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Quantum computer based on activated dielectric nanoparticles
selectively interacting with short optical pulses

O.N. Gadomskii, Yu.Ya. Kharitonov

Abstract. The operation principle of a quantum computer is
proposed based on a system of dielectric nanoparticles
activated with two-level atoms-cubits, in which electric
dipole transitions are excited by short intense optical pulses.
It is proved that the logical operation (logical operator)
CNOT (controlled NOT) is performed by means of time-
dependent transfer of quantum information over ‘long’ (of the
order of 10* nm) distances between spherical nanoparticles
owing to the delayed interaction between them in the optical
radiation field. It is shown that one-cubit and two-cubit
logical operators required for quantum calculations can be
realised by selectively exciting dielectric particles with short
optical pulses.

Keywords: cubit, quantum information, logical operators, resonance
coherent transfer of quantum information, nanoparticles, delayed
and near-field interaction between cubits.

1. Introduction

The main problems, which should be solved to create a full-
scale quantum computer, were discussed in Ref. [1]. One of
these problems is the identification of cubits during
quantum calculations. This paper is devoted to the solution
of this problem. At present there are several proposals to
realise a quantum computer [2—8], for example, by using
electric dipole transitions in the spectrum of two-levels
atoms [9—11]. The advantages of the latter proposal in the
solution of problems indicated in Ref. [1] were considered
in Refs [9—11]. However, the creation of a quantum
computer in very small systems of size much smaller
than the wavelength of light involves certain difficulties.
Thus, it was shown in Ref. [9] that, to identify cubits in
such systems, it is necessary to change slightly the transition
frequencies of cubit atoms.

The problem of cubit identification is solved in this
paper by increasing the interatomic distance without chang-
ing the transition frequency. We tackled this problem by
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solving the problem of resonance coherent transfer of
quantum information over long distances, greatly exceeding
or comparable to the wavelength of light, from one
ensemble cubit to another in the field of optical pulses.
An ensemble cubit is a system of two-level atoms imbedded
into a dielectric, for example, glass nanoparticle. Because
optical fields within such a particle weakly depend on the
coordinates of observation points, cubit atoms are in-phase
with each other. In this case, quantum information will be
specified with the help of the Bloch states [11], i.e., with the
help of observable physical quantities such as the local
dipole moments of atoms and their inversions. This method
for specifying quantum information, as pointed out in
Ref. [11], allows one to take into account in full measure
the properties of interacting cubits without loosing the
coherence of their quantum states. The preparation of
spherical particles doped with impurity atoms is quite
possible. Such particles are used as probes in the near-
field optical microscopy.

2. Basic equations of quantum computing

Consider the transfer of quantum information between two
nanoparticles 1 and 2 in the optical scheme in Fig. 1 after

R

Figure 1. Optical scheme of excitation of particles by an external
radiation field in the process of quantum information transfer: 1 and 2
are cubits; k is the external-field wave vector; R; and R, are the radius
vectors of cubits.
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excitation of one of them by a short optical pulse. The field
equation in this case has the form

E(r,1) = Eyexp(—imwt) =

po(t—R5/c)
R’z

Eyin exp(ikor) exp(—iw?)

+Jrot rot N, dv;

+JrotrotN1 R

where E(r, t) is the electric field strength of the optical wave
at the observation point r at the instant ¢ inside and outside
of the nanoparticles; w is the optical radiation frequency;
Ey;, is the field amplitude of the external wave with the
wave vector ky; N; and N, are the concentrations of cubit
atoms in particles 1 and 2, respectively; R; = |r — r (=1,
2); r; r] are the radius vectors of atoms in the Jjth partlcles V,
are volumes of the jth particles; differentiation is performed
with respect to the coordinates of the observation point r;
and p; = (1/2)X;exp (—iwt) is the induced dipole moments
of atoms. The amplitudes X; satisfy the system of equations
for coupled quantum dipoles [11]
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X; = —iXj(wg; — o) = wldy;|"Ey;,
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where wy; are the transition frequencies in the spectrum of
interacting two-level atoms; d,; are the corresponding
dipole transition moments; w; are the inversions of atoms
determining the difference of probabilities of finding atoms
in the ground and excited states [12]; E; is the field acting
on the jth particle without the factor exp (—iwt). Equations
of motion (2) satisfy the conservation law

S (X + wP i) = 0 ()
from which it follows that

u +v +w =1, 4)

where u; and v; enter the definition of X; as
(wj — iv))dy; = X;. ®)

Equations (2) do not contain relaxation terms. This
means that the optical pulse duration 7, and the characte-
ristic transit time f,, = R/c of a photon between two
particles is considerably shorter than the phase and energy
relaxation times, which affect the incoherent decay of the
induced dipole moments and inversions of atoms.

