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Stochastic quasi-phase matching in nonlinear-optical crystals
with an irregular domain structure

E.Yu. Morozov, A.S. Chirkin

Abstract. A theory of the interaction between light waves in
polydomain crystals with a random variation in the domain
thickness described by a random telegraph process is deve-
loped. The second harmonic generation and parametric
amplification upon high-frequency pumping are considered.
It is found that the maximum efficiency of nonlinear
conversion is achieved when the phase mismatch between
the interacting waves is equal to the doubled spatial frequency
at which the nonlinearity sign is changed (the condition of
stochastic quasi-phase matching).
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1. Introduction

In polydomain optical crystals with the so-called 180°
domains and in periodically poled nonlinear-optical crys-
tals, i.e., in crystals with inverted optical axes, the
coefficients of the quadratic nonlinear susceptibility can
change their sign from layer to layer (see reviews [I, 2]).
This results in the appearance of a nonlinear-susceptibility
grating. In this case, the reciprocal vector of the grating can
compensate for the phase mismatch Ak between the
interacting waves:

Ak =—m. M

This relation is called the quasi-phase matching condition.
Here, A, is the spatial period of the nonlinear-susceptibility
modulation and m is the quasi-phase matching order.
Quasi-phase-matched interactions allow the use of types of
interactions or nonlinear crystals for which the conven-
tional phase matching condition cannot be fulfilled. From
the practical point of view, the most important is the fact
that in the case of quasi-phase-matched interactions, the
maximum nonlinearity of a crystal can be achieved by
choosing appropriately the polarisation of the interacting
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waves. For example, in a polydomain (or periodically
poled) LiNbO; crystal, the ee—e interaction is used, which
is related to the nonlinear coefficient ds; exceeding the other
coefficients of this nonlinear crystal almost by an order of
magnitude.

Quasi-phase-matched interactions are used at present in
nonlinear optics to obtain both intense coherent radiation in
the spectral range from IR to UV [1, 3] and nonclassical
light [4, 5]. In addition, quasi-phase-matched interactions
make it possible to realise nonlinear-optical interactions of a
new type: consecutive interactions, when several coupled
three-frequency processes with common waves proceed
simultaneously in a nonlinear medium. A brief review of
experimental and theoretical studies in this field is presented
in Ref. [2].

The extension of the field of applications of quasi-phase-
matched interactions has posed new problems related not
only to the improvement of the technology of synthesis of
periodically poled crystals but also to the development of
the theory of nonlinear-optical interactions to describe
adequately a new experimental situation. The latter problem
arises not because the nonlinear coupling coefficient of the
waves is a spatially periodic function but because this
periodicity is violated.

The matter is that the modulation of the nonlinear
coupling coefficient of the waves in polydomain crystals
used in experiments differs from a strictly periodic modu-
lation due to different technological reasons. These can be
variations in the refractive index in a crystal volume caused
by the inhomogeneous distribution of impurities and inter-
nal mechanical stresses produced during the crystal growth
and its subsequent treatment. The period of a nonlinear
structure also can differ from a perfect one due to an
unstable operation of various units of a crystal growth
apparatus, etc.

In this paper, we develop the theory of three-frequency
nonlinear-optical interactions when the spatial modulation
of the nonlinear coupling coefficient of the waves is
simulated by a random telegraph process. Such a process
describes a random variation in the domain thickness from
one domain to another along with the simultaneous
inversion of the optical axis. We have already used this
model of the randomly modulated coupling coefficient of
the waves to analyse frequency doubling in a disordered
polydomain crystal [6], in which both the domain thickness
and phase mismatch caused by the inhomogeneities of the
refractive index and fluctuations in the optical-axis direction
are random.
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2. Spatially modulated nonlinear coefficient
as a random telegraph process

To analyse the statistic properties of the nonlinear coupling
coefficient of waves, we will write the equations for the
second harmonic generation in the plane wave approxi-
mation:

% = —ig(z)BA, A} exp(—iAkz),
2
L — igapat explinke)

where A; = A\(z), A, = A>(z) are the slowly varying
complex amplitudes of the fundamental radiation at
frequency w and the second harmonic, respectively; Ak is
the mismatch of the wave vectors of the interacting waves;
f = dys2nw/[cn(w)] is the modulus of the nonlinear
coupling coefficient of waves; the coefficient d. takes
into account the interaction geometry and polarisation of
the waves. The function g(z) describes the spatial modu-
lation of the nonlinear coefficient caused by the inversion of
the optical axis in passing from one domain to another

(Fig. 1).
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Figure 1. Random modulation of the nonlinear coupling coefficient of
waves g(z) (random telegraph signal) (a) and a regular modulation of the
nonlinear coefficient gy(z) (b).

