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Deformation of the signal envelope due to a strong dispersion
of the refractive index in the gain region

N.S. Bukhman

Abstract. 1t is shown that, when a narrow-band signal with a
non-Gaussian envelope propagates in a medium with a strong
dispersion, the signal envelope being distorted due to the
dispersion of the gain (or) absorption in the medium.
Nevertheless, the amplitude-modulated signal having a
symmetric (even) intensity envelope remains the same. The
propagation velocity of the ‘middle point’ (i.e., the symmetry
centre) of the signal coincides with the real group velocity of
the wave with a given carrier frequency in the medium and
can be subluminal, superluminal or negative. Therefore, the
concept of a real group velocity (including the superluminal or
negative velocity) is also applicable in media with a strong
dispersion of the gain (or absorption).

Keywords: superluminal group velocity, signal distortion during its
propagation, dispersion.

1. The study of the propagation of a wave packet in a high-
dispersion medium has aroused considerable recent interest
(see, for example, Refs [1—3] and references therein). This
concerns first of all the propagation of the wave-packet
maximum at the superluminal group velocity (so that the
signal delay time proves to be shorter than the ‘light’ delay
time) and at a negative group velocity (so that the signal
delay proves to be negative)!. The ‘self-regeneration’ of a
partially transmitted signal (both for the negative and
superluminal group velocity of the signal) is also of
interest.?

To realise these effects in practice, the dispersion of a

IThere is no qualitative difference between the first and second effects. In
any case, we are dealing with the ‘prediction’ of a signal by a medium (see,
for example, Refs [2, 3]), which arrives at the observation point with the
‘light’ delay time. The choice between these effects depends on the relation
between the ‘light’ delay time (which is determined only by the geometrical
thickness of a substance layer) and the duration of the ‘prediction’ interval
(which also depends on dispersion).

2This effect is also a side result of the ‘prediction’: the regeneration of a
non-transmitted part of a signal can be treated as an inevitable error (it is
impossible to ‘predict’ a sudden termination of the signal transmission as
long as the transmitted part of the signal does not contain information on
this termination)].
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medium should be high [1], i.e., the refractive index of the
medium should strongly depend on the radiation frequency.
At the same time, a strong dependence of the refractive
index of the medium on the radiation frequency should be
accompanied by the same strong frequency dependence of
the absorption coefficient (or gain) of the medium (accord-
ing to the Kramers — Kronig relations [4]). Therefore, strictly
speaking, a high-dispersion medium always selectively
absorbs or amplifies light, and a study of the propagation
of a wave packet in it should take into account not only the
dispersion of the real refractive index but also the dispersion
of the absorption coefficient or gain of the medium.

This can be done most simply by using the complex
delay time of a signal [2, 3, 5]°. The consideration of the real
and imaginary parts of the time delay during the signal
propagation in a high-dispersion medium is inevitable in the
general case when both the real and imaginary parts of the
complex refractive index of the medium strongly depend on
the wave frequency. In this case, the real and imaginary
parts of the signal delay time prove to be of the same order
of magnitude, and we arrive at the following alternative.
Either they both are small compared to the signal duration
and, therefore, can be neglected or they are comparable with
the signal duration and should be taken into account.

It should be emphasised that the signal becomes inevi-
tably strongly distorted when the imaginary delay time is
comparable with the signal duration*. The exception from
this rule is a signal with a Gaussian envelope, whose
complex envelope is independent of the imaginary delay
time [2, 3, 5]. It is for this reason that no distortions were
observed in the calculations of a Gaussian signal propagat-

3Review [5] contains not only a number of original results on the super-
luminal and negative group velocities of a signal in a dispersion medium
but also a detailed analysis of the meaning of the complex group velocity
(and, hence, of the complex delay time of a signal). Of course, all quantities
measured by real instruments are real. Here, as in Ref. [5], we bear in mind
that the real amplitude and phase of a signal being received coincide
approximately with the real modulus and argument of a complex function,
which differs from the initial time envelope only by the complex shift of the
argument. Therefore, it is convenient to use the complex delay time of a
signal for studying distortions of its shape.

4Of course, the signal distortion can be caused not only by the imaginary
part of the delay time (appearing in the first order of the classical
dispersion theory) but also by the amplitude diffusion (appearing in the
second order [5, 6]) and higher-order corrections. Nevertheless, the first
order of the dispersion theory (i.e., the complex delay time approximation)
has a special status compared to higher-order corrections. It differs
qualitatively from the higher-order corrections in that the first-order
signal distortion (i.e., its complex delay time) cannot be eliminated by
narrowing the signal spectrum (i.e., by increasing its duration) because the
complex delay time of the signal does not tend to zero when the signal
spectrum is narrowed.
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ing in a frequency-selective amplifying medium despite the
complex delay time of the signal [2].

