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On self-focusing and defocusing of few-cycle pulses
in hydrogen-containing ferroelectrics

S.V. Nesterov, S.V. Sazonov

Abstract. The role of diffraction in the propagation of few-
cycle pulses is studied in hydrogen-containing ferroelectrics in
the case of the active role of optical electronic and tunnelling
transitions. It is shown that, unlike optical electronic
transitions, tunnelling proton transitions can produce the
defocusing effect if they are overlapped by the spectral
components of the pulse. The parameters of a medium and the
pulse are estimated at which the defocusing effect dominates
over self-focusing. It is shown that nonresonance quasi-
monochromatic pulses in the optical range are subjected to
self-focusing in such media.

Keywords: few-cycle pulse, tunnelling transition, self-focusing,
defocusing.

1. Introduction

Self-focusing of optical pulses is one of the main effects
preventing the use of solid homogeneous dielectrics in
optical fibres for fibreoptic communication systems. This
effect can be compensated for, as a rule, with the help of
dopants distributed inhomogeneously and axially symmet-
ric in the cross-sectional area of a glass fibre [1—-3]. Self-
focusing can change to defocusing in transparent solvents
after the addition of absorbing dyes into them [4].

The optics of few-cycle pulses (FCPs) of duration down
to one cycle of electromagnetic oscillations, for which the
concept of a carrier frequency is no longer applicable, has
been extensively developed in the last years [5—7]. The
properties of the final stage of self-focusing of FCPs were
studied in Ref. [8], where dumbbell-like structures appearing
in the positive-dispersion region were analysed in detail and
the self-division effect accompanying self-focusing of FCPs
was investigated.

The spectral width dw of the FCP is comparable with its
central frequency and for the pulse duration 7, ~ 10 fs
achieves the value of ~ 1/7, ~ 10" s7'. Therefore, the
spectrum of FCPs well overlaps the frequencies of normal
vibrational and vibronic modes [9], as well as of tunnelling
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transitions in hydrogen-containing ferroelectrics [10]. It was
shown in Ref. [10] that high-power broadband electromag-
netic FCPs can efficiently propagate in a soliton regime in
the system of strongly interacting tunnelling transitions at
the temperature close to the temperature of the ferroelectric
phase transition, where the absorption of weak monochro-
matic waves is usually strong. It was also shown in Ref. [10]
that these pulses are stable with respect to self-focusing. At
the same time, the FCP spectrum lies, as a rule, in the
transparency region for electronic transitions. The nonlinear
refractive index n, of solid dielectrics in this region is usually
positive, which results in strong self-focusing.

The question arises of whether tunnelling transitions in
ferroelectrics interacting with FCPs can compensate for self-
focusing caused by optical electronic transitions occurring in
the ferroelectric. A positive answer to this question can
substantially simplify the manufacturing technology of
fibres for fibreoptic communication systems using FCPs
for the data transfer. In this case, there would be no need to
produce artificially the inhomogeneity across the fibre cross
section with the help of dopants, and the tunnelling
quantum transitions between the proton states in a two-
well potential, which are inherent in crystals of the KDP
type, can play the role of transitions in absorbing dyes. This
paper is devoted to the study of this question.

2. Formulation of the model and basic equations

Consider a ferroelectric of the KDP type, in which tun-
nelling proton transitions can occur between the minima of
two-well crystal potentials stimulating the displacement of
heavy potassium ions along the ferroelectric axis [11]. The
tunnelling of protons occurs in a perpendicular plane. In
addition, the ferroelectric has the electron-optical suscepti-
bility with distinct nonlinear properties in the transparency
region.

Consider a pulse propagating along the optical axis,
which coincides with the ferroelectric axis. In this case, first,
tunnelling transitions will occur and, second, the quadratic
electron-optical nonlinearity will be absent. Consider the
case when the FCP spectrum lies in the transparency region
for electronic transitions.

The Maxwell equation for a FCP propagating in such a
medium has the form

1 °E 4nd°P
EGETE M

where ¢ is the speed of light; E is the pulse-field strength;
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is the macroscopic polarisation; P; is the contribution to
polarisation from tunnelling proton transitions; and P, is
the electronic polarisation.

