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On a method for obtaining laser beams with a phase singularity

A.A. Malyutin

Abstract. A method is analysed for obtaining laser beams
with a phase singularity with the help of phase screens
described by the function of the type exp (i/p). It is shown that
this method is used to obtain laser beams in the form of single
rings with a smooth intensity distribution in the far-field
radiation zone (at the lens focus) representing the super-
position of Laguerre— Gaussian modes. In the near-field zone
and, in the presence of aperture clipping, also in the focal
region, the beams with a more complicated structure can be
observed. The scaling of the radius corresponding to the
maximum intensity of the beam both in the absence and
presence of aperture clipping occurs linearly with the
singularity charge /. The influence of the beam decentration
and of the phase screen on the structure of phase-singularity
beams is estimated.

Keywords: laser beams, phase singularity, mode composition of
radiation.

1. Introduction

Light beams with phase singularities [phase-singularity
beams (PSBs)], which are also called ‘optical vortices’
due to the specific wave-front structure, have been
extensively studied in the last decade. These beams attract
interest because they can be used to manipulate micron and
submicron objects in biology, microelectromechanics,
microhydrodynamics, etc. Due to specific properties of
their propagation in linear and nonlinear media, PSBs are
also of interest from the theoretical point of view.

At present PSBs are obtained, as a rule, using either the
transformation of the Hermite — Gaussian (HG) modes 16
(commonly with » =0 and m > 0) by means of astigmatic
7t/2 converters [1] or synthesised computer holograms [2]. In
the first case, pure Laguerre—Gaussian (LG) modes ule
[p = min (n,m), [ = n — m] are obtained under certain con-
ditions. However, it is rather difficult to match the input-
beam parameters with the optical parameters of the m/2
converter. An example is paper [3] (see Fig. 4 in it) where
insufficient matching between these parameters resulted in a
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change in the beam scale after the converter rotation (this
was explained in our paper [4]). As a result, the output
radiation of the converter consists generally of a set of LG
modes [5]. In a particular case, it is possible to obtain elliptic
LG modes [4], which are convenient, for example, for
manipulations with elongated microobjects. The elliptic
LG modes, which possess astigmatism, can exist only in
a limited spatial region and are, naturally, also a super-
position of pure LG modes.

When computer holograms are used, which are in fact
the interference pattern of the PSB and one or another
reference beam (TEMgy modes with the spherical [2] or
inclined [6] wave front), along with the required radiation,
also radiation in extra diffraction orders is obtained, which
should be filtered. This can substantially reduce the con-
version efficiency.

Recently, a method for obtaining PSBs was used in
several papers [7—11], which is similar to the holographic
method, where a singularity of the type exp (i/p) is intro-
duced to the laser beam directly by means of a phase screen
(kinoform). A great number of elements (480 x 480) of a
controlled liquid-crystal phase screen used in the method
made it possible to obtain beams with the topological
singularity charge / up to 200 [10]. The efficiency of this
method, according to Ref. [9], can approach 100 %.

In this paper, we analyse the structure and mode
composition of PSBs obtained with the help of phase
screens, which are described by a function of the type
exp (ilp). We consider the near- and far-field radiation zones
and the influence of the form of the initial laser beam and its
position with respect to the phase-screen axis on the field
pattern.

2. TEMjyp mode and a phase screen
with &= exp(ilp)

2.1 Far-field radiation zone

Consider the TEM radiation mode with the unit intensity,
the radius w, and the plane wave front propagating through
a phase screen, whose phase @ depends on the azimuthal
angle ¢ as @ =exp(ilp), where [/ is an integer (the
singularity charge). Then, the radiation field at the trans-
parency output can be written in the form

u(p, @) =exp (— p*/w’ +ilp). (1)

We assume that this radiation is focused by a lens with the
focal distance f= mw?/A, as shown in Fig. 1.
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Figure 1. Optical scheme for obtaining phase-singularity beams using a
phase screen with @ = exp (i/¢p).
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The field distribution in the lens focus is described by the
Fourier transform of field (1). This distribution can be
written in cylindrical coordinates, by making the substitu-
tion r — r/(Lf):

