of the nearest-frequency modes with the gain profile
will be close to that for the fundamental mode. The
detunings of the transverse wave vectors p, ¢ from their
resonance values py, and ¢, for the nearest modes are small:
|Ps], |gd] < 1. In this case, Eqn (2) can be written in the
form

P (ﬁs+q7d>@8+tc}00, ®)

where F=S— 2m+ )r; and 1 = py/qy = 2md/s. By sub-
stituting the values F for the adjacent modes into (8) (see
Appendix) and taking into account relation (5) between the
wave vectors in the active and passive regions, we can find
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the real and imaginary detunings of the wave vectors as
functions of the grating parameters and the mode number.

Equation (5) for modes near the resonance can be
rewritten in the form

PoP — qoq = ikz”o”g

from which the detuning of one of the wave vectors from
the resonance value is expressed in terms of the detuning of
another wave vector. The detuning of the wave vector p can
be found from Eqn (4) as

ikzsznon "

. Re(s
ps =R+

It follows from this expression that the imaginary part of
the wave vector p is proportional to n”. By substituting
these relations into (8), we obtain the equation for the
quantity n”/n, equal to the integral of overlap of the
optical mode intensity with the gain profile normalised in
height to unity.

By introducing the notation Z = ps, we obtain from (8)
the complex phase shift between the elements

(Z—iZ,)(Z ~i2,) = B, ©)
where
B kznongsd ) B anOngsdtz o 4m*F?
YT aCm+n) TP a@m+ ) T Cm+0)2m+ %)

It is convenient to show the motion of the roots of
Eqn (9) with changing F= w//N in the complex plane
(Fig. 3). For /=0 (and, therefore, B =0), which corre-
sponds to the resonance antiphase mode, Eqn (9) has two
imaginary roots. By using the root Z, and taking into
account that the imaginary part Z = ps is proportional to
n”, we find the expression for the overlap integral
(" /1)y = [1 + (s/d)’ J4m®] ™" = Iy, which  coincides
with the overlap integral (7) calculated above. The root
Z, corresponds to the solution of Eqn (1), which does not
satisfy the boundary conditions, and therefore can be
omitted.

The rest of the modes correspond to / # 0. For the given
value of N, the value of B changes discretely and propor-
tionally to the square of the mode number. The roots of the

Z,

Z

Figure 3. Motion of the roots of Eqn (9) in the complex plane upon
variation of its right-hand part.

quadratic equation (9) can be conveniently written in the
form

Z Z
z:i%i(B—Bc)l/z, (10)
where
7, — 7,
Bc:(l42)- (11)

For B > B., the imaginary part of the root of Eqn (9) is
equal to the same value for all the modes:

zsznon” Z,+ 27,

k
I D, =
m (ps) 2mn 2

This gives the expression for the integral of overlap of
the gain with the field of optical modes:

3

t t
.= . 12
¢ 2(2m+l)+2(2m+t3) (12)

For a ribbon fibre with N channels, the maximum value
of B for the nearest mode with / = 1 remains finite. As long
as this value is larger than B, the overlap integrals for the
resonance or any other modes differ by the same number,
which is independent of N. The condition B(/=1) = B,
gives the critical number N, of elements in the ribbon up to
which the found difference in the overlap integrals is
preserved:

2 [em+)m+ )2

N, = . (13)

¢ nongsd (12— 1)?

The criterion (13) for the number of channels in the
construction depends substantially on material constants
and the size of the ribbon cell.

Therefore, as long as the number of channels in ribbon
fibre is less than the critical value determined by expression
(13), the overlap integrals for the fundamental mode (I'y)
and the rest of the modes (I'.) differ by a finite value
depending only on the ribbon geometry. Recall that the size
of the elements and the distance between them in the
resonance structure are related to the step in the refractive
index according to (6).