Under the condition

Wty < 1 3)

(wy is the quantum tunnelling frequency, 7, is the input
pulse duration), P, satisfies the equation [10, 12— 14]

P
5, = Ndo Wsin, @)

where N is the concentration of tunnelling protons; d is the
tunnelling transition dipole moment; W is the initial dif-
ference of populations of the symmetric and asymmetric
proton states; and

d
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Because electronic transitions with the characteristic fre-
quency @, lie in the transparency region, i.e., [9]

0Ty > 1, (6)

the expansion

2
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is valid for the electronic polarisation [9, 12—16], where x
and y; are the linear and cubic nonlinear inertialess
susceptibilities and x = 0.5(621/6w2)|w:0 is the parameter
of the electronic group dispersion in the low-frequency
region. Because electronic transitions in the transparency
region have the normal dispersion and facilitate self-
focusing, we have y3; > 0 and x > 0.

By substituting (2)—(7) into (1) and using the approxi-
mation of quasi-unidirectional propagation along the
optical axis [17], we obtain the nonlinear wave equation
describing the FCP dynamics

%0 o (a0 2% ¢
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Here, 1=t —nz/c; n=(1+ 4mty)'/? is the linear refractive

index of the medium; a = 2nd*NwyW/(licn); b = 2mh?y;x
(ned®'; g = 2nk/(nc); and 4 is the transverse Laplacian.
We have obtained (8) by neglecting the dispersion of the
electronic nonlinearity as the effect of a higher order of
smallness in approximation (6).

In the absence of tunnelling transitions and diffraction,
expression (8) transforms to the modified Korteweg—de
Vries equation for E, which has no soliton and breather
equations in our case (b >0, g>0). Because y; >0,
electronic transitions promote self-focusing of pulses. In
the absence of electronic transitions, equation (8) transforms
to the sine-Gordon equation, whose solitons can be stable
with respect to transverse perturbations [10]. Thus, equation
(8) contains contributions from electronic and tunnelling
transitions, which produce for their solitons the focusing

and defocusing effects, respectively. Therefore, the study of
dynamics of FCPs using equation (8) can shed light on the
problem of diffraction of such pulses in the nonlinear
regime.

3. Approximate analysis of the dynamics
of a soliton-like pulse in the eikonal
approximation

We will find the approximate solution of equation (8) by
the method of the averaged Ritz—Whitham Lagrangian
[18, 19]. To equation (8), the Lagrangian density
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corresponds. We will take a trial solution of equation (8) in
the form of a solitary FCP based on the following rea-
soning. In the case of quasi-soliton propagation of the
pulse, the states of the medium in front of the pulse and
behind it are identical. Due to condition (3), the FCP
spectrum overlaps tunnelling transitions (i.e., it contains
Fourier components that are resonant with tunnelling
transitions). Therefore, during the FCP propagation, a
complete population inversion should occur in the tunnel-
ling subsystem accompanied by its returning to the initial
state. For the electronic transitions, the situation is opposite
because of (6), and, hence, a change in the population of
electronic levels is comparatively weak. These conditions
can be satisfied by taking a trail solution in the form
[20, 21]

0 = 4arctan{exp[p(tr — ®)]}, (10)
where p(z,r,) and &(z,r,) are the sought-for functions of
coordinates. The function @ is a soliton eikonal [15, 16],
while p has the meaning of the inverse duration propor-
tional to the pulse amplitude, which becomes clear from the
expression for the FCP electric field

E 06
d P 2psech[p(t — @)].

(11
We will assume below that the FCP profile at the
entrance to a medium (for z =0) has the form (11), where
p=py=1/7.
By substituting (10) into (9) and integrating the expres-
sion obtained over the ‘fast’ variable 7, we find the ‘averaged
Lagrangian’
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By varying A over @ and p, we write the corresponding
Euler—Lagrange equations in the form

o0 VP ca ¢ 2
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where V|, =V, &

In the one-dimensional approximation (4, = 0), we find
from (13) and (14) that p = py = 1/1, = const, v, =0, and
® =z(1/v—n/c), where the propagation velocity v in the
laboratory system is determined by the relation

1_n+ 2,
== ary

(15)

g+4b
v
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In the absence of an electron subsystem (g = b = 0),
solution (10), (11), (15) coincides, as expected, with the exact
solution of the sine-Gordon equation. The electronic tran-
sitions further slow down the pulse propagation.

