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Bright and dark pulses in optical fibres
in the vicinity of the zero-dispersion wavelength

LLA. Molotkov, M.A. Bisyarin

Abstract. The influence of the third-order dispersion on the
propagation of short pulses in optical fibres is considered. The
appearance of coupled nonlinear structures consisting of dark
and bright envelope solitons is described. The wavelength
range is found in the vicinity of the zero-dispersion wave-
length where the effect of the third-order dispersion on the
pulse propagation proves to be dominant. It is shown that in
this case a nonlinear structure in the form of an embedded
soliton appears.
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1. Introduction

The broadening of pulses caused by the group-velocity
dispersion can be minimised in a natural way by using
wavelengths for which the group-velocity dispersion is close
to zero. The behaviour of optical pulses in the vicinity of
the zero-dispersion wavelength 4, was discussed in many
papers (see, for example, Refs [1—-8]), the most attention
being paid to the case of the anomalous dispersion of the
fibre material. However, if the radiation intensity 1is
substantially lower than the self-focusing threshold, solitons
can propagate in the case of the normal dispersion of the
fibre material as well [9]. Similar questions were considered
for spin waves in magnetics [10, 11].

The smallness of the group-velocity-dispersion term
requires the consideration of the next-order dispersion
term in the derivation of an equation for the short-pulse

envelope. The corresponding generalised nonlinear
Schrodinger equation (NSE)
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(in a standard notation) can be easily written in the
dimensionless form

Ou *u . du 2
la_aw—lbﬁ—i—zw u=0. 2

We assume in (2) that ¢ > 0 and b > 0. The nonnegative
coefficient a corresponds to media with the normal disper-
sion. On the other hand, the adopted sign of this coefficient
provides the absence of the modulation instability [4].

The coefficients ¢ and b in (2) are small near the zero-
dispersion wavelength 4, and the relation between them can
be different. In passing from dimensional equation (1) to
dimensionless one (2), a competition between the values of a
and »%/3 appears naturally, and therefore it is expedient to
consider two characteristic regions:

a> b3, 3)
and
a< b, 4

The fulfilment of inequality (3) or (4) depends on the
closeness of the wavelength 4 to the zero-dispersion
wavelength 1,. By using estimates [1] and making some
similar estimates, we can easily show that for a single-mode
fibre @ and b3 are equal at 1 ~ 0.554;,. When

A < 0.552 5
inequality (3) is valid. For
0.552¢ < A < Zg (6)

we have inequality (4). The case 4 > /4, corresponds to the
anomalous-dispersion region, which we do not consider
here.

The solutions of Eqn (2) are possible both for bright and
dark solitons. The influence of the third-order dispersion
and the pulse self-steepening on the shape and parameters of
a bright soliton was investigated in Refs [12, 13].

The aim of our paper is to describe coupled nonlinear
structures by deriving explicit expressions for solitons of
both types in cases (3) and (4). We will first derive these
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expressions for case (3) and then for (4). The latter case
requires an essentially different analysis because only small-
amplitude pulses can exist in region (6).

2. Bright and dark solitons for a > b3

We seek the solution of Eqn (2) as a combination of
solutions for bright (v) and dark (w) solitons:

u=e ?(v+iw) 7
with the phase
& = ct — dbx, (8)

where ¢ and d are constants. We assume that the required
real functions v and w depend not on x and 7 separately but
only on their combination

X = ot — fBx, ©))

which is naturally called the amplitude phase.

Then we seek localised solutions for v and w. The
localisation of the solutions means that they differ from
constants only in small vicinities of some points or curves.
In our case, the functions v and w are localised over the
variable (9) in the vicinity of the point X = 0.

By passing in (2) to the differentiation with respect to X
(hereafter, denoted by the prime) and substituting (7), we
obtain the real system of equations

(a+3bc)a*v” + (d— ac® — be?)v — pw’
+(2ac 4 3bcH)aw’ — bo*w” —2(v? + w?)v =0, (10)

(a+3bc)a*w” + (d— ac® — bedw + pv’

3 .m

—(2ac + 3bcH)aw’ + baPv” = 2(0* + wHw =0, (11)
where a and b are small parameters satisfying condition (3).
We are trying to obtain a nontrivial solution for system
(10), (11) and to take simultaneously into account most
completely both nonlinearity and the second- and third-
order dispersion. Let us represent the coefficients b, o, and f§
as the beforehand unknown powers of a small parameter a
and assume that the ratio v/w is also proportional to some
power of a. By comparing the orders of individual terms in
system (10), (11), we find easily that the only consistent
possibility in solving this system of equations is that, for
a—0,

2 1/2

b~a®, v~wa'", 12,

ﬁwal/z, o~ a-

Then, the principal terms in (11) form the equation
4
w4 2wy f;lwg =0.