Equation (1) for activated particles 1 and 2 should be
supplemented with the corresponding volume integrals over
the coordinates of nonresonance atoms in particles 1 and 2
surrounding two-level atoms. Let us represent the corre-
sponding polarisation vector of nonresonance atoms as
P’ = NyayE, where N, and o, are the concentration and
polarisability of nonresonance atoms, which are the same
for particles 1 and 2 in our treatment. To simplify the
following expressions, we will start from Eqn (1) and take
the role of nonresonance atoms in particles into account
only in final results.

Equations (2) and (1) depend on each other and allow us
to describe the self-consistent interaction between particles 1
and 2 in the optical radiation field. It is necessary to consider
the boundary conditions on the surfaces of particles for
calculating fields inside and outside of particles. We assume
that particles 1 and 2 consist of identical atoms, so that
|do1| = |d| = dy, Ny =N, =N, and wy = my, =w, the
radii of particles are a; = a; = a. However, in this case,
as will be shown below, X # X, and w; # w, because only
one of the particles is irradiated by the external field.

According to (1), expressions for the fields acting at
points R; and R, (Fig. 1) have the form

Ey = [Xo)ag, Ny + [Xilap Ny, ©

Ey, = Eyin exp(ikoR,) + Xoar Ny + [Xi]ag Ny,

where square brackets mean that the corresponding
quantities were determined at the delayed instants

— R/c, while the rest of quantities are determined at
the instant 7, = ¢— R;/c. For a/R <1, we obtain for
geometrical factors the expressions

s . 2na 1 . , ,
aRi = agy N — 1 ﬁeXP(lkoR)’ apy = dp, =0,
4n )
ary =dp = 3

where n is the refractive index of the activated medium
inside particles. We assume for simplicity that the concen-
tration of active atoms in particles is such that the
dispersion dependence of the refractive index can be
neglected. The complete expression for geometrical factors
agj and ag; of a spherical particle was obtained in Ref. [13]
to describe the interaction of a probe with a sample surface
in a near-field optical microscope.

In the case of exact resonance, the solution of Eqns (2)
has the form

X;p = —idyw;osin 0,5 + (ﬁ cos ;g
®)
1
wj = — do 1/3 Sll’lH /i B —+ ij() COS Hj/;,

where ff = x,z; X< ) and w, jo are the initial values of
quantities Xz, Xop and w; respectlvely, as functions of time
7,5 and

2dy [™
() =2 | Bopp(eaes ©)

are the areas of optical pulses acting on atoms in particles 1
and 2.

3. Resonance coherent transfer of quantum
information between particles upon selective
excitation of one of them by an optical pulse

Consider the interaction between two identical spherical
particles in the optical field. Each of the particles consists of
a system of two-level atoms, for example, sodium atoms
imbedded into fused silica. The distance R between the
centres of particles is assumed fixed and equal to 204, where
A=5890 A 1is the wavelength corresponding to the
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3S — 3P quantum transition in a sodium atom. The radii
of spherical are a, = 100 nm. Then, for the concentration
of atoms in particless N =10 cm™>, we obtain
NV ~ 4.2 x 10* atoms in each spherical particle, where V/
is the volume of a spherical particle. Each spherical particle
containing an ensemble of cubit atoms is represented by an
ensemble cubit in the process of quantum information
transfer considered below. As follows from the calculation
of geometrical factors ag; and ar;, the fields inside spherical
nanoparticles weakly depend on the coordinates of
observation points inside particles, and the local dipole
moments of two-level atoms inside nanoparticles change in
phase in time in the coherent radiation field.

Let us represent the action of optical radiation on
particle 2 by a sequence of small-area pulses, for which
solution (8) is valid for sin0;5 ~ 0,5, cos ;3 ~ 1. By using
this solution, we obtain from expressions (6) the following
equations

Xip = AigXop + ArpXip.

(10
Xop = BipXog + BagXip + Cip,
where
2d3 2d3
. B 0 . 0
Aip = —1a,/32N27w10, Aoy = —lap Ny 5 Wi
2 2
2d,
. i . o
By = —lanNszzo, By = —lﬂglNl 5 W

. 2d} .
Cip = —lwy 7E0in/f exp(ikoR,).