This paper makes up for this deficiency and is devoted to
the analysis of distortions of a non-Gaussian signal propa-
gating in an amplifying medium. The approach used here is
completely similar to that proposed in Refs [2, 3]. The only
difference is that now we consider not Gaussian but three-
peak signals (which consist, however, of three Gaussians).
Even this modification proved to be quite sufficient to
demonstrate the type of signal distortions in an amplifying
dispersion medium.

2. Consider the propagation of a narrow-band signal

E(z,t) = A(z, 1) exp(—iw, 1) + A™(z, t) exp(iw 1) (1)

with the carrier frequency w; and the complex envelope
A(z, t) in a homogeneous isotropic medium along the z axis.
Let the wave packet be propagating in a medium with the
refractive index n(w) = ny + An(w), where An(w) is the
complex addition to the refractive index of the medium,
which is caused by the gain line centred at the frequency w,
and n is the background (non-resonance) refractive index
of the medium, which weakly depends on the radiation
frequency near wy.
In Ref. [2], the expression

A(z, 1) = explikon(wg)z + ¢g(20)]4 V[t — 1(2)] 2)

was obtained in the complex delay time approximation for
the complex envelope of a wave packet of an arbitrary
shape propagated through a dispersion medium layer of
thickness z. Here, kg = wg/c is the wave number; ¢ = o,z is
the optical thickness of a medium layer; o = ikyAn(wy) is
the amplitude gain at the centre wy of the spectral line;
2(Q) = ikoy 'An(wy + Q) is the complex form-factor of the
line; Q = w — w, is the frequency detuning of the wave
from wj; Q)= w; —w, is the carrier frequency shift;
A<0)(t) = A(0,¢) is the signal shape on the medium layer
boundary (i.e., for z = 0); and the complex delay time 7(z)
of the signal is determined by relations

(2) =10+ 1, +i = =
(z)=19+1 T, Top=— =,
0 r i 0 Uph’ ph 1
3)
.= éalmg(QO) = _éaReg(QO)
r — aQO b 1 — aQO b

where the parameter 7, is the vacuum time of the signal
delay, which is always positive. The parameter 7, is the
additional (with respect to the vacuum time) real delay time
of the signal, which can be both positive and negative’. If
7, > 0, then the signal propagates at a subluminal group
velocity, if 7, < 0, but 7y 4+ 7, > 0, the signal propagates at a
positive superluminal velocity, and if 7y+7, <0, it
propagates at a negative group velocity. The parameter
7; is the imaginary part of the signal delay time. We will
show below that it describes the signal distortion due to the
dispersion of the absorption coefficient (or gain) of the
medium.

3. Let us formulate some general features of the
distortion of the signal envelope A(f) due to a purely

St is this time that can be treated as the dispersion delay (when 1, is
positive) or advance (when t, is negative). The real part of the delay time is
related to the real group velocity (ty + T, = z/vg,) by the known expression
[vg = (ORek(w)/0w) 1.

imaginary time delay, when the function A(¢) is replaced
by the function A4,(¢) = A(¢t — i4), which differs from A(t)
only by a purely imaginary time delay® i4.

Consider the case when the initial signal has a modulated
amplitude [i.e., 4(¢) is an analytic function having real
values for the real argument ¢]. We can claim the following:

(1) The function A;(¢) is not necessarily real for the real
argument 7. This means that the amplitude-modulated
signal, which has experienced an imaginary shift, acquires
in the general case the phase modulation as well.

(ii) If the function A(¢) has no singularities in the band of
the complex plane between the straight lines Im7 =0 and
Im¢ = —4 and also rapidly decreases at t — oo within this
band, then

rm A(r)dt = rm A ()de,

—00 —00

i.e., the area under the signal envelope is preserved’.

(iii) A(t +14) = A™*(t —i4), i.e., a change in the sign of
the imaginary shift results in the replacement of the envelope
by the complex conjugate envelope and does not lead to a
change in the signal intensity envelope:
|A(1 —id)* = |A(1 +i4)]*.

(iv) |A(r —id)* = |A(D)]* + O(4?), ie., in the case of a
small imaginary shift, the distortion of the time dependence
of the amplitude-modulated signal intensity has a higher
order of smallness. This means that the distortion of the
intensity envelope due to the imaginary shift is first
unnoticeable, but then drastically increases.

