Quantum Electronics 34(2) 165—171 (2004)

©2004 Kvantovaya Elektronika and Turpion Ltd

LASER BEAMS

PACS numbers: 42.60.Jf
DOI:10.1070/ QE2004v034n02ABEH002604

Use of the fractional Fourier transform

in /2 converters of laser modes

A.A. Malyutin

Abstract. The possibility of using the fractional Fourier
transform (FrFT) in optical schemes for astigmatic /2
converters of Hermite — Gaussian modes to donut Laguerre —
Gaussian modes is considered. Several schemes of converters
based on the FrFT of the half-integer and irrational orders
are presented. The lowest FrFT order than can be used in
astigmatic mode converters is found. The properties of
converters based on the fractional and ordinary Fourier
transforms are compared.

Keywords: fractional Fourier transform, astigmatic /2 converter,
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1. Introduction

Both topics combined in the title of this paper, m/2
converters of laser modes and the fractional Fourier
transform (FrFT) are being actively studied in the last
decade. m/2 converters attract special attention because of
the unique possibilities of using donut Laguerre—Gaussian
(LG) modes to manipulate microobjects [1, 2], to capture
individual atoms and control their motion [3—5], and to
accelerate electrons [6]. The FrFT is of great interest
because it opens up new outlook for the representation and
analysis of signals of various types [7—9]. The possibility of
realisation of the FrFT by optical methods [10], some
specific properties of Hermite— Gaussian (HG) modes [11],
and a new interpretation of the operation mechanism of
n/2 converters [12, 13] are the means that allow the use of
FrFT for the conversion of HG modes to LG modes. The
scheme of the m/2 converter based on the FrFT was first
proposed in our paper [14]. In this paper, a systematic
analysis of the principles for constructing such devices is
given.

2. Fractional Fourier transform

To explain the terminology and accepted notation without
reference to numerous more detailed papers, we recall the
basic concepts of the FrFT and present three basic schemes
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developed for the FrFT performed with the help of
ordinary lenses.

The classical ordinary Fourier transform (FT) is defined
as”

1 +o0 .
WJ_ f(x) eXp(—lxé)dx. (1)

F() =
The integral in (1) is the transformation of the function f of
time t or a spatial coordinate x to the function F(&) of
spectral variables, the angular frequency w or the spatial
frequency &, which can be symbolically written in the form
F(&) = Z[f(x)]. One can show that successive transforma-
tions (1) give the expressions

FIFU N =S (=x),

FIFFU N = ZUf (=x)] = F(=9), 2
FIFFIF N =1()

In other words, the cyclicity of the ordinary FT is equal to
four. In the notation used below, it is convenient to write
relations (1) and (2) as the sequence

(©)

i.e., the number of FT cycles in (3) can be treated as an
order (power) of the ordinary FT.

Similar to the representation of higher-order FTs in (3)
as a sequence of powers of Z ', we can also factorise
formally the integral in (1), i.e., to decompose Z ! into two
(or more) transformations of orders lower than unity. For
example,

FO=7"[f(x)] =7 (7 /)], 4)

where 7 and #" are called fractional FTs, and a and b
are the orders of the FrFT. The integral representation of
the FrFT has the form

* Hereafter, we omit mathematical details concerning limitations imposed
on the function f(x).
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Folf(n) = 22
(isiny)
(x* + &%) cosy — 2¢x
sin i
where = an/2. The ordinary FT (1) is obtained from (5)
by substituting @« = 1. The first of the relations in (2) is
obtained by substituting a = £2.

There exist several different definitions of the FrFT [15],
including the definition based on the analogy with the
description of propagation of an optical beam along a
graded-index fibre [16]. As for the ordinary FT, there exist
several rigorously proven properties for the FrFT as well
[17]. Below, we will use two of them, additivity and
commutativity:

X JHXJ f(x)exp [in dx, (5

—00

90/7 0997 b — e% a+b

, (6)

FiFb =gtz (7)

Another important property of the FrFT in our case is that,
when the order « is an irrational number, the HG function
is the only function that can coincide with the eigen FrFT
(can be the eigenfuction) [18]:

F“[exp (— nx?)H,(xv2n)]

=exp (—i?)exp (- n&?)H,(eV2m), ®)

where H, is the Hermitian polynomial of the nth order, and
the complex exponential is the eigenvalue of the FrFT.
Therefore, in the case of light fields for real a, the
distributions of the intensity of the initial HG beam and
its FrFT coincide.