The first part of equation (13) describes diffraction in the
transverse dynamics of the pulse. The neglect of the right-
hand side of (13) corresponds to the eikonal approximation
(geometrical optics approximation) for soliton-like pulses
[19]. In this case, the system (13), (14) takes the form of the
hydrodynamic equations for an ideal liquid [where (13) is
the Cauchy integral and (14) is the continuity equation].

Consider this case in more detail. By comparing (13)
with the hydrodynamic Cauchy integral [22], we obtain the
equality

Jd_p__L_ﬁ(g+4b)
p - np

where p is the ‘pressure’ and p is the ‘density’ of a
hypothetical ideal liquid. By differentiating the latter rela-
tion with respect to p, we obtain

dp 2| a )
@_n[pz (g+4b)p:|.

It is obvious that the stability criterion for the FCP (11)
corresponds to the condition dp/dp >0 of the liquid
flowing [10, 20, 21, 23, 24]. Then, the input value p = p,
should satisfy the inequality

1 . a 1/4
=—< = R
Po Tp Pe (g+4b>

where p¢ is the critical value of the inverse pulse duration,
which divides the self-focusing and defocusing regimes
neglecting diffraction. The critical pulse duration is defined
as 7, = 1/p;. For 1, <1, defocusing occurs, and in the
opposite case — self-focusing.

Therefore, the eikonal approximation restricts the pulse
amplitude and duration. We will present the corresponding
numerical estimates taking diffraction into account. Con-
dition (16) is necessary but not sufficient (see below) for the
FCP not to experience self-focusing.

One can see from (15) that, when condition (16) is
fulfilled, the velocity v monotonically increases with the FCP
amplitude. For this reason, the parts of the pulse front with
a greater amplitude, corresponding to the centre of the FCP
cross section, leave behind during the pulse propagation the
parts where the amplitude is smaller. Due to this defocusing

(16)

effect, the pulse can take the form of an ‘electromagnetic
shell’ or a ‘light bullet’ [25]. If condition (16) is not fulfilled,
we arrive at the opposite situation, when the FCP self-
focusing finally occurs.

4. Consideration of diffraction

Consider now the influence of diffraction [the right-hand
side of (13)] on the FCP dynamics. System (13), (14) slightly
differs from the corresponding system describing the
transverse dynamics of a continuous light beam [26]. We
assume that the transverse structure of the FCP is axially
symmetric. By writing (13) and (14) in the cylindrical coor-
dinate system z, r, we will seek the approximate solution for
p in the self-similar form [26]

R2 ,2
P =0 g 0 | o | (47
where R, is a constant equal to the FCP input radius and
R(z) is the current radius.

Below, we are interested in the axial dynamics (r2 / R?
< 1) of the pulse. Therefore, we will write the solution for @
in the form of the expansion

=@+ +
By substituting (17) and (18) into (13) and (14) and

retaining the terms of the order of ~ r? /Rz, we obtain, by
equating expressions with the same powers of r,

P(z,r) (18)

Rl
_r 19
f R (19)
4B
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where 4 = ac/(np RY); B= (c/n)(g+4b)p§R6‘; D =n’c*x
(3n’piRy)™"; the prime denotes the derivative with respect
to z; the last terms in (20) and (21) take into account the
deviation from the geometrical optics approximation.

By substituting (19) into (20), we obtain the equation

oU

/l___
RT= OR

(22)

for the FCP radius, which formally coincides with the
equation of motion for a Newtonian unit-mass particle in
an external field with the potential energy

B 5D

__gyp4_ b D
U(R) = —AR R + 3 R-. (23)
The first integral in (22) has the form
R/ 2
( 2) +UR) =2, (24)

where the constant ¥ = —ARy — b/Ry + SDR3/2 is deter-
mined from the input condition R'(0)=0 [see (19);

/>(0) = 0 because the input pulse has a plane front].
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By integrating (24), we can represent the solution R(z) in
quadratures. On the other hand, by analysing the curve
U(R), we can make qualitative conclusions about the
behaviour of the radius of the FCP propagating in a
medium.