1 ([t .
U(r,0)= 2nJ J u(p, ) exp[—i2nrp cos(0 — ¢)]pdpde. (2)
By wusing expressions (2.5.41.10) from Ref. [12] and
(6.631.7) from Ref. [13], we obtain
U(r,0) = Brwexp [il(0 — m/2) — yrz]
< [Ty (r?) = sy p (7). 3)

where B is a constant; /,(z) is the modified Bessel function
of the imaginary argument; and y =1 /(2w2). Because a
sequence of the integer and half-integer indices of the Bessel
function corresponds to the series /=1, 2, 3,..., we can
perform the transformations in the right-hand side of (3):

> (yr=/2) k—i—l—“r 2
N B I A ML L i )
k=0 )
for /=1 and
Lip(r?) = L (or?)

smh( %) 5)

1/ 2\ . H(or? h(op?
= (TW) {sm (yr®) —cosh(yr=) +
for [ =2, etc.

Therefore, for odd values of /, the field is represented as
sums, while for even values of /, the field is represented by
hyperbolic secant and cosecant. The far-field radiation
distributions in the absence of diffraction due to aperture
restrictions have the form of a single ring independent of the
parity of / and are quite similar to each other (Fig. 2).

To find the dependence of the position of the maximum
of distribution (3) on /, it is convenient take, for example,
! =2n+ 1. Then, the equation dU/dr = 0 is reduced to the
equation

2n+1
2

VT max

2n+1
- 4) In('yrr%mx) + ( + 4) n+1(yrmax) =0. (6)

V” max
The numerical solution of (6) for odd / gives

Fmax & [0.595 4 0.662(1— 1)/2]//7. 7

The FWHM of the ring increases also approximately
linearly with /.
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Figure 2. Dependences of the intensity of field (3) on the radial
coordinate (curves are normalised to their maxima) (a) and the distri-
butions of the intensity (b) and phase (c) in the PSB for / = 10 (the phase
change from 0 to 2w is given on a linear ‘grey’ scale).

The difference in the use of phase screens with odd and
even / cannot seemingly have a physical meaning, and the
difference between (4) and (5) is purely symbolic. However,
actually this is not the case: when the same basis of the LG
mode is used, the fields produced by means of phase screens
with different singularity charges have different ratios of the
real and imaginary parts of the expansion coefficients (mode
amplitudes) A4, = a,; +ib,;. Figure 3 shows the numerical
expansions of fields (4) and (5) in the LG modes. For / =1,
we have

U(r,0,1=1) (ay +ib (8)

p=1

and the spectrum contains the upl modes (Fig. 3a), for
which a,; # 0 and b,; # 0. Equality (8) is approximate due
to the presence of the error in the expansion. The error
value can be estimated from the fact that the orthogonality
condition for the LG modes in the calculation is fulfilled
with the accuracy ~107%—107". According to this calcu-
lation, we have |a, | = |b,| with the above accuracy. For
/=2, we have

U, 0,1=2) ~ > (a + i) ©)
p=0

and, as one can see from Fig. 3b, the mode amplitudes in
the spectrum are either real or imaginary. The amplitude
moduli for expansions (8) and (9) as functions of p are
shown in Figs 3c, d. Note that a passage to another basis of
modes upL,G (for example, the basis rotation by multiplying
each of the modes by a constant factor exp (i), where ¥ is
a constant) will result in the corresponding rotation of
spirals in Figs 3a, b. In this case, naturally, the distributions
of the amplitude moduli (Figs 3c, d) will not change.

Similar properties are also observed for other even and
odd values of / for the phase screen. As [ increases, the
weight of the LG modes with higher radial indices p in the
expansion also increases. This is already noticeable in
Figs 3¢, d on passing from /=1 to [=2
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Figure 3. Amplitudes in the expansions of field (3) in the LG modes (a, b) and dependences of the moduli of these amplitudes on the index p (c, d) for a
phase screen with / = 1(a, c¢) and 2 (b, d). The points on spirals correspond to p =0, 1, 2, ....