The formal analogy between ordinary FT and FrFT can
be extended to a plane specified by the Cartesian coor-
dinates x and ¢, where a passage from the point (x, &) to (x’,
&') is performed by the rotation operator Ry

x’ cosyy siny [ x X

()= (0 &) (@)=2() o
The sequence (3) on the x¢ plane for integer orders a
corresponds to rotation through angles multiple of ©/2. For
irrational orders «, rotation is performed through an
arbitrary angle = an/2 (complex values of a are also
possible [19, 20]).

Two simple optical lens systems I and II [10] for
performing FrFT are shown in Fig. 1. Their ABCD matrices

are
T (A B\ _ cosys
FET=Ac D)~ \~f'siny

where f is the FrFT scale expressed in length units. Note
that the complex argument in relation (8) is simply the
accumulated Gouy phase (AGP) 0 of the beam propagated
in any of the schemes I and II. The phase 0 can be fiund
from the relation [21]

./"Simﬁ>’ (10)

cos Y

AB Afsiny

t 0 = =
an (A+ Bp)nw?  (cosy + pfsiny)nw?’

(11)

P f/siny P,

ftan— ftan—

\ f/ tan% f/ tan%

1I
fsiny

S S2
1

d [

Figure 1. Optical schemes of elementary fractional Fourier converters
realised by means of lenses.

where p and w are the curvature of the beam wave front
and its characteristic size, and A is the wavelength. It is clear
that the HG mode will be the eigenbeam of fractional FT
converters shown in Fig. 1 only when p=0 and the
Rayleigh length of the beam coincides with f.

The asymmetric optical scheme III shown in Fig. 1 can
be also used to perform FrFT of the specified order a € (0, 1]
(0 < ¢ < m/2). To determine the optical parameters of the
elements of the scheme, it is necessary to find conditions at
which 6, in the case of propagation of the beam from the
input reference plane to the output plane (or in the opposite
direction) is equal to . Because the Gouy phase is not
accumulated after propagation of radiation through a lens
(for the ABCD matrix of a lens B = 0), the second lens can
be temporarily excluded from consideration. As a result, the
propagation of the beam from the plane P; to the plane P,
can be described by the matrix

(1 =dy/fy d+dy—didrJf;\ (A B
le—( 71/‘2/1'1] ! lidl/}iz 1>—(C/ D/>,(12)

where f; is the focal distance (see Fig. 1). The required
value of the AGP will be obtained if

A’ =cosy, B’ =fsiny. (13)
It follows from (13) that to provide the inequality d, > 0
(propagation of the beam in the positive direction along the

z axis), f; should be positive, and d; and d, should satisfy
the form

Si(1 —cosy)

dy, = ftany — cosy

. =fi(l —cosy).  (14)

The condition d; > 0 (the absence of an imaginary image
in the P; plane) gives the following limits for f;
fsiny f

0<fi< 1 —cosy :tan(lll/2)’

(15)
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The simultaneous fulfilment of inequality (15) and (14) is
sufficient for obtaining the equality 6 = during the
propagation of the beam from the plane P, to P,. To
obtain the same value of 0 for the propagation of the beam
in the opposite direction, it is necessary to add a second lens
to the system and set C = —f 'siny for the complete
matrix of the scheme, which leads to the condition

Jicosy
=, 16
= fising —1 (19
where f, is the focal distance. Assuming that f; = f/ siny or

f1 =f/tan(y¥/2) and calculating d;, d,, and f,, we can easily
show that symmetric schemes I and II are simply particular
cases of the scheme III.

Because HG laser modes are functions of separable
independent variables, all the above said can be easily
generalised to two transverse spatial coordinates. Moreover,
the orders of the FT and FrFT along the x and y axes can be
specified independently [22]. As a result, we have three main
‘construction” blocks (Fig. 1), which can be used to design
different schemes for n/2 mode converters.