In Eqns (10), the unified time 7; is introduced taking into
account that the values of X3 and X,; weakly change
during the time 2R/c. By solving Eqns (10) for each of the
small intervals At; from which the entire time interval of
transfer of quantum information from particle 2 to particle
1 is composed, we calculate the fields and inversions of
atoms at different instants 7;,. We will characterise the
transfer of quantum information by the inversion of
particle 1.

Consider the interaction of particle 2 with the field of a
single optical pulse with the envelope in the region of
particle 2 described by the expression

E(gizi/;(fl) = Apnpexp(iypt1), (11)

where 7, =m/t, and 7, is the pulse duration. For the
n/100-pulse, we obtain A,y = —[nhiy,/(4d,)] x 107> CGS
units. Then, the general solution of Eqns (10) is
Xl/f(fl) = Dl [exp(ilrl) + eXp()uz'L'l)} -+ Fl exp(iyp‘fl),
(12)
Xop(t1) = Dylexp(471) + exp(Laty)] 4+ Fr exp(iy, 1),

where

1

Dy =2 [Xip(0) < Fl: Dy =3 [X(0) — ]

oo SopAip )
: (iyp — Aap)(Big —iy,) + BagAyp’
sop(iy, — A
Fy = 0/3( ’p z/s)

- (iyp — Aap)(Big — iy,) + BapAip’

C2dd
Sop = —iwag 7exp(1koR2)Ain/;;

« 1 12
Jp =5 (Ap+Bipg) £ Z(A2ﬁ+Blﬁ)2_A2/)’Blﬂ+A1[;’BZ[}

By substituting quantities (12) into solution (8), we find the
acting fields E,; and Eyp and inversions w; and w, as
functions of time 7;. Let us study the properties of solution
(12).

Case A. Let the initial inversions of atoms in particles 1
and 2 be the same, i.e., wjy = wyy. Then, 4;, = —ivy,, where
the oscillation frequencies v; and v, of dipole moments,
which are low compared to w, have the form

Vi =Vr— Vg, V2 =Vr+ Vg,

(13)
2d8
vy = =2 Nwyar, Vg

h

Tk

p
NwloaR.

The frequency vy determines the oscillations of quantities
X5 and X,p, which are caused by the near-field interaction
between atoms within one particle, while vy is the
characteristic frequency of quantum information transfer,
which is caused by the interaction between atoms in
different particles in the wave zone.

Case B. The initial inversions are different, i.e.,
wyo # wy. In this case, 1, = —iv|,, where
i I ! li ! !
Vi=Vr— VR, v2:VT+VRa
2
d,
/ 0
VT:fN(wl()‘i’UJz())aT, (14)

h

aﬂ 2 Wl 1/2
vk:v}{l+4{(—R> 71}710 20 2} .
ar (o + wy)

By using solution (12) and conservation law (3) for
wyy = W,y and F; = F, =0, we obtain the equalities

1
1Xip(0)” = 5 | X15(0)*[1 + cos(vgri)],

i (1)

1@ [1 4 cos(vgty)]-

Here, we took into account that oscillations at frequencies
v, and v, interfere during the evolution of quantum system
1 interacting with quantum system 2 if they are in the
quantum states specified by quantities w;g, X;5(0) and wy,
X55(0), respectively.

Let us assume that the duration of an optical pulse
incident on particle 2 is 7, = 10" s, the concentration N of
atoms in particles 1 and 2 is 10" cm™, the radius of parti-
cles is a, = 100 nm, and the distance between particles is
R =204. For the external =n/100-pulse, we have
Ainp = — 0.391 x 10° CGS units, F| ~ 0.991 x 10" wjowy
CGS units, and F, ~ —0.96 x 10~ w,y CGS units. Then,
the characteristic frequency vz of quantum information
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transfer from particle 2 to particle 1 is —1.94 x10"w;, s .

The characteristic time of quantum information transfer is
T, = |n/(2vgp)| = (0.8 x 107" /|wyo|) s, which is consider-
ably longer than the time #,; =0.33 x 1072 s and is
considerably  shorter than the relaxation times
T, = 1077 s and T) = 3x 10~%s. For comparison, the
characteristic frequency v, of quantum information transfer
from one atom to another over the distance R =204 is
0.44 x 10° s™!. The transfer of quantum information also
occurs when the external pulse is switched off. At the instant
7y = T,, the inversion of the first particle achieved its
maximum value w; =~ 1 if the initial inversions of atoms
in particles 1 and 2 are the same: |w;y| = |wag| &= 1/10. The
initial inversions can be produced by optical pumping in the
scheme in Fig. 1.