The last term in the right-hand side of (23) takes into
account diffraction effects in the transverse dynamics of the
FCP. This part of U(R) is similar to the potential energy of a
harmonic oscillator, the difference being that here R > 0.
Therefore, unlike the case of continuous beams with a
distinct carrier frequency, diffraction enhances self-focusing
of FCPs. This difference can be explained in the following
way. The dimensionless parameter is ¢ = 1/ R, where 4 is the
characteristic wavelength determining the degree of influ-
ence of the wave properties of the pulse on its dynamics. For
¢ < 1, the eikonal approximation is fulfilled. If ¢ ~ 1, the
wave properties (diffraction) should be taken into account.
During self-focusing of a monochromatic beam, its wave-
length 2 almost does not change, whereas R — 0, which
results in an increase in ¢ and in the role of diffraction.
Therefore, due to diffraction, self-focusing of the beam can
change to its divergence, if the beam intensity is lower than a
threshold value [26]. The FCP has no carrier frequency, and
its characteristic size along the propagation direction plays
the role of 4 ~ vt = v/p, where v is the pulse velocity, which
only slightly differs from ¢/n in the quasi-unidirectional
approximation adopted here. Then, using (17), we obtain
&~ cR/(npORg) at the centre of the FCP cross section. One
can see from here that ¢ — 0 upon self-focusing, and the
eikonal approximation is fulfilled even better, while the
relative role of diffraction decreases.

Before analysing equation (24) in the general form, we
consider the case when the contribution of electronic
transitions can be neglected. Then, B =0, and the FCP
dynamics is described by the sine-Gordon equation [see (10)
for b = g = 0). This case was analysed in Ref. [10] using the
eikonal approximation.

One can see from (22) that defocusing is possible when
(QU/0R)g_g, < 0. This and (22) give

5¢ 1/2
Ro > R *“(12na> ’

where R, is the critical value of the input FCP radius
separating the defocusing (R > R.) and self-focusing (R <
R.) regimes. In the opposite case, a soliton in the sine-
Gordon equation experiences self-focusing. Note that the
eikonal approximation used in Ref. [10] gives only the latter
effect. Therefore, the conclusion of paper [10] about the
stability of the soliton with respect to self-focusing is valid
for pulses with a sufficiently large cross section. Let us
estimate the numerical value of R,. By taking d ~ 107 cgs
units, N ~ 10*' ecm™, Wy ~ 10 s7', n~ 1, we obtain a ~
10" s™'em™!. Then, we find from (25) R, ~ 0.1 mm.

For R, > R., the solution of equation (24) can be written
in the form

(25

Ry
, R.< Ry < \/cha
R sn[Kngi) —z/li,q1] (26)
0
__t Ry > V2R,
en(z/h, q;) ’

where 7 = 1, 2; K(q; ») is the total elliptic integral of the first

kind; sn and cn are elliptic sine and cosine, respectively;
= nRCRO/[n(IO)l/zcrp]; L, = nR.Ry/{2mct,[5(1 — R2x
ROI'?Y: g =2RG/RI—1: ¢, =0.5(1—-2R:/R3)/(1-
RZ/Ry).

Solution (26) is singular, i.e., R tends to infinity at a
finite value z = lgr = K(q; 2) [, ». The FCP defocusing occurs
as if explosively. By taking Ry ~ R; ~ 0.1 mm, 7, ~ 107 s,
and n~ 1, we find lj ~ 1 cm. Note, however, that for
z — ly;, the approximation of quasi-unidirectional propa-
gation used above is no longer valid. Indeed, one can see
from (26) and (17)—(20) that p — 0 and £, /¥ — oo for
R — o0 (Z — ldf)-

Then, the FCP propagation velocity is v = (n/c+
afb/az)*] — 0 at all the points in space. However, the
approximation of quasi-unidirectional propagation is valid
if the pulse velocity is close to c¢/n. Therefore, this
approximation is invalid for z — [y and it is necessary
to find other methods. For Ry, < R, solution (24) has the
form

@7

R(E) = Ry Kl + ..

where

(3 e bR
5 T CT, Ry

Because the radius R is positive, the coordinate z in (27)
can lie in the interval 0 < z < /;, where the focusing lens
It = LK(g). For the parameters of the medium and pulse
adopted above, we find /; ~ 1 cm.

It follows from (17) and (26) that p — oo for z — [,
which corresponds to a strong self-compression of the pulse

and its peak amplification. One can see from (18) and (20)
that for z — /i the velocity of axial propagation of the FCP

is
(n atﬁ)_l c
v=|-—+— — -,
¢ Oz n

i.e., increases. These conclusions do not contradict to the
general properties of solitons, according to which a decrease
in the duration is accompanied by the increase in the
amplitude and velocity. On the other hand, it is clear that
electronic transitions should be taken into account at the
final stage of self-focusing, when the amplitude of a soliton
strongly increases.