3. Schemes of FrFT n/2 mode converters

It was shown in Refs [12, 13] that a /2 mode converter
proposed earlier in Ref. [23] is based on the optical scheme
in which two (a¢ =2) and three (¢ + 1) ordinary FTs are
performed in planes xz and yz, respectively, for a beam
propagating along the optical axis z of the converter. The
principle of operation of this ©/2 converter in the language
of FT can be described as follows.

Any HG eigenmode 1S of the converter rotated at the
converter input by 45° with respect to the astigmatism axes
(‘diagonal’ mode) can be expanded into a series in ‘normal’
(not turned) HG modes 119, (x,y) of the same order N =
n+m=n'+m'"

n'm'

Zan’m’ 45 un/m’( )

n'm'

Upy (X, 7, 45%) (17)

where a,,,/(45°) are some real coefficients depending on the
rotation angle. Each normal mode accumulates the
corresponding Gouy phase after propagation in the
converter according to (8). Taking into account that the
variables x and y are independent, we can write for the
scheme of Ref. [23]

N

LT e ()]

. .I’}’l,Tl',
= exp (—17—17>u5,‘;’/(x,y), (18)

which gives at the output of the m/2 converter the
expression

. Nan m
exXp <_ 1 T) Z(_l) an’m’(45 )un’m’(x y)

n'm’

. Nan
= exp <— i T) u,,]70 (x,»)

for the LG mode u,ij

(19)

of the order N=p+ /.

This result is obtained because the numbers of FTs of
the input field in planes xz and yz differ exactly by unity.
Note that the order a can be arbitrary, in particular,
fractional because it determines only a constant phase shift
Nam/2, which is the same for all expansion terms. Because
of this any two elementary schemes (Fig. 1) having the same
optical length and composed of cylindrical lenses, provided
the FrFT orders in orthogonal planes are equal to ¢ and
a+ 1, are /2 converters. Of course, it is convenient in this
case to use the same scale along the axes. These are basic
and most general recipes for constructing ©t/2 converters. It
is clear that, by using the additivity and commutativity of
the FrFT [see (6) and (7)], the final aim can be achieved
differently. To demonstrate the simplicity and flexibility of
the procedure for constructing FrFT converters, consider
several examples.

Example 1. Consider first schemes I and II in Fig. 1 as
basic schemes. Let us assume that the power of lenses in
scheme I is zero in the yz plane (the generatrices of
cylindrical lenses are parallel to the y axis) and ¥, =
an/2. Then, we have ¢, = (a + 1)n/2 for lenses in scheme
IT with generatrices parallel to the x axis. Being combined,
schemes I and II should have the same optical length L. This
means that the equality

2ftan% = fsiny,,

should be fulfilled, which
and v, gives

vy

, using the relation between

2ftan = fcosy,.

The solution of this trigonometric equation is reduced to
the solution of a cubic algebraic equation, but because the
final result is somewhat cumbersome, we present here only
rounded values a = 0.458013, ., =0.719445, and L =
0.752172f. The scheme corresponding to this parameter is
shown in Fig. 2a.

It is clear from this example the main task in the
construction of converter schemes is matching of the optical
lengths simultaneously with the limitation of the order of
the number of FrFTs performed. Therefore, we will consider
next examples with minimal comments.

Example 2. The combination of scheme I with itself does
not result in the construction of a converter, but this is
possible for scheme II. In the latter case, the scheme is
described by the equation

fsiny =fsiny, = fsin(y, +n/2),

whose solution yields a very simple result: a =1/2, . =
n/4 = 0.785398, L = 0.707107f.