() If |A()* = |A(=1)|%, i.e., if the function A(7) is even
or odd with respect to ¢t = 0, then |A](t)|2 = |A1(—t)|2, ie.,
the ‘shifted” function has the same properties. This means
that in the approximation of the complex delay time of the
signal, the imaginary part of the delay time characterises
only the deformation of the signal envelope (the imaginary
shift only distorts the signal, without the shift or vanishing
of its centre of symmetry, if the initial signal had this centre).

4. Consider, as in Ref. [2], the gain line with a Loren-
tzian shape of width AQ,, and the coherence time
Teoh = 2/AQ))>. In this case,

g(Q) = (1 -i2Q/AQ, )" (4)

Consider (in contrast to Ref. [2]) the propagation of the
three-peak signal

n=on 57 ()

©)

+§ex
4 P

with the characteristic duration 7. This signal represents a
‘trident” composed of three Gaussians (Fig. 1a).

Let us use the same parameters of the signal and the path
length as in Ref. [2]%: the signal duration T'= 107, and the

°In the general case the delay time is a complex quantity. Because the
meaning of its real part is obvious, we consider here only its imaginary
part.

7But not under the time dependence of the radiation intensity. Even if the
radiation intensity is an analytic function, because the absolute value is
calculated nonanalytically, the complex shift of the complex envelope of
the signal leads to the results that differ from those obtained due to the
complex shift of the signal intensity envelope.

$Note that no significant distortion in the shape of the Gaussian signal was
observed at these values of parameters in Ref. [2].
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Figure 1. Distortion of the initial three-peak signal (5) (7 = 107y,
Xo = QoTeon = 5) propagating in an amplifying medium for ¢ =0, t=0
(a); & =300, 1= (—10.651+4.438i)1., (b); and & =600, T = (—21.302+
8.8761)t. (). Curves (/) are numerical calculations, curves (2) are
calculated from expressions (2) and (3), curves (3) are calculated from
expression (2) for 7; = 0.

shift of the carrier frequency with respect to the spectral line
centre is Xy = QyT.on = 5. The time dependences of the
signal intensity I(z,7) = |A(z,7)]* calculated for different
path lengths & (and, hence, for different complex delay times
7) are shown in Fig. 1. The calculations were performed
numerically and also in the complex delay time approxi-
mation [i.e., using analytic expressions (2) and (3)], and in
the real group velocity approximation [i.e., using expression
(2) with the additional condition t; = 0). To compare the
results obtained at different optical densities of layers, they
were normalised to the intensity at the signal centre
calculated in the complex delay time approximation®.
Figure 1 (and its comparison with data [2]) shows that
the initial time dependence of a signal propagating in a
medium with the gain dispersion is indeed distorted. This
distortion is well described in the approximation of the
complex delay time of the signal. An attempt to ignore the
imaginary part of the delay time leads to the results that are
unreal not only for the amplitude (which is not most

9Optical densities used here correspond to extremely large signal gains. We
assume in this paper that this problem is solved somewhat, for example, by
introducing frequency-nonselective or weakly selective absorption (see
more detailed discussion in [2]).

important), but for the time dependence of the signal as
well (which is much worse!?). The signal distortion proves to
be considerable when the imaginary part of the delay time is
comparable to the signal duration. For example, in our case,
the distortion of the signal propagated through a substance
layer with the optical thickness ¢ =300 (t; = 0.447) is
substantial, although the initial ‘trident’ can be still recog-
nised in the signal shape. For & =600 (r; = 0.887), no
traces of the ‘trident’ are remained, and the signal shape
reminds of a Gaussian.

Although the signal shape is distorted already in the first
order of the dispersion theory, its time dependence retains
its initial symmetric shape (of course, if there is what to
retain, as in our case). In this case, the middle point of the
signal travels in space at the real group velocity. When the
real group velocity is negative, the middle point of a non-
Gaussian signal still appears (as for a Gaussian signal)
behind a substance layer earlier than in front of it, whereas
in the case of a superluminal group velocity, the delay time
is still shorter than the ‘light’ delay time.

Therefore, in the general case (in the presence of
dispersion of the absorption coefficient at the frequency
used), the shape of a signal propagating in a high-dispersion
medium is strongly distorted due to the complex delay (or
advance) time of the signal. Such a distortion is absent when
the carrier frequency of the signal is specially chosen (for
example, at the centre of the absorption line [1, 3] or in the
middle between two identical gain lines) and also when the
signal has a special shape (for example, a Gaussian'!).

