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Effect of a-factor on the dynamics
of a bilayer semiconductor structure

1.V. Babushkin, P.V. Paulau, N.A. Loiko

Abstract. A system consisting of two thin films interacting
resonantly with a light field is considered. The model
formulated for such a system is based on the approximation
of two-level atoms and takes into account the peculiarities of
the semiconductor medium, in particular, the effect of the
ratio of dispersions of real and imaginary parts of the
susceptibility (a-factor). It is shown that the inclusion of the
a-factor leads to an additional nonlinearity and a considerable
modification of the set of steady states of the system. The
effect of a-factor on the dynamic regimes emerging in the
system is discussed.
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1. Introduction

Semiconductor thin-film systems are used widely at present
in systems for data transfer and processing because of their
small size and large potentialities for light control. A
significant role in the behaviour of such systems is played
by the nonlinearity arising during interaction of material
layers with the light field. Even in the case of a single layer
with a feedback mechanism, nontrivial regimes such as
bistability [1, 2], self-pulsation [2—4], and formation of
transverse static and moving spatial structures [5—7] may
emerge in the nonlinear regime.

An important feature of such systems is their phase
sensitivity, i.e., the dependence of dynamic properties of the
system on phase relations of the light field in the feedback
loop. This dependence may become more pronounced when
the feedback is realised in the system not through a passive
element in the dynamic sense (e.g., a mirror), but through an
element whose behaviour varies in time. This type of
feedback is realised in multilayer optical structures. In
this work, we consider the simplest version of a multilayer
structure, namely, a system consisting of two thin nonlinear
semiconductor films.
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It was shown in our earlier publications that in addition
to bistability, such systems may also display effects like
symmetry breaking [8] (when identical fields incident on
both sides of the system are reflected with different
amplitudes), self-pulsations [9, 10], as well as the emergence
of spatial structures with different degrees of symmetry (in
systems with a large aperture) [10—12]. Note that the
spontaneous formation of spatial structures and pulsations
is due to the same feedback mechanism in which the phase
relations in the feedback loop play a key role.

In Refs [§—12], a nonlinear medium was considered as
an ensemble of two-level atoms whose interaction with the
light field is described by the Maxwell—Bloch equations.
The parameters of the medium for which the above-
mentioned phenomena occur correspond best of all to
the parameters of semiconductor layers [I, 3]. However,
a semiconductor medium is characterised by mechanisms
responsible for coupling between the amplitude and phase of
the light field that differs from the analogous coupling in a
medium of two-level atoms, playing a significant role in
systems with a phase-sensitive feedback [13, 14]. However,
this mechanism can be taken into account in the two-level
model by introducing a coefficient characterising the relative
variation in the refractive index and absorption coefficient
upon a variation in the density of free carriers. This
coefficient is called the a-factor [15].

In this paper, we consider the effect of the a-factor on
the dynamic characteristics of a system with a small aperture
(when only one transverse mode participates in the dyna-
mics) as well as a large aperture. While describing the
dynamics of semiconductor systems, the active medium
polarisation dynamics can be excluded adiabatically from
the analysis by assuming it to be inertialess [16]. In the thin
film approximation (when the thickness of a layer is smaller
than the wavelength [2]), this leads to a system of differential
equations for the evolution of charge carrier densities with a
delay equal to the transit time for the field between the films.

An analysis of the obtained system shows that an
increase in the o-factor, which leads to an enhancement
of the amplitude—phase coupling between the field and
population, is equivalent to an increase in the nonlinearity
of each of the layers. The threshold of symmetry breaking is
lowered in this case. Moreover, an increase in the a-factor
reduces the threshold of emergence of self-pulsations and
the threshold of the formation of transverse spatial struc-
tures. This means that the amplitude—phase coupling
between the field and the population density enhances
the instability of the system under study.
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2. Model equations

Consider a system of two nonlinear thin films separated by
a distance d in a linear medium with a complex refractive
index n’ —in". The system is illuminated from both sides
by spatially homogeneous monochromatic light fields
(Fig. 1).