The influence of nonresonance atoms in particles related
to the role of additional volume integrals in Eqn (1), as
follows from calculations, results in the entanglement of the
near and delayed fields upon the interaction of activated
particles in the optical field. For this reason, the characte-
ristic time 7, of quantum information transfer decreases
approléimately by a factor of ay/ap and is equal to
~107" " s.

4. One-cubit and two-cubit logical operators
in quantum calculations

Quantum calculations in a quantum computer can be
performed using one-cubit and two-cubit unitary trans-
formations representing logical operators NOT and CNOT
(controlled NOT), respectively, which are represented in the
explicit form below. In quantum computing experiments [6],
these operators were realised with the help of the
corresponding sequence of radio-frequency m/2-pulses
exciting spin quantum transitions. Optical quantum tran-
sitions differ substantially from magnetic spin transitions.
Therefore, we should determine the operators NOT and
CNOT that will be used in an optical quantum computer
based on activated nanoparticles.

We will represent the solution of Eqns (2), which has the
form (8) in the case of exact resonance, in the matrix form

X() | _ oy X(1)
i) =) i | (16
where the unitary operator is
~(1y _ | cosO,  —isinf;,
M= {fisin&n cos 0, } (17

Here, the indices j and f numerating cubits and indicating
the projection of induced dipole moments and the local
time index 7; are omitted. The index at the area of the
optical pulse 6y, indicates that unitary transformation (16)
occurs under the action of external optical radiation. In this
case, the operator MW is the NOT operator for mutually
independent cubits in a quantum computer containing 10°
cubits.

The Hadamard transformations [1] can be realised under
the action of m/2-pulses. Indeed, let us represent the wave
functions of a cubit in the form

¥ = |al|0) + |b| exp(iAp)[1),

where A¢ is the difference between phases of the complex
coefficients ¢ and b of the quantum superposition; and |0)
and |1) are the ground and excited states of the cubit with
energies W, and W,, respectively. In this case,
W, — Wy = hw,, and the states

-(2)- ()

are the eigenfunctions of the effective spin operator [12].
Then, the quantum transition from the |1) state with the
inversion wy, = +1 corresponds to the unitary transforma-
tion

(5 a)(a)-(5°)

Taking into account the relation

1 .
~X=dya'b
7 0
between the local dipole moment and coefficients of the
quantum superposition, we have for the quantum transition
under study

exp(iAg) = (18)

i

2al[b|”
For |a| = |b| = 1/+/2, we obtain the transformation H|1) =
(1/v/2)(|0) — [1)). In a similar way, we obtain the trans-
formation H|0) = (1/v/2) x (|0) +|1)) under the action of
the m/2-pulse taking into account that the unitary trans-
formations

0 - 0\ [idy

(5 ) () =)
are performed upon the transition of the cubit from the
state with the inversion wy, = —1 to the superposition state
(1/v/2)(|0) + [1)). As follows from (18), the transformation
H|1) occurs when the phase difference of the quantum
states is Ap = —=n/2, while the transformation H|0) occurs
when Ap = /2.

Let us show that the action of operator (17) on a cubit
depends on the polarisation of external optical radiation.

We represent the electric field strength of an external wave
at the cubit location in the form

Ein = \/EEOin[xO COS(wTI) + Yo Sin(w‘cl)]’ (19)

where Ey;, is the real amplitude, and x, and y, are the unit
vectors along the coordinate axes x and y. Equations (2)
were derived in Ref. [11] taking into account the condition
dy x E=0, where dy = d,— id{ and E is the acting field.
The quantities d{, and d{; have the form [12]

X Yo
V2’ N

Let us separate in (19) the negative-frequency part, which is
proportional to exp(—iwt). Then, the corresponding
induced dipole moment of the cubit under study will be
determined by the quantity

dy = dy dj = dy
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X =L (s i) — 0,
while the pulse area can be found from expression (9),
where the direction of Ej;, is determined by the vector
X — ipy. A change in the direction of circular polarisation
of the field (19) is equivalent to a change in the sign at y,.
This leads to the corresponding change in the sign at y, in
(20). Therefore, by changing the direction of circular
polarisation of the exciting external field, we also change
the direction of the vector X in the complex plane.