This equation has an odd localised solution

A\12
Wy = <§> tanh X, (12)
which describes a dark soliton.
Similarly, we obtain from (10)
3d b 1
= 1
0= B cosh? X (13)
A\1/2 A\1/2 1 bd
_ (4 _(¢ /2 Pe
a—<2a> , ﬁ—(2> <2ca +a3/2>' (14)

Expression (13) describes a bright soliton.

The linearisation of Eqns (10) and (11) in the vicinity of
the found main parts vy and w, of solutions,

UV =1"Uy+avy;, w=uwy+awp,

leads to a pair of linear inhomogeneous equations for v;
and w;. Of the corrections v; and w,, the correction w; is a
leading one. For this correction, we obtain the equation

, 6 C2er fa\'"* 6bc
w1+(m—4)w1_7 2) Ay
+9b2d d\'? sinh X  636%d [ d\"/* sinh X

a* 2 cosh’X  4a* \2 cosh X~

The homogeneous equation corresponding to (15) has the
general solution

(15)

1 3X
= —— inh2X + 3tanh X + ——— |,
“eosh?x c2<sm o tanh A cosh2X)

in which only the first term satisfies the requirement of
localisation. Therefore, we obtain for w; the equation

B 1 (N c? | 3be
U= aosizxy T 24\ 2 2d  2a?

9p%d\ (d\'* X +2117%1 d\'? sinh X

T4 >(2) cosh? X 8a* <2> cosh® X’
where ¢; is an arbitrary constant.

The function w; has the parts that are even and odd in
X. The even part ¢;cosh >X gives a small imaginary
addition to the bright soliton, while the odd one determines
the correction for the dark soliton (12). Expressions (12) and
(13) show that in the case (3), the excitation level of the dark
soliton is higher by a factor of a3/2/b than that for the
bright soliton. More exactly, the ratio of the amplitudes of
the bright and dark solitons for X =0 is a function g(4)
describing excitation of the impurity (bright) soliton against
the background of the main (dark) soliton. By using
expressions from Ref. [1] for the second- and third-order
dispersions, we find that g(1) = 0.74(4y/A — 1)"*2. The
dependence g(4) is shown in Fig. 1. The two solitons
move in-phase with a finite phase velocity. The velocity
of this motion for the amplitude phase is much higher and is
of the order of ¢~ !. This follows from the expression

() (e

which is obtained from (9) and (14).

(16)
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Figure 1. Excitation coefficient for a bright pulse against the dark-pulse
background in the case of a weak third-order dispersion.

The solution obtained in the approximation used here
contains arbitrary coefficients ¢ and d in (8) and following
expressions, as well as an arbitrary constant ¢; in (16).

3. Small-amplitude approximation

The analysis of system of equations (10), (11) under condi-
tion (4), i.e., in the vicinity of the zero-dispersion wave-
length, shows that localised solutions of the type (12) and
(13) can no longer be separated. Analysis shows that pulses
under study have very low amplitudes in region (6).

Let us now use the substitution

u = [ug + U(x, 1)) exp [2iugx +ip(x,1)], 17)

where u, = const. The form of (17) corresponds to the exact
solution of the NSE. By substituting (17) into (2), we obtain
equations

Y ()
baa3l3]+3b( 0+U)%‘f%212 —0,

(uO—I—U)Z—z aa;le/ a(u0+U)(%—(f>2—4u§U
—6upU” — 2U3—3b%g%f+b(0+u)<%f>
3b%?22(f b(uo—&-U)Zt(ffO.

Now we introduce new independent variables

=¢(t—Cx), é=¢’x, C=const

(18)

containing a small amplitude parameter ¢ and will seek the
amplitude and phase in the form of series

U= U(z,&)e* + Uy(t,&)e* + ...,

@ = @o(1,8e+ (7, 6)83 + ...