Film 1 Film 2

n' —in”

A
Y

Figure 1. A system consisting of two films separated by a distance d-:
EM, E{7) and E, E(7) are the amplitudes of fields incident on the
first and second films and transmitted through them, respectively; E\7,
EZH) are the amplitudes of fields reaching the opposite film, and ED,
E ) are the amplitudes of fields at the system output.

To derive equations describing a system of two identical
thin semiconductor films, we consider a system obtained for
an active medium formed by two-layer atoms as the initial
system. The Bloch equations for the interaction of a two-
level medium (characterised by polarisations R, and R, of
atoms in each film and the difference in level populations
Wi, and W,) with the light field can be written in the
normalised form as [10]

w; = —(w; + 1) +i(ejr; —rie;)/2, (2)
where
T,
v=7;; A=T(0—wy); w=W,
(1,1,)"*

r=R\y; e=E a ; ; 3)
w1 is the transition dipole moment; 7, and 7, are the
longitudinal and transverse relaxation times; w is the
frequency of the incident radiation; and w is the resonance
frequency of the two-level atoms. The current time ¢ is
normalised to the quantity 7;. The effective fields ¢;, ¢, in
the films are related with the fields incident on the films by
the expressions [9, 17]

ey =ei" el —ivr, )
ey =ef) + &5 —ivry, (5)
where

9 — 2nﬁNLco,u2 T,

" (6)

is a parameter characterising the nonlinearity of the system;
N is the concentration of atoms in the medium; L is the
thickness of the nonlinear film; c is the velocity of light; and
7t is the refractive index of the two-level medium.

The result of light propagation between films in a linear
medium is described by the equations

e(zi) (r, 1) = pexp(is) exp <f igAl>e(li) (r,t—1), 7
where A, = 3%/0x? +0%/0)” is the transverse part of the
Laplace operator; p = exp (kn'd) are the losses; s = knd is
the phase shift; 7 is the time of light propagation between
the films; r, = (x,y) is the transverse component of the
radius vector of the point (x, y, z); and k is the magnitude
of the wave vector k of the light field. Equation (7) is a
formal solution of the equation describing the propagation
of light in a linear medium in the paraxial approximation
[10, 11]. The amplitudes of the fields transmitted through
the first and second films are eﬁ_) = e(()_> —i¥r, and
e(l+) = egﬂ — i9r;, respectively.

For typical semiconductor materials, 7; ~ 107" s, and
T, ~ 10725, Thus, T, > T,, and hence y> 1. Conse-
quently, when processes occurring in a time shorter than
the characteristic time 7, are considered, polarisation of the
medium plays only a passive role in the dynamics of the
process and relaxes rapidly to its quasi-stationary state
determined by the values of the population and the field.
This means that the polarisation dynamics can be excluded
adiabatically from the equations assuming that ; = 0, and
r, = 0. In this case, r; can be determined from the algebraic
equations '

rp=ipe;w;(1 +14), (8)

rf = —ifejw(1 —id). ©)

Here, f=1/(1+ A?) is the Lorentzian contour describing
the dependence of the susceptibility y = (1 +id)w of a
two-level medium on frequency 4. In semiconductor media,
the shape of the absorption line differs from Lorentzian and
is asymmetric relative to the sign of A. Moreover, the
absorption coefficient and the refractive index are con-
nected through the o-factor. Taking this into account, the
susceptibility of a semiconductor medium near the centre of
the absorption line can be written as y = f(4)[1 — io(4)]w
with a corresponding line shape (4) [15, 18]. In this case,
the o-factor (o = [0Re(y)/0w][@Im(y)/dw] ") describes the
relative variation in the phase shift of the field upon a
variation in the density of free carriers caused by the
fluctuations of the field amplitude, as well as the self-
focusing effects in a nonlinear semiconductor system. For
typical semiconductor systems, the numerical value of the -
factor near the centre of the gain line varies from 2 to 6 [15].

In this case, the system of equations (4), (5) is trans-
formed as follows:

er(1) = e (1) + pelel ) (1 — 1) + Poe(t — 1)

x wy(r —1)(1 —io)] + per (H)w; (¢)(1 — ier), (10)
ex(1) = e (1) + pelef (¢ = 1) + Boey (1 1)
x wy(t —1)(1 —io)] + pes (H)wy (£)(1 — ia). (11)
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This system of difference equations, together with the
field equations (7) as well as Eqns (2) written in the form

(12)

Wy = —(w; + 1) = fejeywy,

(13)

provides a model for describing systems of two semi-
conductor thin films.