Figure 1 can make an impression that the imaginary part
of the delay time produces the distortion of the signal
envelope, which is qualitatively similar to the amplitude
diffusion in the second order of the classical dispersion
theory (i.e., the blurring of inhomogeneities). However, this
is not the case, because the imaginary delay time of the
signal can not only smooth off inhomogeneities that are
present but also reveal hidden inhomogeneities. The latter is
demonstrated in Fig. 2, where the calculated shapes of the
signal

2
+§exp[—w} (6)

propagated in a medium under the same conditions as in
Fig. 1 are presented. One can see that the situation shown
in Fig. 2 is completely opposite to that presented in Fig. 1:
the initially bell-shaped signal becomes U-shaped during its
propagation.

Moreover, the signal distortion in the complex delay
time approximation is reciprocally periodic for signals of
some type, i.e., the signal shape periodically returns to the
initial shape with increasing the path length. This situation

190r better, which depends on the point of view. Indeed, the signal
distortion (in the complex delay time approximation) reduces to the shift
of its complex envelope in the complex plane. Therefore, the observation
of the signal distorted this way can be considered as the experimental
realisation of the analytic continuation of the function from the real axis to
the complex plane. Such a possibility is of interest for data processing
systems.

HTaking this circumstance into account, a Gaussian signal and the centre
of the absorption line considered simultaneously in [1] both provide the
stability of the shape of a signal propagating in a high-dispersion medium.
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Figure 2. Distortion of the initial bell-shaped signal (6) (7' = 107y,
Xo = QTeon = 5) propagating in an amplifying medium for ¢ =0,7=0
(a); &=300, 7=(—10.651+4.438i)t,, (b); and ¢=600, 7=
(—21.302 + 8.876i) 7,1, (c). The notation of the curves is as in Fig. 1.
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Figure 3. Distortion of the initial three-peak signal (5) (7' = 4007y,
X = QTeon = 2) propagating in an amplifying medium for ¢ =0,7=0
(a); & =4000, ©=(—460 -+ 640i)t.,, (b); and &=18000, ©= (960+
1280i)7.,p, (c). The notation of the curves is as in Fig. 1. Curve (3) is
plotted at a different scale compared to curves (/) and (2).

is illustrated in Fig. 3 for signal (5). The notation in this
figure is the same as in Figs 1 and 2. Note that curve (3) in
Fig. 3, which was calculated in the real group velocity
approximation, is plotted at a different scale'> (for the
convenience of comparing the signal shapes).

One can see that the initial three-peak signal (see Fig. 3a)
is virtually completely ‘normalised’ over the path length
& =4000, which does not prevent it to acquire again the
three-peak shape when & = 8000. It is clear [see (9)] that
such a behaviour of the signal is related to the periodicity of
an exponential as a function of the imaginary part of its
argument.

5. Let us summarise the results of the study:

(1) A narrow-band non-Gaussian signal is strongly
distorted during its propagation in a medium with a high

12All the curves in Figs 1 and 2 are normalised to the intensity at the signal
centre, which was calculated in the complex delay time approximation. In
Fig. 3, only the dependences calculated numerically or in the complex
delay time approximation were normalised in this way. The time depend-
ence of the signal calculated in the real group velocity approximation was
normalised to its own intensity at the signal centre. Otherwise (see Figs 1
and 2), it would be difficult to compare it with the dependences calculated
numerically and in the complex delay time approximation because of a too
great difference in their amplitudes.

dispersion of the gain or absorption. This distortion can be
easily taken into account in the complex delay time
approximation. The real part of the delay time characterises
the delay (or advance) of the signal, and the imaginary part
determines its distortion.

(i1) The manifestation of the same imaginary part of the
signal delay time depends substantially on the shape of its
envelope. In particular, the amplitude-modulated signal,
whose complex envelope has the centre of symmetry, is
distorted, but remains symmetric and its centre propagates
at the real group velocity. Therefore, the real group velocity
(subluminal, superluminal or negative) in the amplifying or
absorbing dispersion medium retains the meaning of the
propagation velocity of the centre of symmetry of the signal,
which is distorted during its propagation remaining sym-
metrical.

(iii) In the complex delay time approximation, a
Gaussian wave packet (unlike a non-Gaussian packet)
propagates without a change in the envelope shape and
duration. Therefore, its propagation along a path without
distortions does not warrant at all the undistorted trans-
mission (along the same path) of a signal of different shape.
In other words, the propagation velocity of a Gaussian
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signal (including the superluminal and negative velocities)
has its own meaning consisting in the fact that this velocity
can exist even when the concept of the group velocity of a
signal with an arbitrary shape of the envelope cannot be
used.
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