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Spectral — threshold characteristics of a distributed-feedback
laser with the sinusoidal modulation of coupling coefficient

A.A. Afanas’ev, S.Yu. Mikhnevich

Abstract. The spectral-threshold characteristics of a
distributed-feedback (DFB) laser with the sinusoidal modu-
lation of the complex coupling coefficient are studied within
the framework of the linear theory of coupled modes. The
analysis is performed in a broad range of amplitudes of the
coupling coefficient for phase, amplitude, and amplitude—
phase gratings providing distributed feedback in the active
medium of the laser. It is shown that the eigenmode spectrum
of the DFB laser on a phase grating with a large-scale
modulation of the coupling coefficient is similar to the
eigenmode spectrum of the DFB laser on an amplitude
grating with a constant coupling coefficient. The DFB laser
under study is promising for obtaining stable single-frequency
lasing and can find applications in devices in integrated optics.

Keywords: distributed-feedback lasers, complex coupling coeffi-
cient, deep sinusoidal amplitude — phase modulation.

1. Introduction

Progress in optical laser technologies imposes new stringent
requirements on the parameters of laser sources of coherent
radiation. In particular, the stability of single-frequency
lasing, compactness and simplicity of coupling of laser
sources with different elements of optical systems are very
important for integrated optics and fibreoptic communica-
tion networks. The distributed-feedback (DFB) lasers meet
these requirements in many respects. They use instead of a
conventional mirror resonator a fibre Bragg grating, whose
period can be changed to tune the lasing frequency within
the gain band of the active medium. Semiconductor DFB
lasers have found wide applications in integrated optics as
sources of narrow-band coherent radiation in the range
from 1.3 to 1.5 um [1-7].

It is known [3—8] that stable single-frequency lasing
cannot be obtained with the help of DFB based on a
periodic modulation of the refractive index of the active
medium of the laser. A laser with the distributed resonator
based on the phase grating has a high spectral selectivity due
to a narrow spectral width of the Bragg resonance and
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possesses the lowest self-excitation threshold simultaneously
for two modes with frequencies located symmetrically with
respect to the Bragg frequency wg,. A part of a smooth fibre
in the middle of the Bragg structure (defect) changes the
intermode  distance between these modes [9]. In
Refs [3, 6, 9—11], a method was proposed and realised
for obtaining stable single-frequency generation in a
DFB laser on the so-called phase-shifted structure consisting
of two sinusoidal gratings of the refractive index with
identical periods and amplitudes and the phase shift equal
to m in the middle of the distributed resonator. The DFB
laser based on this structure has the lowest self-excitation
threshold for one Bragg mode at the frequency w = wg,. A
substantial disadvantage of this laser is a very complicated
multi-stage technological process for fabricating a combi-
nation of refractive-index gratings with the phase shift 7 in
the middle of the distributed resonator.

The authors of Refs [I, 12] considered the alternative
and technologically simpler concept of a single-mode DFB
laser on the phase grating with a low-frequency sinusoidal
modulation of the coupling coefficient of the counter-
propagating laser waves. By selecting appropriately the
modulation of the coupling coefficient in such a DFB laser,
the longitudinal inhomogeneity of inversion burning in the
active medium [1] resulting in the broadening of the laser
line can be eliminated [13]. The periodic structure of the
refractive index [and (or) the gain] of the active medium of
the laser providing the sinusoidal modulation of the
coupling coefficient can be simply realised by the one-stage
holographic method. By using the scheme of three-beam
holographic recording, two harmonic gratings with equal
amplitudes and close periods can be recorded comparatively
easily, whose combination provides the low-frequency sinu-
soidal modulation of the coupling coefficient [12]. The
technological advantages in the manufacturing of such a
relief of the refractive index open up wide opportunities for
practical applications of single-mode DFB lasers with the
periodically modulated coupling coefficient.

The approximate solution of the corresponding system
of equations in the case of weak coupling was obtained in
Ref. [12], where the spectral-threshold parameters of the
DFB laser on the phase grating with the sinusoidal
modulation of the coupling coefficient were analysed.
The spectral-threshold parameters were compared for the
DFB laser on the harmonic grating with the sinusoidal
modulation of the coupling coefficient and the DFB laser on
the phase-shifted structure with the phase shift © in the
middle of the distributed resonator. The approximate
relations obtained in Ref. [12] describe quite accurately
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the spectral-threshold parameters of the DFB laser for small
amplitudes of the modulated coupling coefficient. However,
due to the recent progress in new technologies for fabricat-
ing media with a deep modulation of the dielectric constant
[14], it is necessary to generalise the theory proposed in
Ref. [12] to the case of DFB lasers with large amplitudes of
the modulated coupling coefficient.