Wy = —(wy + 1) = feserw,,

3. Steady states and stability

Equations (8), (9) modified appropriately for the semi-
conductor medium, and the expression

1

w=—-—-: 14
T 1+ Blef 9
for the carrier density give expressions for the correspond-
ing steady-state values in terms of the effective field e;, and
e, in each of the films. Equations (10) and (11) form a
system of nonlinear algebraic equations in the complex field
amplitudes e;, and e,, which may have several solutions for
the same value of the incident field, i.e., may display
multistability, observed for a quite large (10 and higher)
value of the nonlinearity parameter, which can be achieved
in semiconductor materials [1]. We are especially interested
in the case when the fields incident on both sides are
identical. To obtain a solution for equal fields in both films,
the system of equations (10), (11) is reduced to a single
equation displaying a standard optical bistability. However,
system (10), (11) may also have solutions with unequal
fields e;, and e, and, hence, with unequal fields transmitted
and reflected from the system. Such states are states with a
broken symmetry and are formed due to bifurcation of the
symmetry breaking. The symmetry is broken in the same
range of system parameters as the bistability, and depends
on the magnitude of the phase shift of the light field during
its propagation between the films. Bistability is preferable
for a phase shift equal to an integer of wavelengths.

Otherwise symmetry breaking takes place.

Let us analyse the stability of the system of equations
(7), (10)—(13) to the plane-wave perturbations characterised
by a certain inclination to the system axis, determined by the
transverse component k; = (k,,k,) of the wave vector. For
this purpose, we linearise the system in the vicinity of the
homogeneous equilibrium state (wg;, Wys, €1, €g2) by putting

W; = Wy, + 5Wf, e; = € + 56]" (15)
Having written ¢ = (dwy, dw,, de;, e}, ey, de3) in the form
¢ =¢yexp (At + k), we arrive at the matrix equation

A¢ = M. (16)

Here the matrix M has the form

£ —it —
wyy 0 Seoy Nwoa€ -0 nege "
0 ¢ wo &epy 0 1" woe” nepe "
p "
—ﬂ"mwol —feqywg;  —1-— ﬁé’m €01 0 0 0
nwore”" 0 nege”" Ewpy 0 Eegy
0 nwore g e 0 & wop &epy
0 0 0 —Besawey  —Pepwrr  —1 — Petren

a7

where n = Bpe” (1 — ia); ¢ = (1 — ix). The matrix A (not

shown here) is diagonal, with A in the third and sixth rows
and with unity in the remaining rows. The condition for the
existence of a nontrivial solution of Eqn (16) leads to an
equation for determining A:

det(M — A) = A() + B(A)e > + C(A)e ™™ =0, (18)
where A(4), B(4), C() are second-degree polynomials in /;
and the coefficients depend on k, and coefficients of the
system of equations (7), (10)—(13). The stability boundaries
of the system are determined by the condition Rel = 0.
Below we will study the effect of the a-factor on the
stability boundaries of the system and its steady-state
characteristics.

4. Effect of the a-factor on the steady-state
characteristics and stability of the system

As before, we consider the case when the fields incident on
both sides are identical: ef)+) = e(()_) = ¢y. In this case, one of
the possible equilibrium states of system (7), (10)—(13) is a
symmetric state with e; =e, =e determined from the
equation

e=(1+pe®) el + po(1 —ia) (19)

e
L+ Blef

This is a standard equation describing the bistability as a
function of standard characteristics of the incident field.
However, this equation is complicated due to the presence of
an additional phase shift introduced by the a-factor. Figu-
res 2a, b show the typical steady-state curve for s =7 in
different coordinate systems. In this case, we obtain a
symmetric branch of the solution as well as an asymmetric
branch in which e; # e,, and there is no bistability on the
symmetric branch. Upon a phase change by m, the asym-
metric branch vanishes and is replaced by a bistability
(Figs 2c, d).