The dependence of the overlap integrals on the parameer
A= (sNA/m2)* =1—1/1*, where NA is the numerical
aperture of a waveguide (see, for example, Ref. [8]) is
presented in Fig. 4 for m=1 and 2. The limit 4 =0
corresponds to a homogeneous fibre (p, = ¢,). The overlap
integral in this case can be written from general consid-
erations as I' = d/(d + s) (where s = 2md). One can easily
see that this expression gives the same values of I' for 4 =0
as in Fig. 4. The second limit corresponds to the disappear-
ance of gaps between the elements (s — 0, p — 00). It is
obvious in this case that both overlap integrals become
unity. For the intermediate values of the parameter, the
overlap integral for the fundamental mode is greater than
that for the rest of the modes.

The analysis performed above can be also applied to the
structures generating in-phase modes. For this purpose, it is
sufficient to add on the outside to the structure under study,
which consists of N identical cells where the region with the
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Figure 4. Dependences of the overlap integrals for the resonance (I'y)
and the rest of antiphase modes (I'.) on the parameter 4 for m = 1 and 2.

lower refractive index 7 is surrounded by halves the regions
with the higher refractive index, half the layer with n = n;.
The fundamental resonance mode in such a structure is an
in-phase mode, as demonstrated in Fig. 5. We can show that
the results of analysis are also valid for in-phase modes
formally generalised for half-integers m = 1/2, 3/2, etc. The
dependences of the overlap integrals for the in-phase
resonance mode and the rest of the modes on the parameter
A obtained under the condition N < N, are shown in Fig. 6.
The degree of mode discrimination, defined as the difference
D =Ty — I'. between the overlap integrals for the resonance
mode (7) and the rest of the modes (12), as a function of the

i

(.

m=3/2
U(x)

I

‘Li

Figure 5. Distributions of the in-phase mode field U(x) and the refractive
index n(x) in cells of resonance structures with m = 1/2 (a) and 3/2 (b).
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Figure 6. Dependences of the overlap integrals for the resonance (I'y)
and the rest of in-phase modes (I';) on the parameter 4 for m = 1/2, 3/2.

parameter A is presented in Fig. 7 for different values of m.
One can see that the discrimination maximum D,
increases monotonically with m and its position approaches
the point 4 = 1. The parameters of structures with the
maximum mode discrimination are presented in Table 1.
Below, we will analyse such structures.

m=2
0.20 |
32
0.15 + 1
0.10 1/2

0.05 -

0 0.2 0.4 0.6 0.8 A

Figure 7. Dependences of the discrimination degree D of higher modes
with respect to the resonance mode on the parameter A4 for m = 2, 3/2, 1,
and 1/2.

Table 1.

m Dyax d/s A @

1 0.167 1.366 0.866 1.927
2 0.224 0.852 0.914 0.915
1/2 0.113 2.294 0.81 4.062
32 0.19 1.111 0.91 1.225

4. Analysis of structures with the maximum
discrimination

One can see from Table 1 that the maximum discrimination
degree D, depends on the number m of side wavelengths
fitting the waveguide gap. The condition of the maximum
discrimination introduces additional restrictions on the
structure parameters. The lengths d and s prove to be
rigidly interrelated and the relation between the numerical
aperture NA and the ratio s/4 also appears. It is also
interesting to estimate the admissible number of channels in
the assembly. For the maximum discrimination condition,
the relation
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An
N, = %7(/’(”7)

can be obtained, where
3]/423/2(d/3) 1/2
Vm[\/32md/s) — 1]

p(m) =

The values of ¢(m) are also presented in Table 1. The
admissible number of channels in the laser are determined
within an order of magnitude by the ratio of the step in the
refractive index to its imaginary part, which can be
expressed in terms of the gain g as n, = gA/4n. By taking
the typical parameters of fibre lasers, we estimate the
admissible number of channels as ~ 10°. This means that
the size of the assembly is virtually not restricted. For the
typical parameters of diode lasers (the wavelength is
~ 1 pm), the admissible number of channels is 102.

The value of the step in the refraction index at the
boundaries of the elements gives the scale for random
variations in the refractive index that do not cause a
substantial change in the mode structure. For this reason,
the larger the step An, the more rigid the mode structure
provided by the produced distribution of the refractive
index. The estimate of the admissible amplitude of random
variations in the refractive index is a separate problem. The
presence of a finite mode discrimination, which does not
depend on the number of elements, ensures that admissible
fluctuations are not too small.