We assume that the function g(z) describes a random
telegraph process, which takes the values +1 and —1 with
equal probabilities +1 and —1 [g2(z) = 1] [7, 8], i.e.,

where n(z;, z,) is a random sequence of integers describing
the number of the sign changes in the nonlinear coefficient
over the length (z;, z;). The number n(0, z) of changes of the
sign at the interval (0, z) obeys the Poisson statistics

exp(—vz), 3)

where v is the average number of sign changes per unit
length (the average spatial frequency). Therefore, the
average number 7 of sign changes over the length z and
its dispersion ¢ are

6l=n’—n’=n, (4)

n=vz,

respectively. The function g(z) has the following statistic
properties [7, 8] (we will denote the statistic average both by
angle brackets and the bar over the averaged quantity):

(g(2)) = exp(—2vz), (g(z")g(z")) = exp(=2v[z" - z"]). (5)
If #(z,g(2)) is a functional, then the expression [8]

(&+2) 7 bsta = (st ZEL)

for differentiation is valid, which we will use in our
calculations.

3. Second harmonic generation

Let us analyse frequency doubling in nonlinear crystals with
a random aperiodic structure. We rewrite system (2) for the
intensity [;(z) = \Aj(z)|2 (=1, 2). By introducing the
notation U;(z) = Im[A4,(z)A;? exp ( — iAkz)] and U,(z) =
Re[4,(2)A}* exp ( — iAkz)], we obtain

dr,
K 28(2)BU;,

dr,

e —22(2)BU;

o ()
5 = 8B +26(:)Bl 1y — KU,

du,

L = MkUL

Let us average system (7) over an ensemble of random
functions g(z). By multiplying the two last equations of
system (7) by g(z) and using (6), we obtain

ar,
Aoy,
.
o oy,
®)
W~ Ay — BUIR) + 2B,
d
Vo Ay, 2w

where 1, = () U): 1, = (2(2)Uy).

System of equations (8) is unclosed because it contains,
except the average intensities (I;) (j= 1, 2), the second-
order moments (I;1,) (j, ¢ =1, 2). Generally speaking, we
can write equations for these moments as well; however,
they will contain higher-order intensity moments. This
situation is typical for nonlinear equations.

At the same time, it is reasonable to assume that the
statistics of the second-harmonic field in the ‘developed’

regime of its excitation is Gaussian. We can easily obtain
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from (7) the relation I;(z) + I,(z) = Iy, where I, is the
initial intensity of the fundamental radiation. Then, the
second order intensity moments can be expressed in terms of
the average intensity I,(z) of the second harmonic [9]

(L) = ILoh, - 215,
)

(If) = Ify — 210, + 215
Let us substitute (9) into (8) and pass to the dimensionless
quantities
_ b
Iy’

Voo .
Yi= s 6 =7,
l 1130/2 Lnl

X

o= ZVLHI, A= AkLnl, (10)

where L, =1 /([ﬁ’lllo/2) is the characteristic nonlinear length
and o and 4 are the reduced spatial frequency and phase
mismatch, respectively. As a result, the system of equations
(8) will take the form

dx

dié_ _Zyla

%: —oyy = Ayy = (1 = 4x + 6x7), (b
d

dl;:Ayl —Oﬂyz’

which is convenient for a further analysis. Note that the
parameters o and A characterise the disorder of the crystal
structure and the phase mismatch over the nonlinear
length L.

The system of equations (11) can be solved only numeri-
cally. However, some analytic results, which are important
for understanding the features of second harmonic gene-
ration in crystals with a random domain structure, can be
obtained in the fixed field approximation. In this approxi-
mation, the terms containing x and x? in the right-hand side
of the second equation in (11) can be neglected compared to
unity. By solving the system of equations obtained this way
with the initial condition [x(0) = 0], we obtain the normal-
ised intensity of the second harmonic

2[ — o4 A7 —|—ac(oc2 + Az)C]

x(() =
( ) (O(2+A2)2
2¢*[ (o> — A7) cos AL — dad sin AL
* (22 + 4)° . "

Dependence (12) can be also obtained differently. In the
fixed field approximation, we obtain directly from the
system of equations (2) the solution for A4,(z):

Ay (z) = —ip 4l L; g(z) exp(iAkz)dz, (13)

where Ay = A4;(z=0). From (13), taking into account
expression (5) for the correlation function of a random
telegraph process, we obtain the average intensity of the
second harmonic

(L) = 13, L L exp(~2]z' — 2"))

x explidk(z' — z")]dz'dz". (14)
Integration in (14) gives (12).