One can see from Eqn (19) that an increase in the a-
factor is equivalent to an increase in the nonlinearity of the

les| | lea| |
15 15
10 | a 10 b
51 5F
1 1 1 1 1 1 1
0 5 10 15 e 0 10 20 lein]
les] | lea| |
15+ 15+
10 F ¢ 10 F d
sE st \
1 1 1 1 1 1 1
0 5 10 15 e 0 10 20 €in]
Figure 2. Steady states at the planes (e, e,) (Figs a, ¢) and (e, e;)

(Figs b, d) for ¥ =20.0,a = 2.0, p =0.5and s = 7 (a, b) as well as s = 0
(c, d). The asymmetric branch region that is unstable to Andronov—
Hopf perturbations is marked by bold segments in the curve in Fig. b;
e = (14 pe)ef?).
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system (determined by Sv) by a factor (1 + «%)!/2. However,

an additional phase shift is introduced in the system
response in this case. For positive values of o, which are
typical of a fairly large part of the absorption line [18], an
increase in the a-factor causes a broadening of the range of
incident field values in which bistability or symmetry
breaking is observed. This is illustrated in Fig. 3 showing
the dependence of the boundaries of symmetry breaking and
bistability on the a-factor and the nonlinearity parameter 9
for typical values of parameters for the semiconductor
materials.

‘ein ‘ ‘ein ‘ i
4.5
4.0

3.5

3.0

25 1 1 1 1
20 25 3.0 35 o9 20 25 3.0 35 «,9
a b

Figure 3. Dependences of the upper and lower boundaries of symmetry
breaking (a) and bistability (b) on nonlinearity parameter 3 and a-factor
for p=0.5and s = .

The a-factor may affect the Andronov—Hopf bifurca-
tion boundaries in systems with a delayed feedback [13, 14].
For a system formed by two thin films, the Hopf instabilities
are suppressed by static instabilities, as a rule. In a certain
region, however, regimes periodic in time may emerge due to
supercritical Andronov—Hopf bifurcation [10]. This occurs
when the nonlinearity in the system is quite large and the
bifurcation of the symmetry breaking itself is subcritical. In
this case, a region of instability to time-periodic perturba-
tions is formed on the asymmetric branch (see Fig. 2b). The
corresponding range of field values increases with increasing
the a-factor similarly to the instability region of symmetric
and asymmetric steady-state regimes (Fig. 4a). In addition,
the threshold of this instability in 7 is lowered, as shown in
Fig. 4b, where the dependence of the bifurcation of 7 is
presented for various values of «. The corresponding
frequencies of pulsations emerging at the bifurcation point
are shown in Fig. 4a. Numerical computations reveal that
the Andronov—Hopf bifurcation is subcritical at the upper
field boundary and supercritical at the lower field boundary.
However, the limiting cycle is unstable for an incident field
below the symmetry breaking bifurcation point, and the
system relaxes to the symmetric equilibrium state.

For a system with a large aperture, spatial structures
may emerge on the asymmetric branch for the same range of
field values. The stability boundary as a function of k, is
determined from the condition 2 =0 leading to a much
simpler equation than the equation describing the Andro-
nov—Hopf field bifurcation boundaries. However, the
maximum values of the field in the films for which the
system is unstable are virtually identical. One can see this

x=75

€

Figure 4. Dependence of the frequency of pulsations emerging at the
Andropov—Hopf bifurcation threshold on field amplitude ¢; (a) and the
boundaries of this bifurcation with respect to 7 (b) for various values of
the a-factor. Part of the steady-state characteristic for which the
Andropov—Hopf bifurcation takes place is shown in Fig. 2b.

le:| |

2 1 1 1 1 1 1 1 1 1 1

0 02 04 06 08 1.0 12 14 16 18 0

Figure 5. Boundaries of the static instability (marked by crosses) and
Andropov—Hopf instability (dotted curve) for a system with a wide
aperture as functions of the parameter 0 = dk? k.

from Fig. 5 showing the boundaries of stability with respect
to both kinds of perturbations at the asymmetric region of
the branch as functions of 0 = dk /k.