Example 3. Let us now combine two identical schemes I
placed in succession in the xz plane and one scheme II in the
yz plane (Fig. 2c¢). This can be done because of the FrFT
additivity (6). Then, the FrFT order for each elementary
scheme I is @’ = a/2, and its is described by the equation

4tan% = sin (1//x —&—g)

The solution to this equation has the form: a = 0.467335,
W, = 0.734088, L = 0.742442f.
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Figure 2. Variants of the use of the FrFT to construct /2 converters of HG modes to LG modes. The parameters of optical schemes: S =siny ., t =
tan(,/2), t' =tan (Y, /2 +n/4) (a); S = sin(n/4), t = tan(n/8), t' = tan (3n/8) (b); S =sin (¥, /2), t = tan(Y,/4), t' =tan (Y, /2 +7n/4) (c); S =
sin(,/2), t = tan (Y, /4), t' = tan (f /2 + n/4) (d); S = sin (,./2), t = tan (f . /4), t' = tan (/4 + 1/8) (€).

It is obvious that instead of identical schemes I, schemes
with different orders ¢’ and a”, so that a’ +a” = a, could
be used. In this case, we should solve the equation

Voo W) n
2(tan7+tan7 =sin l//XJrE ,

where one of the angles in the left-hand side can be chosen
arbitrarily within some limits (both tangents should be
positive). It is also clear that, because of the FrFT
commutativity (7), schemes corresponding to FrFTs with
orders a’ and a” can be placed one after another on the z
axis in any succession.

Example 4. In example 2, we used two schemes II with
the orthogonal orientation of lenses. Consider now two
schemes II placed in succession in one plane and one scheme
II placed in another plane (Fig. 2d). The matching condition
for the optical lengths gives the equation

ZSin% = sin <le +g>,

whose solution has the form: a = 0.477127, y, = 0.749469,
L =0.888318f.

For all other combinations of schemes #I and #II,
including those in which FTs with integer orders are
used, either a greater number of lenses or a greater optical
length are required. One of such schemes is considered in the
next example.

Example 5. The combination of two schemes I with two
schemed II (Fig. 2e) is described by the equation

4tan%= 2sin <%+g)

which is satisfied for ¢ = 1.171433, . = 1.840083, and L =
1.9819f. The values of these parameters are approximately
twice that for any preceding examples.

All the schemes presented above are only a particular
case of combinations that can be obtained by using
elementary scheme III. These schemes use no more than
three cylindrical lenses with different focal distances. Lenses
with the focal distance f/(2¢t') employed in schemes in
Fig. 2d, e can be replaced by pairs of lenses with the focal
distance f/t'. It is obvious that schemes considered in
examples 1 and 2 are more convenient from the practical
point of view because they have a smaller size and use a
smaller number of lenses. Nevertheless, it is useful to
consider a more general case of the construction of a
n/2 converter based on scheme III. For this purpose, it
is necessary to solve the system of equations

1 —
o= flany, i
d2x :flx(l — COS lpx)>
- flx cos l//x
S = fsing, 7
1-— ,
d, = frany, — fi, %j% (20)
y
dZy :4fly(1 — COs lﬁy)’
f = Jiycosy,
T fysing, —f7
Uy =y, + /2,

dlx + d2x = dl ¥y + dZy’
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under the condition that Table 1.
Example Basic Lowest Total Number
0<f fsiny, <f fsin 'l’y number schemes® FrFT order 2?12}1’:; 1(; frlc:;fsferent Lir
TS —cosy, WS T —cosy,
’ 1 I+1I 0.458013 3 2 0.752172
By presetting the value of ., we have eight equations with 2 m+11 0.5 4 2 0.707107
nine unknowns. By using f, as a free parameter, we obtain 3 21 +11 0.467335 4 2 0.742442
that the system of equations will be compatible if f;, is 4 I+ 0477127 5 3 or 2** 0.888318
found from the condition 5 A4+21 1171433 5 3or2™ 1.981899
6 20+ 11 0.444444 4 3 0.766044

_ [~ fiesing (1 = cosy,)?

Sy cos, (1 +sin lﬁx)2

@n

In this case, the values of £}, should satisfy the inequalities

siny,  siny, — cosy; }
l—cosyy,” (1—cosy,)* J' (22)

O<f1x<fmin{

The boundaries for f;, are shown at the left in Fig. 3.
The corresponding boundaries for fi,, which are obtained
by substituting (22) into (21), are shown at the right in
Fig. 3. By using (20)—(22), consider one more example of
the /2 converter scheme.

fix | fiy
3 | ;43
' I
' ]
|
2 | 12
I Jiy
|
1 | 41
| 14 8 _47
|
0 1632 1 I
/6 n/3 n/2 21/3 5m/6 T
Ve v,

Figure 3. Admissible regions of values of the parameters of FrFT n/2
converters. Squares are the values of fi.(,) and f1,(,) for schemes in
Fig. 2; the numbers 1-6 of squares correspond to the numbers of
examples in the text; the numbers 7 and 8 correspond to some rather
arbitrary converters composed of schemes III.