Analysis of expression (12) shows that there exists the
optimal relation between the average spatial frequency v of
the random process g(z) and the phase mismatch Ak.
Assuming that v ~ Ak > 1, we obtain

3 | 9 1/291/2
Ak =2v|— 1 —— .
=2 (e |

For a large number of domains on a length under study
2v{ > 1), we have

wen(ie 23
¢ (2v0)

(15a)

(15b)

Figures 2 and 3 present the dependences of the second-
harmonic intensity calculated numerically from system (11).
One can clearly see from Fig. 2 that there exists the optimal
relation between the values of o and 4 when the second-
harmonic intensity is maximum. Figure 3 demonstrates that
the second-harmonic intensity increases most rapidly
when o ~ 4.
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Figure 2. Dependences of the normalised intensity /5(z)/ 1, of the second
harmonic on the reduced average spatial frequency « of the change in the
sign of the nonlinear coupling coefficient for 4 = 50, 100, and 150
(Z/Lnl = 5)
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Figure 3. Dependences of the normalised intensity /5(z)/1;y of second
harmonic on the reduced interaction length for different reduced average
spatial frequencies o (4 = 100).
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Relations (15) are the conditions for stochastic quasi-
phase matching. They can be expressed in terms of the
average period A = 2/v of a layered structure. Note that the
optimal relation in the case of a disordered medium depends
on the interaction length {. By comparing (1) and (15b), we
obtain

A2

AO - s '

Therefore, by considering the second harmonic genera-
tion, we have found the presence of stochastic quasi-phase
matching, which provides the maximum energy exchange
between the interacting waves in randomly aperiodic poly-
domain crystals. It should be expected that a similar
situation also would take place in the case of nondegenerate
three-frequency interactions.

4. Parametric frequency conversion

Consider now the three-frequency interaction between
waves of the type w; = w; + w,, which is described by
the system of truncated equations

% = 7ig(2)ﬁ1 A3(Z)A;(z) exp[i(p(z)]’
% = —ig(2)pr43(2) 41 (2) explid(2)], (16)
% = —ig(2)B34,(2)A5(z) exp[—i®(2)],

where 4,(z), A,(z), and A3(z) are the complex amplitudes
of the waves with frequencies w;, w,, and ws, respectively;
B; are the absolute values of the nonlinear coupling
coefficients of waves (=1, 2, 3). The function g(z), as
above, describes a random modulation of the nonlinear
coefficient. The function g(z) takes into account the phase
shift due to the phase mismatch between the interacting
waves over the interaction length z:

m@:jmwn—@@w—awmszm, (17)

0
where k;(z) = k; is the wave number at the corresponding
frequency and Ak is the regular phase mismatch.

Now we will proceed in the same way as in the previous
section and convert the system of equations (17) to the form

[ef. (7]
dh _

A 2g(2)B1 Ui,

dr

1 = 20U,

dr

o= 28U (18)
du,

FE —g(2)B I L+ g(2) B I + g(2) By 13 — Ak U,
du,

T = AT,

where Uj(z) = Im{A] 4545 expli®(2)]}; and U,.(z) = Re{A4]
x A5 A3 expli®(2)]}.

From (18), taking into account (6), we obtain for the
averaged system:

dr, dr dr

o= 28,1, d—zz = 2P, T; = =2B3y,
d
%?:_le—Ahh—ﬂﬁhb%%&ﬂﬂﬁ+ﬁ&bk%U%
d
% = Akl//] - 2Vl//2>

where ¥, = (g()Ui(): Y2 = (§U,()).

Let us use the Manley— Rowe relations, which follows
from the first three equations of system (18). Then, for low
initial intensities of the fields being amplified compared to
the pump intensity (Izq > I;y) and the Gaussian statistics of
the interacting waves, we obtain the relations

L L Ly—-§

By b By

(hil) =2 g—f It

(20
Bl I3) = Bl 13),

(I I3) = Iyl =2 % Ii.
1

Taking into account (20), the system of equations (19) can
be reduced to the form

dx

d—Cl =2ey1,

d 3

ﬂ: —0) —Ay2+282X| —6{i_2x12’ (21)
d¢ &1

dy

C'l}CZ = Ayl — oy;.

