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Influence of the Talbot effect on the loss permutations
of Fabry — Perot resonator modes

N. Kumar, V.I. Ledenev

Abstract. The loss permutations of Fabry—Perot resonator
modes caused by the harmonic spatial perturbation of the
radiation phase on one of the mirrors are studied numerically.
The periods and amplitudes of perturbations are found at
which the second or third mode in the eigenvalue modulus
becomes the first mode. It is shown that in the case of
perturbations with the period /), at which the Talbot length is
equal to the double resonator length, the permutations are
caused by an increase in the losses of the fundamental mode.
It is also shown that the perturbation amplitudes with the
period /), which equalise losses of the modes, depend linearly
on the inverse Fresnel number F~!.

Keywords: Fabry— Perot resonator, mode composition, perturba-
tions.

1. Introduction

The influence of perturbations of the radiation phase on
mode characteristics has attracted the attention of research-
ers from the time of the first studies on the mode
composition of open optical resonators. Many papers
devoted to this problem published before 1990 are cited
in monograph [1], where the influence of phase perturba-
tions was analysed in stable, plane, and unstable resonators.
For resonators of a special type, changes in the mode
parameters caused by deviations of the shape of resonator
mirrors from a perfect shape were also considered [2]. The
most important types of perturbations existing in optical
resonators are well known at present. Most of them
(displacements, tilts and sagging of mirrors, and thermal
lenses) can be classified as large-scale perturbations [1].
Another type of perturbations is small-scale random
variations in the refractive index of an intracavity medium
[1]. Until recently, the mode characteristics of optical
resonators with perturbations of the intermediate scale were
not studied.

However, the effect of perturbations of the radiation
phase on the mode characteristics of wide-aperture semi-
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conductor amplifiers and lasers with resonators produced
due to reflection of radiation from the crystal chips has been
adequately studied. The main process preventing the
enhancement of the output power of these devices is the
filamentation of radiation resulting finally in the damage of
reflecting facets. The theoretical and experimental study of
filamentation showed that it is controlled by the Talbot
effect [3]. This is explained by the fact that after the round
trip of radiation in the resonator, the field perturbations,
which appeared near one of the mirrors and have the scale /,
for which the Talbot length is twice the resonator length, are
reproduced. As a result, a periodic modulation of the carrier
concentration and refractive index appears near the corre-
sponding mirror.

The calculations of the established state of the field and
the nonlinear active medium of semiconductor amplifiers
and lasers give a strongly irregular asymmetric [4] or
symmetric [5] distribution. The mode composition of a
perturbed resonator was not determined in the numerical
studies of filamentation probably because of the difficulty of
this problem.

In Ref. [6], a simpler problem was solved, namely, the
losses and spatial characteristics of the lowest modes of the
Fabry—Perot resonator were studied in the case of weak
harmonic spatial perturbations (HSPs) of the radiation
phase on one of the mirrors. Such an approach cannot
replace the solution of problems for different perturbations
of the resonator such as misalignments, deviations from the
parallel arrangement of mirrors, weak sagging of mirrors,
etc. However, it allows one to estimate the influence of
perturbations of any scale on the losses and spatial
characteristics of the lowest modes in the Fabry—Perot
resonator.

The loss permutations of the Fabry-—Perot resonator
modes caused by periodic phase perturbations have not been
studied so far. This study is of interest for controlling the
mode composition of lasers and is important for the
understanding of processes proceeding in gas lasers with
turbulence or acoustic disturbance in the active medium.
One can also assume that variations in the mode compo-
sition of wide-aperture Fabry—Perot resonators caused by
periodic perturbations of the radiation phase on one of the
mirrors correspond qualitatively to variations in the mode
composition of semiconductor amplifiers and lasers men-
tioned above. In this case, the study of the loss permutations
of the Fabry—Perot resonator modes is important for the
substantiation of some assumptions about the development
of filamentation. In addition, this study is also of impor-
tance for the theory.
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In this paper, we studied the loss permutations of the
Fabry—Perot resonator modes for HSP frequencies near
I;’'. Tt is at these perturbation frequencies that the loss
permutations occur at minimal perturbation amplitudes [6].

2. Investigation procedure

We calculated the mode characteristics of an optical
resonator from a set of field distributions on an unper-
turbed mirror obtained after successive round trips of
radiation in the resonator [7]. Analytic expressions for the
eigenfunctions [1] were used both for the construction of
the field distribution from which iterations began and for
obtaining a system of algebraic equations, whose solutions
were employed for determining the eigenvalues and
eigenfunctions of the perturbed resonator. To control the
accuracy of the algorithm, we determined the difference of
the moduli of the eigenvalues, which were found numeri-
cally and analytically for the unperturbed resonator. In all
cases studied, the maximum variation in the eigenvalue
moduli caused by HSPs exceeded this difference by more
than an order of magnitude.