2.2 Near-field radiation zone

According to Ref. [14], the Fourier transform of the HG
function for any integer or fractional (including irrational
[15]) order a is

F ‘[ exp(—nx?)H,(xV2m)]

= exp(—iann/2) exp(—né?)H,(EV/2n). (10)
By expanding the LG modes in the HG modes [1]
L <
uplG(xuyvz) = Zl cb(nvmyk)ungk,k(x7y7Z) (11)
k=0
expression (10) can be written in the form
F[up® (x,7,2)] = exp(—iaNn/2uy (x,3,2).  (12)

where N =n+m = 2p + || is the mode order. In our case,
F*=7" and the inverse Fourier transform of field (3),
taking into account the accumulation of the Gouy phase
during the propagation of the beam to the focal plane of a
lens with the focal distance f (Fig. 1), has the form

7 U 0,0] =Y Ayexpli2p + || + Dm/2Juy”
p=0

= u(p, p). (13)

The mode composition of radiation (3) in the far-field
zone is inherent in the input plane in Fig. 1 and in all
intermediate points at the optical axis. In the latter case, we
obtain the expression

Ap(2) = [ap(z = 0) +iby (z = 0)]

(14)

for the expansion coefficients of initial field (1), where
¥(z) = arctan (z/zg) is the Gouy phase and zg = mw?/J is
the Rayleigh length of the beam (beam waist length).
Therefore, the expansion coefficients for different z differ
only in phase additions corresponding to the LG mode
indices.

These coefficients for initial field (1) and its far-field zone
are determined by relation (13). For /=1, the exponential
term in (13) is reduced to (—1)*?*Y, and for / = 2, to 1 ¥*".
Therefore, in the first case, the spiral in Fig. 3a is rotated
through 180° (see Fig. 4a) and in the second case, the spiral
in Fig. 3b is rotated through 90° (see Fig. 4b). At points z
between the phase screen and the focal plane of the lens,
each of the complex coefficients 4, (14) of the basis LG
modes rotates in accordance with a change in the Gouy
phase. This is shown for some values of z for /=2 in
Figs 4c, d. Due to the dependence of the angle of rotation

x exp[—i(2p + |I| + Dy (z)],
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Figure 4. Amplitudes in the expansions of field (1) in the LG modes in the plane of a phase screen with /=1 (a) and 2 (b) and changes of these
amplitudes for / = 2 upon the propagation of the beam by the distance z = zg /2 (c) and zg (d). The points on spirals correspond to p =0, 1, 2, ....

on p, the radius vectors of the inner points of the spiral in
Fig. 3a rotate through the angle proportional to p (Fig. 4c),
and for z = f'= zg, the spiral transforms to a straight line
(Fig. 4d). As the beam further propagates toward the focal
plane of the lens, the spiral is twisted, but already in the
opposite direction. It transforms from the spiral twisted
counter-clockwise at the point z =0 (Fig. 4b) to a similar
spiral twisted clockwise at the point z = 2f = 2z (Fig. 3b).
The near-field radiation distribution is intermediate
between fields (1) and (3) in accordance with the change
in the coefficients of expansion in LG modes (14). These
fields, as follows from the numerical simulation of the PSB
propagation (Fig. 5) are not monotonically smooth. Note
that the maximum intensity of the field at a distance of
0.01zg behind the phase screen (/ = 10) exceeds the intensity
of the initial TEMyy mode by a factor of 2.25. At the same
time, the field intensity at the focus of a lens with f= zy
proves to be much lower (0.0054 of the initial intensity).

2.3 Effects of diffraction and decentration

The authors of paper [10] analysed the structure of the
TEMgy mode behind a screen with & =exp (i/lp) and
explained the linear dependence of the position of the
maximum intensity of the PSB by the influence of
diffraction from the aperture of a focusing lens. They
repeated this conclusion in paper [16]. As shown above,

linear dependence (7) is an inherent feature of the beam
obtained by means of a phase screen with @ = exp (i/p).