The simultaneous action of the Hadamard transforma-
tion on two cubits transfers them to the entangled states.
Indeed, we have for two cubits in the ground state

(20)

1
H, ® H,[0),]0), = 5 (‘0>1 [0),

+10), 1), + [1),10), + [1),[1),). 1)

By calculating the average value d;+d, of the dipole
moment operator with the help of wave function (21), we
obtain

A A 14, . . .
(di +dy) = 5\/—% [(xo +iyg) exp(icwgt) exp(—ikoR;)
+(xo — iyg) exp(—iwgt;) exp(iko R} )
+(xo +iyg) exp(iwgt; ) exp(—ikoR;)

+(xg — iyg) exp(—iwyt;) exp(ikyRy)] = p1 + p>.

If one of the cubits, for example, cubit 2 is initially in the
excited state, then the Hadamard transformation transfers
cubits 1 and 2 to the next state:

1
H; @ H|0),]1), = E(‘0>1|0>2

=10} 11)5 + [1)110)5 = [1),]1),). (22)
The calculation of the average value d; + d, of the operator
with the help of wave function (22) gives

A A 1 d . . .
(d) +dy) = 5\/—% [(x0 + iyo) exp(img;) exp(—ikoR,)

+(xg — iyo) exp(—iwyt;) exp(ikyR,)
—(x0 +1iyo) exp(imgt;) exp(—ikoR;)

—(x9 —iyg) exp(—iwyt,) exp(ikgRy)] = p1 — p>.

Therefore, using - and ©t/2-pulses acting simultaneously
on any pair of cubits, we can generate entangled states of the
type (21), (22), which contain the basis Bell states [14].

Consider the logical operator CNOT as a sequence of
the following transformations: the n/2 pulse acts on one of
the cubits, for example, cubit 2, then cubits oscillate freely
during the time 7, of quantum information transfer
between them, and cubit 2 is again subjected to the action
of the m/2-pulse. We show that such a CNOT operator in
the system of electric dipoles substantially differs from the
CNOT operator in the system of magnetic moments [1],
where magnetisation changes in time proportionally to the

vector product of magnetisation and the magnetic field
strength.

Let cubit 1 controls the behaviour of cubit 2. According
the conservation law, we have for these cubits

X\ + dgwi = [ Xa|* + di w3

Let us assume that cubit 1 is in the |0), ground state, i.c.,
w; = —1. This means that |X;|> =0, so that the state of
cubit 1 remains invariable. Let us irradiated cubit 2 with the
n/2-pulse. As a result, the inversion becomes w, =0 and
| X5| takes the maximum value equal to dj. After switching
off the m/2-pulse, cubit 2 freely oscillates due to coherent
resonance transfer of quantum information in the scheme
considered in section 3 (case B) at frequencies v, (14)
during the time T},. Let us find frequencies v 2 for a specific
case, when glass nanoparticles with the refractive index
ny = 1.5 are doped with sodium atoms with the transition
dipole moment dy = 6.24 x 10~'® CGS units. In this case,
Nyap = 0.07, and for w,y ~ w, = 0, we obtain

4nd}

! !
Vl"&"/o, V) R — 1>0

Within the time 7}, = mt/v’ after switching off the first 1 /2-
pulse, the second ©/2 pulse is switched on, which transfers
cubit 2 to the initial state with w, = —1. In the case,
|X,] =0 and the action of the CNOT operator is
terminated.

5. On the physical realisation of a quantum
computer based on activated particles selectively
interacting with short optical pulses

As pointed out in Ref. [1], a full-scale quantum computer
should contain approximately 10° cubits. Consider a system
consisting of a such number of ensemble cubits representing
spherical particles made, for example, of glass activated
with two-level sodium atoms at the 35 — 3P transition (the
yellow line of sodium at A =5890 A). The radius of
particles is a, = 100 nm, the distance between them is
R = 204, the concentration of sodium atoms in particles is
N= 10" cm™>. The area occupied by 10° cubits is
approximately 10~ cm?. Each cubit can be coupled with
a microfibre through which optical pulses are delivered.
Dipole radiation signals from cubits, corresponding to the
process of quantum calculations, can be detected in the
wave zone with respects to cubits on a special screen. Let us
show how such a design of an optical quantum computer
makes it possible to solve the basic physical problems
pointed out in Ref. [1].

(1) Tt is necessary to create a system of cubits in the
ground state before the beginning of quantum calculations.
It is obvious that spin systems in crystals require the use of
low temperatures and extremely strong magnetic fields. Ions
in vacuum traps can be cooled down to very low temper-
atures by laser methods. However, it is necessary to use
ultrahigh vacuum in this case. The initial register was
created in experiment [6] by using a special procedure
for selecting nuclear spins in the ground state to realise
a simplest algorithm of quantum calculations. For more
complicated problems, the selection of cubits in the ground
state can be impossible. For optical transitions in a system
of activated nanoparticles, the problem of selection of cubits
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in the ground state is solved automatically even at room
temperatures.