Example 6. Consider the combination of schemes III and
II. The latter allows the minimisation of the number of
different lenses. In this case, scheme II is scheme III for
which the condition d), =0 is additionally satisfied or,
which is the same, fi, =f;,. The combined scheme and
its parameters are presented in Fig. 2f.

The parameters of /2 converters considered in exam-
ples are summarised in Table 1. The converter considered in
the second example has the smallest length L = 0.70710f,
which is approximately shorter by a factor of 5.7 than the
converter length in [23].

The limitation imposed by inequality (22) shows that it is
impossible to construct a FrFT /2 converter with the order
a < 0.424121, ie., ¥, > 0.666239. In this case, the upper
limit in (22) corresponds to the condition f;, = f>, (scheme
IT). The dashed curve in Fig. 3 determines the limitation
imposed on the use of scheme I in the converter: scheme I
can be used only if /2 >, = 0.719445. The lower limit for
I in this inequality exactly corresponds to the scheme of
example 1. The values of f1,(y,) and f,(f,) for this and

* Scheme notation as in Fig. 1.
** The number of different schemes can be reduced by combining two
identical lenses.

other schemes considered above are shown by squares in
Fig. 3, the number of squares corresponding to the numbers
of examples. Note that points f},(y,) for examples 3 and 4
lie beyond the limits specified by relation (22) because the
corresponding schemes are composed of pairs of elementary
schemes I and 11, whereas inequality (22) was obtained for a
simple combination of schemes I, II, and III in pairs. For
the same reason, the abscissas of points for the scheme in
example 5 are separated only by m/4 because this scheme is
composed of a sequence of two identical converters, which
can be called n/4 converters.

4. Some properties of FrFT m/2 converters

Methods of matrix ABCD optics allow us to analyse the
operation of a /2 converter for any deviation of an input
beam from the eigenbeam of the system and to compare
converters based on the ordinary and fractional FTs.
Taking into account the form of matrices (10) and the
condition ¥, =, + /2 for the input beam, for which the
wavefront radius and curvature are specified as w.j, =
woM,, wyin =woM, (wy= ()f/rc)l/2 is the size of the
cigenbeam of the converter) and p,;, = p,i, = p, respec-
tively, we have at the converter output

_ o Mips+ o) +57"

Wy Wo M >

X

(M (fpC = 5)" + ]2

M, ’

wy‘, = Wy
p =1 ME(fpS+C)(fpC = S) +CS
T MMfpS+C) + 82

1 M(S—fpO)(fpS+C) - CS
T M(eC— s+

) (23)

s

S C

tanl, = ————, tanl, = ———,
W= sy omz M T (e - sym?

where C = cosyy, and S =siny,. The main condition for
the conversion of the improper HG mode to the LG mode
is the inequality 0, — 0, = £m/2, which, taking into account
(23), yields the equation

S MMy -1 24
tan2y,  M2M} ’

(pinf)2 +
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Equation (24) has real roots for M, M, > sin2y,. From
equations (23) and (24), the following conclusions can be
made:

(i) In a particular case of M M, =1 and p =0, all
converters based on the ordinary or fractional FT convert
the HG mode to the LG mode similarly because the
difference of AGPs is always A0 =m/2 and w,q =
Wy out> Prout = Pyour- Lhe only difference is in the increase
(or decrease) of the input beam size and the absolute value
of the wavefront curvature at the converter output. In this
case, the values of M, and M, = 1/M, can be selected for
any \, (apart from obvious M, , =1) so that w,q, =
Wy, ou = Wo- The case of a converter based on the ordinary
FT, when ¢, = 1/2, is also not excluded, although M, — co
and M, — 0 (or vice versa) when v, approaches n/2. The
input (the HG mode with n = 0, m = 3) and output (the LG
mode with p = 0, [ = 3) distributions of radiation in the case
of conversion of the eigenmode and deformed mode (M, =
1.5, M, = 1/M,) by the FrFT converter (see the scheme in
Fig. 2b) are shown in Fig. 4. In the case of the eigenmode
(Fig. 4a), the size and the wave front of the input and output
beams coincide. For the deformed mode (Fig. 4b), the size