I (arb. units
( ) o

7.5+

z/zp =

0.025 0.05 0.1 0.2

<t i

Figure 5. Radial distributions of the field intensity behind the phase
screen (/ = 10) in the near-field zone (the relative intensities of the curves
are not met) (a) and the distributions of the PSB intensity (b) and phase
(c) at a distance of 0.01zi from the phase screen (the intensity maximum
amount to 225 % of the initial beam intensity).
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However, it is rather difficult to avoid aperture effects, at
least upon focusing by objectives with a very short focal
distance and a very large numerical aperture (achieved
mainly due to immersion). The matter is that the phase
screen represents a matrix device based on liquid crystals
[8, 10]. The full size of the matrix is 2 x 2 cm, which makes
the use of the initial TEM(o beam with a rather large cross
section optimal. It seems impossible to avoid vignetting in
matching this beam with a relatively small input pupil of a
short-focus microobjective. This explains the field structure
consisting of many rings observed in the focal plane [10, 16]
instead of one ring, as should be in the absence of aperture
clipping (see section 2.1).

The numerical simulation, which was performed, as
above, using the FRESNEL program [17], showed that,
when the intensity of the initial TEMy beam was clipped at
the 5% level of the maximum intensity (~ 22.4% in the
field) and the multiring structure was observed at the lens
focus (Fig. 6a), the maximum intensity even increased
compared to the intensity of the distribution in Fig. 2b.
The replacement of the TEMyy mode at the phase-screen
input by a beam with a flat top, the same radius w and
intensity leads to a further increase in the maximum
intensity of the PSB. In this case, the clipping of a Gaussian
beam or passing to a flat-top beam is accompanied by a shift
of the intensity maximum to the region of larger values of
r/w (Fig. 6b).

The PSB quality also depends on the decentration
between the initial beam and the phase screen. Due to

the vector nature of the orbital moment imparted to the
beam, the displacement of the centre of the initial beam (for
example, along the x axis) corresponds to the displacement
of the ‘centre of gravity’ of the PSB and the deformation of
its intensity distribution along the y axis (Figs 6¢, d). The
dependence of the position of the ‘centroid’ in the far-field
zone on [, according to the results of the numerical
experiment for a Gaussian beam (Fig. 6¢), can be written
in the form

AF
re=—=lIxr,
nw

(15)

where r. and r, are the radius vectors of the ‘centroid’ of
the PSB and the centre of a Gaussian beam, respectively,
with respect to the phase-screen axis. The coefficient in
front of the vector product characterises a change in r,
when the focal distance F of the lens differs from f= zx
(Fig. 1). Note that the fixed displacement r, corresponds to
a constant, independent of /, ratio of the maxima in the left
and right parts of the PSB intensity distributions in Fig. 6d.

3. Conclusions

It is shown that PSBs generated using the TEM(y mode and
a phase screen (kinoform) with @ = exp (i/p) in the absence
of diffraction represent a superposition of the LG mode
with a fixed value of /, which is ‘continuous’ over the radial
index p. The far-field intensity distribution of these beams
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Figure 6. (a) Radial distributions of the field intensity behind the phase screen (/ = 10) in the far-field zone (the relative intensities of the curves are not
met) for the Gaussian beam at the input ( /), the clipped (at the 5 % level) Gaussian beam (2), and the flat-top beam (radius w) (3); (b) dependences
of the position of the maximum intensity on the singularity charge / for the Gaussian beam ( /) and the flat-top beam ( 2); changes in the position of
the ‘centroid’ of the PSB (along the y axis) upon displacements of the Gaussian beam Ax = w/10 and w/20 and different / (c) and deformations of the

PSB intensity distribution along the y axis (Ax = w/10) (d).
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has the form of single rings with the radial position of the
intensity maximum and half-width proportional (with a
rather high accuracy) to the singularity charge /. The linear
dependence on [/ is retained in the presence of aperture
clipping and when a flat-top beam is used instead of the
initial TEMgo beam. In the near-field zone, and in the case
of diffraction, also in the far-field zone, PSBs have the
multiring structure. The PSB structure also depends
substantially on the decentration of the initial Gaussian
beam with respect to the phase screen, at which the
displacement of the ‘centroid’ of the PSB is proportional to
the vector product 7 x r.
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