In this paper, we analysed numerically the system of
equations describing the linear generation regime of the
DFB laser on the harmonic grating with the sinusoidal
modulation of the coupling coefficient of counterpropagat-
ing waves. We studied the spectral —threshold parameters of
this laser in a broad range of variation in the amplitude of
the coupling coefficient. The analysis was performed for the
phase, amplitude, and amplitude —phase gratings providing
the DFB for waves in the active medium of the laser.

2. Basic equations

According to Ref. [12], we represent the modulation of the
refractive index n and the gain k in the active medium as a
combination of two harmonic gratings with equal ampli-

tude 7 and k with slightly different periods A; and 4,
(A <Ay):

(z)=ng+nfcos|—z|+cos|—z+0o
n(z) =ng+n z z
0 ]] 12 )

- 2n 2n
k(z) = ko + k{cos (A—lz) + cos (A—zz + (p)} ,

where ny and k&, are the unperturbed values of the refractive
index and the gain, and ¢ is an arbitrary phase shift bet-
ween the gratings. By introducing the notation

B 1 . 1 G — 1 1
VIR AV
and moving along the direction of counterpropagating laser

waves from the point z = 0 to the point z = (¢ — n)/(2G),
we can rewrite expressions (1) in the convenient form

n(z) = ny + 2nsin(Gz) cos(gz + ¢),

(@)
k(z) = ko + 2k sin(Gz) cos(gz + @),
where
p=0 Mthiotn

T2 Ay—Ay 2

We assume in (2) that |k| < ngk, and || < ny, where
Ko = w/c¢, and sin(Gz) is a slowly varying function of the
coordinate z (G < g). By using the method of coupled
waves [15], we will seek the solution of the wave equation
d’E  o? [ c

2
=t n(z)—iak(z)] E=0 3)

in the form of two counterpropagating waves

E(z) = E, (z)exp (i%z) + E_(z)exp (— i%z), 4)

where E.(z) are slowly varying amplitudes and  is the
lasing frequency [w ~ wg, = gc/(2ng)]. By substituting (4)
into (3) and taking (2) into account, we obtain the system of
truncated equations [12]

dE ko . . i
id—; — (7” 15> E; = in(z)eEL(2), 5)
describing the linear generation regime in the DFB laser
with the sinusoidal modulation of the coupling coefficient

#(z) = % <ﬁ - 2%) sin(Gz) = g sin(Gz2) (6)

and the Bragg detuning 6 = (kong — g/2).

The solution of the system of linear equations (5)
determines the spectral—threshold parameters (the eigen-
mode frequencies and threshold gains) of the DFB laser.
Note that, to study lasing itself, it is necessary to add
constitutive equations to system (5), which take into account
the saturation of the gain k = k(|E|?) in the active medium
by laser radiation.

To find the solutions of the system of equations (5), they
should be supplemented with the boundary conditions

E.(-L/2) = E_(L)2) = E, ™)

where L is the active medium length. An arbitrary
specification of amplitudes on the medium boundaries
does not affect the dispersion equation, which determines
the spectral—threshold parameters of the DFB laser [15].
However, in the case of biharmonic modulation under
study [x = x(z)], the choice of the boundary values of
amplitudes can no longer be arbitrary because of an
arbitrary phase shift between the gratings ( ¢ # 0). One can
easily see that, by making the substitution E (z)=
A, (z)exp(£i¢/2) in equations (5), the phase factors can
be excluded. In this case, boundary conditions (7) lead to
certain phase relations for waves at the active medium
boundaries. To exclude the difference between amplitudes
at the boundaries, which is not essential, we will assume
below that ¢ = 0.

The analytic solution of the system of equations (5) with
boundary conditions (7) cannot be obtained without addi-
tional simplifying assumptions. As mentioned in
introduction, the solution of system (5) in the weak coupling
approximation (|x(z)| < kj) was obtained in Ref. [12], where
the spectral —threshold parameters of the DFB laser on the
phase grating (k =0) were analysed. We performed the
numerical simulation of the system of equations (5) without
any additional simplifying assumptions. Three different
situations upon the formation of DFB were considered
with the use of phase (k= 0), amplitude (7 =0), and
amplitude —phase (k # 0, 71 # 0) gratings.

3. Results of numerical analysis

To perform the numerical simulation of equations (5), it is
convenient to pass to the real variables &.(z) and y:

E.(2) = &4(z)e"0). ®)
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By substituting (8) into (5), we obtain the following
equations for amplitudes &,(z) and phases ¥, (z) of the
counterpropagating laser waves

d& k . .
j:d—; - 706} = sin(Gz)(x g cosy £ xsiny)é,
©)
d E+ . .
iﬂ— T sin(Gz)(xcosy F xgsiny) + 6,

dz _é()i

where »o=Rexy; »o=Imxy; y=¢+y_—y,. The
system of equations (9) was solve by the Runge—Kutta
method, which was modified for problems with the
boundary conditions &L (FL/2) = &y, Y (FL/2) =0 spe-
cified at the opposite boundaries of the active medium. At
the first stage of numerical simulation, we determined the
eigenmode frequencies w; of the DFB laser, i.e., the fre-
quencies of the narrow peaks of the output amplitudes of
the waves depending on the Bragg detuning SL. At the
second stage of calculations, we found the values of output
amplitudes at eigenfrequencies «; depending on k, from
which threshold gains k,(w;) were determined.