Here x = (I /Ly0); y12 = W15/ L 3 €12 = pra/Bs: (=2/Lu;
o= 2vLy; A= AkLy; and Ly = 1/(B3150°)

The numerical solution of the system of equations (21) is
presented in Figs 4—7. Figure 4 demonstrates clearly the
existence of the optimal relation between the parameter o
characterising the disorder of the domain structure and the
phase mismatch 4 for which the gain of the signal wave is
maximal. In other words, in the case of parametric
interaction, as for the second harmonic generation, stochas-
tic quasi-phase matching takes place. The dependence of the
signal wave intensity on the interaction length at the initial
stage is linear (Fig. 5).

When the condition of stochastic quasi-phase matching
at large interaction lengths is fulfilled (4 = «), the efficiency
of the pump-energy conversion to the signal wave can be
significant (Fig. 6). Figure 6 also demonstrates the estab-
lished regime of energy exchange between the interacting
waves. The maximum conversion efficiency equal to 0.2
corresponds to the chosen ratio 2 : 3 of the frequencies of
the signal and idle waves, for which the dependences
presented in Figs 4—6 were calculated.
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Figure 4. Dependences of the signal-wave gain /;(z)/I;y on the reduced
average spatial frequency « of the sign change in the nonlinear coupling
coefficient for different phase mismatches for 7,(0)=10"" and
z/Ly = 50.
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Figure 7. Dependences of the normalised intensity 7(z)/I3, of the signal
wave on the reduced interaction length for different ratios of frequencies
(0 = 4 = 50).
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Figure 5. Dependences of the signal-wave gain /;(z)/];y on the reduced
interaction length for different values of the parameter o and
1,(0) = I,y = 1073 and 4 = 100.
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Figure 6. Dependences of the normalised intensity /;(z)/ I3, of the signal
wave on the reduced interaction length for different values of o and
= 50.

Therefore, there is a peculiar dynamic equilibrium in the
established regime of nonlinear interaction, when each of
the excited waves contains the same number of photons.
This is illustrated by curves in Fig. 7, which were plotted for
different ratios of the frequencies of the signal and idle
waves.

5. Conclusions

We have developed the theory of three-frequency nonlinear-
optical processes in polydomain crystals with a random

variation in the domain thickness, which is manifested in a
random modulation of the nonlinear coupling coefficient of
the waves. We simulated a random variation in the
nonlinear coefficient by a random telegraph process. The
second harmonic generation and the parametric interaction
between light waves in these crystals were studied. We
found the existence of the condition for stochastic quasi-
phase matching, which is satisfied when the phase mismatch
between the interacting waves is equal to the doubled
average spatial modulation frequency of the nonlinear
coefficient (4 =2v). This condition is similar to the
condition of usual quasi-phase matching and corresponds
to the most efficient energy exchange between the interact-
ing waves.

It is clear that the aperiodicity of a layered structure
reduces the efficiency of nonlinear-optical conversions.
However, when the length of a nonlinear crystal is equal
to a few tens of nonlinear lengths (which can be realised in
the field of ultrashort pulses), the stochastic quasi-phase
matching enhances the interaction efficiency compared to
interactions in a homogeneous medium in the absence of
phase matching.

Let us estimate a scatter in the thickness of domains in a
LiNbOj; crystal for which our theory can be applied. For the
crystal length z = 1 cm and the average modulation period
of the nonlinear coefficient A =20 um (v= 10° cm’l),
according to (4), the average number of domains is
i1 = 10°. A variation in the number of domains from crystal
to crystal is described by relation (3). The most probable
value lies in the interval 77 — 6, < n < 7+ o,. Therefore, the
length /; of domains lies predominantly in the interval

A/2 A/2
VeSS T

In our case, for i7=10°, fluctuations of the domain
thickness lie within 3 %.

The approach we developed for studying the interaction
between light waves with a random coupling coefficient can
be also used to investigate consecutive nonlinear-optical
interactions [2] and nonlinear frequency conversion in the
X-ray region [10].

Note that the dependence of nonlinear-optical processes
on fluctuations of the phase mismatch caused by weak
fluctuations of the optical axis of a crystal (at fixed
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nonlinear coefficient) was extensively studied in 1970 —1980s
[11, 12]. Optical frequency doubling was recently studied
taking into account fluctuations of the phase mismatch and
the nonlinear coupling coefficient in Ref. [6].
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