For each perturbation Asin(2nx/l) at the scale /, we
calculated a set of complex eigenvalues and eigenfunctions
[v,(e), Uj(x; €), where j =0, 1,..., M — 1 is the mode number;
M is the number of modes; x is the transverse coordinate;
and ¢ shows that the eigenvalues and eigenfunctions are
perturbed]. The moduli of complex spatial distributions
Uj(x;¢) were always normalised:

|Uj(x; ¢)]
U...(x: = —_—
|Unlx:e)] max |U;(x;e)|
X

Because large-amplitude HSPs cause the loss permuta-
tions of the modes, we used the reordering of the first modes
over the moduli of eigenfunctions |U,(x)| (j =0, 1, 2, 3).
The degree of deviation of the perturbed distribution from
the unperturbed one was described by the expression

X

We assumed that Dy; is greater for i # j than for i = j. After
the reordering, the mode close in shape to the fundamental
mode (j=0) came to the first place, the mode close in
shape to the first mode (j = 1) was at the second place, etc.
The mode losses were permuted correspondingly. If the
algorithm operated correctly, the losses of different modes
were a continuous function of the perturbation period. An
incorrect reordering resulted in jumps of mode losses. Such
jumps appeared when perturbation amplitudes were
approximately twice as large as those in paper [6]. The
replacement of the eigenfunctions of an unperturbed
Fabry—Perot resonator found analytically by the eigen-
functions calculated numerically did not improve the
algorithm operation: the perturbation amplitude at which
the jumps of losses appeared remained the same.

3. Results of calculations

Consider the influence of the spatial frequencies of a
perturbation from the region near ;' on the mode
characteristics of the Fabry—Perot resonator. Figure 1
shows the dependences of losses Lj(e) =1 — \yj(g)|2 of the
first modes on the dimensionless frequency w, = /,// of the

perturbation (/, and / are the phase perturbation periods on
the resonator mirror). The value of /, was determined from
the equality of the double length of the resonator to the
Talbot length: 2L = ki§ /n, where k is the wave number.
The radius a of mirrors was chosen so that the Fresnel
number F = (a/lo)2 was equal to 16, i.e., four perturbation
periods [, fitted in the radius a. One can see from Fig. 1
that the increase in the HSP amplitude for w, = 1 results in
a substantial increase in the fundamental-mode losses, so
that they become first equal to the first-mode losses
(Fig. 1a), then to the second-mode (Fig. 1b), and the
third-mode (Fig. 1c) losses. In this case, the distribution
over the losses of the 1-3 modes is not violated. Such a
situation also takes place in some frequency region near
w, = 1.
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Figure 1. Dependences of losses L;(¢) of the first (j = 0, 1, 2, 3) modes of
the Fabry—Perot resonator on the dimensionless frequency w, of
sinusoidal spatial perturbations of the perturbation amplitude
A =0.092 (a), 0.146 (b), and 0.197 (c). The Fresnel number is F = 16.

We can assert that the influence of the Talbot effect on
the fundamental-mode losses increases with increasing
perturbation amplitude in the frequency region near
w, = 1. However, beyond this region, the loss permutations
for the first modes take place. Thus, for w, = 0.87 — 0.95
and w, = 1.05 — 1.13, the second-mode losses are smaller
than the first-mode losses (Fig. Ic). It follows from a
comparison of Figs 1c and 1b that the appearance of the
region where the second and first modes are permuted is
explained by the increase in the losses for the fundamental
and first modes in the corresponding perturbation range.
The lowest losses in the perturbation range studied (w, =
0.6 — 1.15) correspond to the fundamental (w, = 0.6— 0.93),
second (w, = 0.93 —0.95), first (w, = 0.95 — 1.05), second
(w, = 1.05 —1.07), and again the fundamental mode (w, =
1.07 — 1.15) (Fig. 1c). Figure 2 shows the distributions
|Upj(x)| for modes with identical losses for w,=1. A
noticeable asymmetry of the distributions with respect to
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the resonator axis is caused by the use of a sinusoidal L[
perturbation. One can see that the equating of the funda- j=0
mental-mode losses with losses of higher-order modes is 0.075
caused by a greater modulation depth of the spatial 0.050 3
distribution of the fundamental mode. The profiles of the Ul L ) a
first modes (j =1, 2, 3) are less distorted in this case. 0.025 C
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Figure 3. Dependences of losses L; of the first modes (j =0, 1, 2, 3) on
: ' : he HSP amplitude for the Fresnel F=1 4
003 —002 —oo1 L}eZIS amplitude for the Fresnel numbers 6 (a), 6 (b), 4 (c) and
points of the curves Ly(e), L(¢), L-(¢), and Lgy(¢), Li(e),
L,(¢)] draw together with increasing F and are displaced to
the lower perturbation amplitudes. This can be explained by
c an increase in the sensitivity of the fundamental mode to
HSPs and a decrease in the difference between the moduli of
the eigenvalues.