of the output beam is w,, = 1.16w, and the wavefront

curvature is p, , = —0.67/f (it is represented in a grey scale
with a linear variation from 0 to 2m).

oy
o

Figure 4. Conversion of the eigenmode (a) and the deformed (extension
M, = 1.5, compression M, = 1/1.5) (b) u8S mode to the u&® mode by
the FrFT n/2 converter of the order @ = 1/2. The first column shows the
beam at the converter input; the second and third columns are the

radiation distribution and the wave front, respectively, at the converter
output.

(i) If M, =M,=M # 1, then for any ¥, and M >
(2SC)1/ 2, we can find from (24) two values of the input-
beam curvature p;, i, at which A0 =m/2. In this case,
py=py, =0, wy, #wy, and ww,=1. In the case of a
converter with the half-integer FrFT order (a = 1/2, exam-
ple 2 from section 3), we have p;,; = —p;- For FrFT orders
different from half-integers, the required values of the
wavefront curvature p;;;,, differ in absolute values
(Fig. 5). For converters based on the ordinary FT (a =2
[23] or a =1 [12]), the conversion of the beam to the LG
mode with p, = p, = 0 is possible only when p;, =0 or in
the case of a saddle-like wave front at the converter input
[13]. In the latter case, as for the FrFT converter, the HG
mode is converted to the elliptical LG mode.

pint = =104/ w,/w, = 0.203

O

Py = +0.77/f wy/w, =3.77

Figure 5. Conversion of the improper beam (the u1S mode at
M., = M =1.5) by the FrFT converter of the order a = 0.458013
without the wavefront correction (a) and with its correction by adding
the negative (b) and positive (c) curvature. The first and third columns
are the beam intensity distributions at the converter input and output,
respectively; the second and fourth columns are their corresponding
wave fronts.

A comparison of converters based on the ordinary and
fractional FTs shows that the latter are more sensitive to
the deviations of the input-beam parameters from the
eigenbeam parameters. Thus, in the case of a random
simultaneous variation in the parameters w,, and p of
the input beam, the results of calculations presented in
Fig. 6 show that the scatter in the size, the wavefront
curvature of the beam and differences of AGPs at the
output of converters for the FT order « = 1 (Fig. 6a) are
smaller than for ¢ = 1/2 (Fig. 6b).

5. Conclusions

We have considered the possibility of using the FrFT in
optical schemes for astigmatic ©t/2 converters of HG modes
to donut LG modes and presented some converters based
on the FrFTs of the half-integer and irrational orders. We
have found that there exists the FrFT of the lowest order
(a = 0.424121), which can be used to obtain the AGP
difference in the orthogonal planes xz and yz equal to n/2.
Our calculations show that m/2 converters in which the
fractional or ordinary FTs are used has as whole similar
properties with respect to the input-beam perturbations
(deviations from the eigenmode parameters). However,
FrFT converters prove to be more sensitive to simultaneous
random variations in the size and wavefront curvature of
the input beam. Although the difference in the sensitivity
seems not very large, it can be useful in some cases. In any
case, the use of the FrFT of the half-integer order (a = 1/2)
allows the construction of the astigmatic ©/2 converter with
the optical length shorter than 1/5 of the length of the
converter in Ref. [23].
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Figure 6. Calculated scatter in the size and wavefront curvature of the
beam and the AGP difference at the outputs of converters based on the
ordinary (a) and fractional FT of the order a = 1/2 (b). The size and the
wavefront curvature of the input beam lie within the limits
M., €[0.9,1.1] and p,;, yin € [-0.1,40.1]. The number of simultaneous
random variations is 256; n is the variation number.
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