Consider the FCP dynamics taking electronic transitions
into account. It follows from (22) and (23) that defocusing

[(QU/OR)g_g, p—p, < 0] can be achieved when the input-
pulse parameters satisfy the condition
1 o, RH
=—< 1-— . 28
Po T pc( R02 ( )

Therefore, the consideration of the electron subsystem
along with tunnelling transitions leads to two conditions for
a stable propagation of the FCP: for its input radius (25)
and amplitude (duration) (28). In the eikonal approxima-
tion, (Ry > R.), condition (28) transforms to (16). In
addition, note that criterion (25) follows naturally from
(28) as the requirement for the integrand to be nonnegative.

Let us estimate the parameters of the pulse correspond-
ing to its stable propagation. By taking y3 ~ 107° — 107"
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cgs units [27], x Nx/wez, 7 ~0.1, w, ~10% s7!, and the
values of n, a, and d used above, we obtain pS ~ 10" 71
Therefore, the input-pulse duration should exceed 10 fs. The
pulse intensity corresponding to pS is estimated as
I, ~ cE?J4n ~ ch*(p)?/(4nd?) ~ 10" — 10" W cm ™2,
This estimate corresponds to the maximum FCP intensity.

Note that the known nonlinear Schrodinger equation
can be obtained under natural nonresonance conditions
dE/h < < o, from (8) in the limit of quasi-monochro-
matic pulses with the carrier frequency . Under these
conditions, tunnelling transitions are only weakly excited,
and, therefore, we can assume that sin0 ~ 0 — 03/6. Assum-
ing that

d% = yexpli(wt — kz)] + c.c.,

where k = —a/w +go® is the wave number in the co-

moving coordinate system, using the expansion
[1, 5, 15, 16]
! . . 1 oy
o dt’ ~ [ — ! Y
LOO Yexpli(wt’ — gz)|dt ( i + o ot
+ 4 —l//) expli(wt — ¢gz)] + c.c.
w? 012

obtain from (8), taking dispersion and nonlinearity into
account in a minimal degree, the equation

. 0
L . ) (9)
where T =1—z/vy; (n/c+a/w +3g0?)™" is the

group velocity; ot—3gcu(cu Jo* —1); o, *(cz/3g)l/4 [5T;
and f = a/(2cu )+ 3bw. Because a, b>0, we have
p >0, and equation (29) has one-dimensional soliton
solutions in the region of the anomalous group dispersion

corresponding to o > 0 or ® < @.. On the other hand, f i 1S g 16.

proportional to y; > 0 [1]. Therefore, nonresonance quasi-
monochromatic solitons of the envelope should experience

self-focusing, which usually occurs in the transparency = 18.

region of solids.

5. Conclusions

We have found that tunnelling transition play a funda-
mental role in the transverse dynamics of FCPs. Under

conditions (25) and (28) for the input parameters of a@E23.

unipolar FCP, the pulse defocusing can be observed in a
homogeneous medium. As mentioned above, equation (8)
has no exact analytic solutions in the form of solitary
pulses. The exclusion is the case g = —2b corresponding to
the integrated equation Konno-Kamiyama—Sanuki [28].
Therefore, the choice of a trial solution in the form (10) is
somewhat arbitrary. At the same time, we believe that the
physical arguments presented in section 3 in the choice of
the trail solution are quite convincing. Therefore, we have
every reason to believe that trial solution (10) corresponds
at least qualitatively to a real physical process of the pulse
propagation in a nonlinear medium. In any case, the pulse
spectrum should contain Fourier components, which are
resonant with tunnelling transitions that can provide the

[doi> N

6.
and neglecting comparatively rapidly oscillating terms, wems 7.

= 21.

25.

defocusing effect. This conclusion shows that there exist
fundamentally new possibilities for overcoming self-focus-
ing in the case of FCPs compared to conventional methods
for producing the transverse inhomogeneity in optical fibres
applied in the optics of quasi-monochromatic pulses. It is
important that tunnelling transitions are inherent in crystals
of the KDP type, and therefore no artificial methods are
required for doping resonance impurities, which are used to
obtain defocusing of pulses with a distinct carrier fre-
quency.
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