Phase grating. The numerical analysis of equations (9)
showed that the spectral—threshold characteristics of the
DFB laser on the phase grating with the sinusoidal
modulation of the coupling coefficient at small values of
the parameter GL (for example, for GL = 7) are similar to
the corresponding characteristics of the DFB laser on the
amplitude grating with a constant coupling coefficient [15].
The discrete spectrum of eigenmodes with frequencies
oy (j=0, 1, 2,... is the mode number) of the laser under
study consists of the central (Bragg) mode with wy = wg;,
and higher-order modes with w_;<wy < w; = 1) sym-
metrically located with respect to the central mode
(Fig. 1a). One can see from Figs la, b that for GL = m,
the Bragg mode has the lowest threshold amplification. As
the mode number j increases, the value of (kyL), also
increases, i.e., the discrimination of modes is observed, and
kom(w;) = kom(w_;). In this case, the amplitude of the
coupling coefficient increases with decreasing monotonically
(KoL)

Because the values of (kyL),, for the Bragg mode (wy)
and the first-order modes (w, ;) considerably differ in the
region of large x{ (for example, for x{ = 1 cm™!, we have
kom(w1)/kom(wg) = 1.2), the dynamic range of variation in
the gain Ak, for the realisation of single-frequency
operation of the DFB laser is sufficiently broad. The
dynamic range of Akgy, also increases with increasing .
As expected, in the region of small x{ (for »{ <1cm™'),
the obtained values of (kyL),, are close to those calculated
by approximate expressions in Ref. [12]. As x| increases,
these differences become greater. Figure lc shows the
dependence of the intermode distance Q; = |w; 1 — wj|L/c
on the amplitude of the coupling coefficient 5.

Due to the symmetry of the eigenmode spectrum with
respect to the Bragg frequency wy, = wg,, we will restrict
ourselves to the consideration of the frequency region j > 0
with the positive indices j. In the region x{ < 1 cm™', the
frequencies of the first-order modes are removed from the
frequency wp, with increasing xg: the distance Q; monotoni-
cally increases. In this case, the dependence of the intermode
distance 2, for the first- and second-order modes on the
parameter x () is not monotonic. In the region %} >0.2 cm™',
the frequencies of these modes tend to draw together.
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Figure 1. Spectral—threshold characteristics of the DFB laser on the

phase grating (k = 0): the eigenmode spectrum of DFB laser with
frequencies w; for x9=1cm™! and GL = (a); dependences of the
threshold gain (ko L), of eigenmodes at frequencies w,; on the amplitude
% of the coupling coefficient for GL = (m = 0) for the Bragg mode
(=0, wy = wg,) (1) and the first-order mode (j =1, wy;) (2) (b);
dependences of the intermode distance Q; = |w;;; —@;|L/c on the
amplitude % of the coupling coefficient for j=0 () and 1 (2) (c);
and the dependence of (kyL)y for the Bragg mode at the frequency
) = wg,; on the number m of full modulation periods of the coupling
coefficient over the active medium length for x§ = 0.3 cm™! (d). Solid
curves in Figs 1b, ¢ are numerical solutions of equations (9), the dashed
curves are calculated by approximate formulas (37) and (38) from [12].

Figure 1d shows the dependence of the threshold gain
for the Bragg mode on the number m = (GL/n — 1)/2 of full
periods of the low-frequency modulation of the coupling
coefficient of waves over the length L of the active medium
of the DFB laser. One can see that the threshold gain of the
Bragg mode is minimal for m = 0. As m increases, the value
of (kyL),, for the Bragg mode substantially increases. Our
numerical calculations showed that a further increase in m
results in the reverse discrimination of modes, i.c., the self-
excitation thresholds for higher-order modes become lower
than the threshold for the zero-order mode. In this case, the
greater m, the higher is the order of modes with the lowest
excitation threshold. The dynamics of mode discrimination
is illustrated in Fig. 2, where the spectral dependences of the
output amplitudes of counterpropagating waves are shown
for different m. The greatest output amplitudes at the
corresponding frequencies are achieved for modes with
the minimal threshold gain.