Figure 4 shows the dependences of the amplitudes of
perturbations leading to the equating of the losses of the
fundamental and first [curve ( /)], fundamental and second

1 1 1 .
003 —002 —o01 0 001 002 x/m [curve (2)], fundamental and third [curve (3)] modes on

Figure 2. Distributions of the eigenfunction modulus |U,;(x)| for modes
with identical losses for perturbations at the scale / =/, for Ly(e) =
Li(¢), A= 0.092 (a), Ly(c) = L,(¢), A =0.146 (b), and Ly(g) = Ls(e),
A =0.197 (c) and w, = 1. The Fresnel number is F = 16.

Consider the influence of the amplitude of perturbation
at the spatial frequency w, = 1 on the losses of the Fabry—
Perot resonator modes. Figure 3 shows the dependences of
the fundamental-mode losses and losses for the three higher-
order modes on the HSP amplitude for different Fresnel
numbers F of the resonator. One can see that the funda-
mental-mode losses are most sensitive to HSPs. Losses for
the three higher-order modes weakly depend on HSPs. Their
changes are most noticeable at small Fresnel numbers
(Fig. 3c). An increase in F noticeably reduces the influence
of HSPs on the losses of the first modes (Fig. 3a). One can
also see from Fig. 3 that the degeneracy points [intersection

F~! for w, = 1. One can see that these dependences are
close to linear, and as the number of the mode with losses
equal to the fundamental-mode losses increases, the straight

AL
2
04 | 3
1
02 +
1 1 1 1 1 1
0 0.05 0.10 0.15 0.20 0.25 F!
Figure 4. Dependences of the perturbation amplitudes 4 for the

degeneracy points on F~' for Ly(e) = Li(e) (1), Lo(e) = Ly(e) (2),
Ly(e) = Ls(¢) (3) and w, = 1.
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lines are not only displaced upward but their slope also doi>F} Marciante J.R., Agrawal G.P. [EEE J. Quantum Electron., 33,
increases. 1174 (1997).

4. Conclusions

Our calculations have shown that the method for reorder-
ing the first modes proposed in the paper allowed us to
extend the range of the HSP amplitudes at which the mode
composition of a Fabry—Perot resonator can be studied.
However, the fundamental mode retains its basic properties
at maximal perturbation amplitudes used in the method
despite the distribution irregularity (Fig. 2¢). Thus, this
approach did not allow greater perturbation amplitudes to
be obtained, and to study stronger perturbations (turbu-
lence, acoustic disturbances), it should be further
developed.

The use of a phase corrector in the Fabry—Perot reso-
nator at frequencies close to /; ' allows one to make the
losses of the first or second mode (or of both these modes
simultaneously, if the perturbation period and amplitude
correspond to a degeneracy point) the lowest ones among all
of the resonator modes. However, this is accompanied by
the distortions of the spatial distributions of the modes. The
question about mode permutations and a simultaneous
minimisation of the profile perturbation (for example,
due to the action at several frequencies) remains open.

Analytic studies of filamentation in wide-aperture semi-
conductor amplifiers and lasers are performed at present by
the perturbation method [3, 8]. In this case, the transverse
size of the lasing region is assumed infinite. As a result, the
mode structure of the resonator disappears, the transversely
homogeneous distributions of the light field and carrier
concentration prove to be the unperturbed state, which are
subjected to small periodic perturbations. This means that
filamentation is considered as a perturbation of the funda-
mental mode. At the same time, the estimates performed in
the paper have shown that in some cases the permutations of
the fundamental mode with higher-order modes begin
earlier than the noticeable deformations of its distribution.
Due to the mode permutations and equating of their losses,
lasing can occur at a few higher-order modes. This
assumption does not contradict to the data reported in
Ref. [1] (see p. 165) and calculations [4] because asymmetric
distributions obtained in Ref. [4] can be readily explained by
a superposition of the fields of several modes. Further
studies of multimode lasing by the selective method of
determination of the field configuration [7] can explain the
nature of filamentation.
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