(i) A quantum computer requires the use of selective
excitation of any cubit by optical pulses. In experiment [6],
cubits in a two-cubit quantum computer were nuclear spins
of '"H and "C with frequencies ;/2n ~ 500 MHz and
, /21 = 125 MHz, respectively. This allowed the authors
[6] to solve the problem of cubit identification over the
exciting pulse frequency, but the location of cubits among
10 molecules in a liquid trichloroethylene solution
remained uncertain. The problem of cubit identification
in a quantum computer based on activated nanoparticles
can be completely solved. Indeed, the assumed cubit size is
~ 100 nm and the distance between them is ~20A4. There-
fore, each cubit can be connected to a separate fibre of
micrometre diameter through which optical pulses from a
common radiation source will be delivered at a fixed
frequency coincident with the transition frequency in the
spectrum of two-level impurity atoms.

(iii) It is known that it is sufficient to use one- and two-
cubit blocks to obtain the required set of transformations in
quantum calculations [1]. One-cubit NOT transformations
and the Hadamard transformation can be physically realised
under the action of external optical pulses. To perform the
NOT operation, it is necessary to take into account the
interaction of cubits in the radiation field. In principle, it is
necessary that the CNOT operation could be performed for
any cubit pairs in a quantum computer. In the case of
nuclear and electron spins, the interaction between cubits is
short-range, which leads to significant problems in the
physical realisation of this operator. In this paper, we
proposed to realise the CNOT operator by using the
long-range, proportional to 1/R, delayed interaction of
atoms in the optical radiation field. In this case, each cubit
is irradiated by the resulting field representing the super-
position of an external field and the self-consistent field of
dipoles. To enhance the transfer of quantum information
with increasing the distance between cubits up to tens of
micrometres and to realise the logical CNOT operator, the

concentration of two-level atoms in nanoparticles should be
increased up to 10" cm™.
(iv) During quantum calculations, relaxation processes
I

take place in computer cubits, which results in random .
variations in the amplitudes and phases of the cubit state
vectors. This loss of coherence of the quantum states in this
process prevents quantum calculations and should be
minimised. The characteristic time of this process is
determined by the phase (73) and energy (7)) relaxation _
times. In the case of nuclear magnetic resonance in liquids,
the relaxation times 7% and T, are 1—-10 s. For the optical
transitions of ions in traps, the coherence loss time is
determined by the decay time of spontaneous emission
and the time of collisions with residual atoms. Therefore,

=
= =
L

use of short (~ 107'* s) optical pulses, allowing the realisa-
tion of about 10° unitary one-cubit transformations without
a noticeable loss in the coherence of quantum states, is
sufficient for the implementation of quite complicated
algorithms for quantum calculations.

Let us make some energy estimates. To excite a sodium
atom in a dielectric particle by the m/2-pulse, the electric
field strength should be Ey = n/i/(4dyt,), where 7, is the
optical pulse duration. For 1, = 1075, we obtain
Ey=126x10"* CGS units. To excite NV =42 x 10*
atoms in a dielectric particle by a single optical pulse,
the specific power of an external source should be
EOZNV/(4mp) =0.529 x 10>’ W em™. We can assume in
this case that the strengths of the acting and external
electric fields are comparable. The power absorbed by a
dielectric particle upon excitation of half the impurity atoms
is (1/2)NVhwy/T, =~ 0.8 W. The thermal energy released
inside one particle is (1/2)(NVhwy/T,)T;. For
T, =3 x 1077 s, the temperature of the particle is approx-
imately 300 K. Therefore, the temperature of a dielectric
particle excited by an optical pulse of duration 7, = 1075
increases by AT = T(t,/T}) =3 X 1073 K.

(v) The states of cubits after the termination of calcu-
lations should be measured. At present the technology of
such measurements is absent [1]. It seems that the methods
of near-field optical microscopy [13] will play an important
role in the realisation of quantum computers based on
activated nanoparticles and the measurements of cubit
states.

Thus, we have described in this paper the operation
principle of an optical quantum computer based on
activated spherical particles selectively interacting with short
optical pulses. The physical realisation of unitary trans-
formations, which can be used in quantum calculations in a
quantum computer, have been theoretically substantiated.
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