Amplitude grating. The typical eigenmode spectrum of
the DFB laser on the amplitude grating (7 = 0) with the
sinusoidal modulation of the coupling coefficient for
GL =n is shown in Fig. 3a. In this case, the Bragg
mode at the frequency w, = wg, is forbidden. The two
lowest first-order modes at frequencies w.;, which are
located symmetrically with respect to the Bragg frequency
wg;, have the same lowest threshold gain. The spectral —
threshold characteristics of the DFB laser for the given
modulation frequency of the coupling coefficient are similar
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Figure 2. Output amplitudes &, (L/2) (solid curves) and &_(— L/2)
(dotted curves) of generation waves in the DFB laser on the phase
grating as functions of the Bragg detuning 8L for m = 1 (a), 3 (b), and 10
(¢) and xf = 1072 em™" and koL = 15.2.
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Figure 3. Spectral—threshold characteristics of the DFB laser on the
amplitude grating (7 = 0) for GL = n (m = 0): the eigenmode spectrum
with frequencies w,; for xh=1cm™! (a) and dependences of the
threshold gain (k¢L),, on the parameter x( for the first- (j=1, o)
(1) and second-order ( j = 2, wy,) (2) modes (b).
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Figure 4. Output amplitudes &, (L/2) (solid curves) and &_(—L/2)
(dotted curves) of generation waves in the DFB laser on the phase
grating as functions of the Bragg detuning 8L for x»{ = 1072 cm™',

koL =15.24, and m = 1.
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Figure 5. Dynamics of the spectral dependence of the output amplitudes
& (L/2) (solid curves) and &_(—L/2) dotted curves of generation waves
in the DFB laser with increasing the amplitude (imaginary) component
of the coupling coefficient for x§ =10"2 em™', GL=n (m = 0) and
koL = 14.4, % = 0 (a), koL = 13.6, 2§ = 0.01 cm™" (b) and kyL = 10.8,
%4 =0.05cm™! (c).

to those of the DFB laser on the phase grating with a
constant coupling coefficient [15]. Figure 3b shows the
typical dependence of the threshold gain for the lowest
eigenmodes with ky,(w.;) = kowm(w_;) on the amplitude of
the coupling coefficient %(. Note that the values of the

threshold gain for the Bragg mode for DFB on the phase
grating (Fig. 2b) and for the first-order modes for DFB on
the amplitude grating (Fig. 3a) are virtually the same if
%o =xg. Our calculations showed that in this case the
intermode distances very weakly depend on (. As in the
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case considered above (% = 0), the threshold gains for the  12. Seminogov V.N., Khudobenko A.L, Panchenko V.Ya.,
first two modes in the DFB laser on the amplitude grating Sokolov V.. Proc. SPIE Int. Soc. Opt. Eng., 2382, 224 (1995).
increase with increasing m, whereas the gains for higher- 13 Morthier G., Vankwikelberge P., Buytaert ., Bacts R.,
. N . Lagasse P. Proc. Europ. Conf. Opt. Commun. (Gothenburg,
order modes decrease, i.e., the reverse discrimination of Sweden, 1989).
modes takes place. Figure 4 shows the spectral dependences 14, vablonovich E. J. Mod. Opr., 41, 173 (1994).
of the output amplitudes of the laser waves for m = 1. 15.  Yariv A. Quantum Electronics (New York, London, Sydney,
Amplitude — phase grating. The evolution of the spec- Toronto: Wiley and Sons, 1975).
tral—threshold characteristics of the DFB laser with
increasing the amplitude component xg of the coupling
coefficient is shown in Fig. 5. One can see that the spectral
picture of amplitudes of the output waves of the DFB laser
on the phase grating (Fig. 5a) monotonically transforms
with increasing »§ to the picture corresponding to the DFB
laser on the amplitude grating (Figs 5b, c¢). In this case, the
Bragg mode (wy = wg,) transforms to the minus first-order
mode (w_;) for the DFB laser on the amplitude grating.
Correspondingly, the plus first-order mode (w, ) shifts to
the left from the axis 6L and is located symmetrically to the
w_; mode with respect to the poin 6L = 0. In this case, the
threshold gains for these modes become identical.

4. Conclusions

Based on the numerical solution of the wave equations for
counterpropagating laser waves, we have studied the
spectral —threshold characteristics of the DFB laser with
a deep sinusoidal modulation of the complex coupling
coefficient »(z) = (x( + ix ) sin (Gz). We have analysed the
dependence of these characteristics on the coupling
coefficient x(z). It has been shown that the maximum
difference between the lasing thresholds for the Bragg mode
and first-order modes is achieved in the case of the phase
grating (»g = 0). The spectrum of the DFB laser for »x g = 0
is similar to that of the DFB laser on the amplitude grating
with a constant coupling coefficient x'(z) = const. The
stability of single-frequency lasing, compactness, and the
possibility of coupling this laser with different elements of
optical schemes open up opportunities for its application in
integrated optics.
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