The functions U and ¢ are even and odd over e,
respectively, which is easily confirmed by substituting

them into the system of equations. In the leading order
over & we obtain

0
au(]%—i- CUO = 0,

00y

“%

+4u0U0 = 0

For this system to be consistent, we should set

C = 2upa'’>. (19)

By substituting (19) into the previous equation, we obtain

0 2
Fo=——sl. (20

The equations in the next-order approximation have the
form

0 1 [0 2b 62U
129P1 5 — 2 |90 _ ¢ 0 21
a ot + Ul 2uo{6é U()"r 1/2+ ( )

o’ oU 1 [oU, | 12ugh
129 P1 9P oY% 0 OUy
el ot a'y { o¢ Tt V%

+6a'?U, U,
ot

3
Uy ] ) (22)

o073

By differentiating (21) with respect to t and using (20), we
obtain a new condition for the compatibility of Eqns (21)
and (22). This condition is the Korteweg—de Vries equation

PE/EAFE
aU°+6< ab al/2>U0%—(b+ )an 0.

o¢ ot du, ) o7l 23)

By writing the exact soliton solution of Eqn (23), returning
to old variables (18) and taking (19) into account, we find

Uy = —12p%cosh 2 Q,

where
24
Q:sﬁB{Zf2u0a1/2x+z(u0b+a3/2)[3282x (24)
24 3/2\1/2
B:( U u0b+a ) : (25)
a 4uybh + a’?

and f is an arbitrary parameter contained in the solution of
the Korteweg—de Vries equation. The main part of the
phase ¢, is found from (20). The arbitrary coefficient f§ can
be then included into the small parameter ¢, which is also
arbitrary so far. Finally, by expanding the phase factor
exp (ipype) into a series, we obtain again the expression
similar to (7):

u = exp(2iudx) (v + iw), (26)
1262 288¢° 1 3

_ _ _ _ 03,27

o=t wz( mwa*&ﬂ()
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tanh O 4+ O(°)|. (28)

24
W = &uy m

Expression (26) is a sum of expressions (27) and (28) for
bright and dark solitons. They differ from the correspond-
ing expressions for the case (5) in that now a bright soliton is
the main term, while a dark soliton is the correction to it,
and bright soliton (27) is located on a pedestal of height u,
(uy is arbitrary).

Expressions (26)—(28) are not related to the assumption
about the smallness of coefficients in (2). They are valid
under condition (4) down to the boundary A= 0.554; of
region (6).

Finally, expressions (24), (27), and (28) are simplified
under condition (4):

6ug \'* 24ugb
Q:s(ﬂ) <t—2uoa1/2x+A82x>,
a a
1282 2 2
=uy —————48¢“tanh” Q,
V= U, cosh 0 ¢~ tanh” Q

w = 4¢(6uy)"* tanh Q.

The dependences of the amplitudes of bright and dark
solitons on the phase variable Q are demonstrated
qualitatively in Fig. 2.

-3 -2 -1 0 1 2 3 0
-0.5
_______ ~1.04+
Figure 2. Bright and dark pulses in the case of a dominant third-order
dispersion. Calculations were performed for g =1 and ¢ = 0.1.
We can find the relations between the parameter ¢ and

coefficients in Eqn (2). Thus, by calculating the right-hand
sides in Eqns (21) and (22) in the case (4) and estimating the
correction U, we obtain

3/2

2<01% .
¢ b

(29)
Inequality (29) refines the conditions under which the
propagation of an embedded soliton on a fixed pedestal can

be observed.

4. Conclusions

We have described analytically the influence of the third-
order dispersion on the propagation of a short pulse in an

optical fibre. The dynamics of the pulse envelope is
described by the generalised NSE (1), and the effect
under study is manifested in the change in the soliton
solution of the standard NSE due to the term containing
the third derivative. The estimates of the coefficient at the
third derivative based on results obtained in Ref. [1] show
that the influence of the third-order dispersion should not
be neglected already at wavelengths above 0.67 um, and the
third-order dispersion increases upon approaching the
wavelength Ay = 1.27 pm.

The formation of the impurity structure substantially
depends on the relation between the second- and third-order
dispersions. In the case (3), when the wavelength still
substantially differs from the zero-dispersion wavelength
(5) and the third-order dispersion can be treated as a
perturbing effect, a bright pulse with the amplitude of
the order of b/a3/ 2 appears against the background of a
dark soliton of the standard NSE, as well as additional dark
and bright pulses with lower amplitudes. The distortions of
a standard pulse are described explicitly by expressions (13)
and (16).

The nonlinear dynamics of the short-pulse envelope near
the zero-dispersion wavelength in the case (4) is qualitatively
different. A nonlinear structure appears in the form of an
embedded soliton due to the dominant influence of the
third-order dispersion [14]. A distinct feature of this
structure is that a bright soliton propagates on a pedestal
of a finite height and obeyes the Korteweg—de Vries
equation. The bright soliton is described by expressions
(26)—(28); in particular, it has much steeper fronts com-
pared to those for the NSE soliton. The pulse evolution in
this case also occurs due to the propagation of coupled dark
and bright solitons.
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