By selecting the parameter m, its influence on the axial
brightness of the output radiation should be taken into
account. The antiphase mode gives a split peak in the far-
field zone. To avoid this, ‘a rectifying’ phase plate having the
phase difference © between adjacent periods A can be placed
at the output. In this case, the dependence of the axial
brightness on m can be estimated by the square of the
integral from the field amplitude over the structure period.
A comparison of Figs 2a and 2b shows that the m =1
antiphase mode has a lower axial brightness than the m = 2
mode because upon integration of the field inside the active
channel and in the gap between the channels, the fields are
subtracted, while the contribution from a passive gap for the
m = 2 mode is zero. Such an effect is absent for the in-phase
mode (Fig. 5). Therefore, structures with greater values of m
are preferable, which can be obtained by increasing s or the
numerical aperture. An increase in s is accompanied by a
decrease in the filling of the output aperture by laser
radiation, which is in turn accompanied by the field energy
transfer from the central peak to the side peaks. The
possibility of increasing the numerical aperture is deter-
mined by the manufacturing technology of an optical fibre.
Therefore, special studies are required to select the proper
value of the parameter m.

5. Conclusions

By using the approximation of the effective refractive index,
we have analysed theoretically the gain spectrum of
collective modes in a ribbon fibre laser with the anti-
waveguide periodical structure. We have shown that for
resonance antiwaveguide structures, in which the gain
occurs in the regions with a lower refractive index, there
exists a critical number of elements below which all the
modes are discriminated with respect to the fundamental

mode, the discrimination being independent of the assembly
dimensions. We have found explicit conditions providing
the discrimination maximum and obtained the explicit
dependence of the admissible number of elements in a
ribbon fibre on the material parameters and geometry of
the assembly. Our estimates have shown that the restriction
on the assembly size in the case of maximum discrimination
proves to be weak. The restriction on the size of an
assembly where phase synchronisation is possible can be
much more severe because of the scatter in the parameters
of individual channels.
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Appendix

Spectrum of the ribbon fibre modes
with an arbitrary profile of the refractive index
on the period

Let us show that, in the case of total internal reflection
from the side boundaries of a fibre, the spectrum of optical
modes can be found without specifying the distribution of
the field and profile of the refractive index in a cell. In the
general case, the elements of the matrix 7T are described by
the expressions

Ty = U (4/2)8(-4/2) ~ £(4/2)g"(~4/2)]

T = 8 (4/28(~A/2) ~ g’ (- A/2)3(4/2)]

(A1
T = g (A2 (=A/2) = £'(=A/2) £ (4/2)]
T = 558 (/D) F(~A/2) ~ g(A/2) 1" (~A/2)],

where A is the cell length and W = [g(x)f'(x) — f(x)g’(x)] is
the Wronskian of Eqn (1).

Because the core of a ribbon fibre is surrounded by a
cladding with a lower refractive index (Fig. 1), light expe-
riences total internal reflection from the side boundary of
the ribbon for the angles of incidence lower than the critical
one. If the light field penetration depth into the cladding is
neglected, the field vanishes at the boundary. It is con-
venient to select the independent solutions of Eqn (1) in a
cell so that one of them coincides with the field in the
extreme right cell (in this case, f(A4/2) = 0), while another
coincides with the field in the extreme left cell, so that
g(—A/2)=0. In this case, it follows from (Al) that
T, =0, and T», = SpT. Such a choice of the functions
leads to the boundary conditions a; =0, by = 0 imposed
on the coefficients for a grating consisting of N cells.

By substituting these conditions to the solution of a
linear recurrent relation, we can derive the dispersion
equation of the form sin(NS) =0. The spectrum of S
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obtained from the dispersion equation is purely real because
of the absence of the side radiative losses. The mode
eigenfrequencies linearly depend on the mode number /
and the band number n as

S:Kn+7;—vl, I=0,1...N—1; K=0,1... (A2)

In accordance with the general concepts, it follows from
(A2) that each band contains N modes. The / = 0 mode for
the resonance structure under study is either the antiphase
(for odd K) or in-phase (for even K) mode.
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