The phase disbalance caused by the presence of the o-
factor does not affect the position of the instability peaks on
the 6 axis. This means that the size of spatial structures
formed in the beam cross section due to instability to
transverse perturbations remains unchanged.

5. Time dynamics

It was shown in Ref. [10] that pulsations whose period
tends to 4t with increasing t appear in a system formed by
two thin films. We shall consider here in detail the dynamics
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of the system for comparatively small delay times. In the
region corresponding to bold segments in the curve in
Fig. 2b (see also Figs 4 and 5), asymmetric pulsations may
arise from the asymmetric equilibrium state. Figure 6 shows
the time dependence of the system. Two cycles with large
amplitudes emerge near the upper boundary (with respect
to the field in the film) of the bifurcation point which is
subcritical (Fig. 6a). The domains of attraction for these
cycles in the e (e,) plane are separated by a bisectrix.

A weakening of the incident field corresponding to a
departure of the working point from the threshold brings
the cycles closer to each other (Fig. 6b). Apart from a large
loop revolving around each of the asymmetric equilibrium
states, a small loop is also formed near the point of
bifurcation of the symmetry breaking; this loop is not
connected with any one of the steady states existing for
the given values of the incident field. Both cases (Figs. 6a
and b) correspond to an incident field higher than the
instability threshold of the symmetric branch. This con-
densation of trajectories may be a precursor to the
intersection of the symmetric and asymmetric branches
of the steady states, which appears upon a further weak-
ening of the field. The shape of the pulsations also changes,
and intervals of slow motion for the system in the vicinity of
small cycles and of fast motion over the large cycle are
formed.

A further decrease in the incident field leads to a
stabilisation of the symmetric equilibrium state. The cycles
lose their stability and are broken, as shown in Fig. 6¢ with
a highly magnified phase portrait. Apart from the symmetric
steady state, the figure also shows additional asymmetric
unstable steady states appearing due to intersection of
symmetric and asymmetric branches (see Fig. 2b). The
system trajectory tends to the region lying between one
of these asymmetric states and the symmetric solution. The
size of the small loop decreases until it degenerates and the
system ‘falls’ into a stable symmetric steady state. Figu-
res 6d—f show the field variation in one of the films
corresponding to the above regimes.

Thus, pulsations lose stability when the symmetric state
is stable. Upon an increase in the delay time t and the o-
factor, the dynamics of the system remains similar to that
considered above, with the only difference that the point of
destabilisation of the limiting cycle is displaced towards
smaller values of e;, relative to the point of symmetry
breaking.

6. Conclusions

We have studied a system consisting of two thin bistable
semiconductor films. The equations for such a system,
written with an adiabatically eliminated polarisation of the

lea]

leal | lea| |
3.00
75 75 275
50 F 50 2.50
2.25
25 b 25 L
2.00
1 1 1 1 1 1 1 1
0 2.5 5.0 7.5 ler] 0 2.5 5.0 7.5 ler] 2.0 2.5 3.0 e
a C
let| | led] | les] |
25 | 25 | 25 | (\/w‘____
2.0 2.0 2.0 g
1.5 F 1.5 1.5
1.0 I 1 1 1.0 I I I 1.0 I 1 I
0 100 200 t 0 100 200 t 200 400 600 ¢
d e f

Figure 6. Time evolution of fields in the films for ¢;, = 12.8 (a, d), 12.92 (b, e), 12.94 (c, f) and © = 3. Curves in Figs a—c are the phase portraits of the
system in the e, e, plane (crosses indicate the steady states, two of which are asymmetric and one is symmetric), while Figs d, e show the time dynamics

of the field in the first film.
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nonlinear medium, take into account the effect of the o-
factor describing the dynamic phase relation between the
field and the charge carrier density, and form a system of
differential equations with a delay.

Owing to a high sensitivity of such a system to phase
relations for the field in the feedback loop, the inclusion of
the a-factor affects the stability of the system. In contrast to
the laser systems in which this effect is manifested mainly in
dynamic regimes like self-pulsation, the presence of ampli-
tude—phase relation in a system consisting of two films
affects the appearance and disappearance of steady states.
In particular, an increase in the o-factor is qualitatively
equivalent to a simple increase in the system nonlinearity
and leads to a broadening of the range of existence of
asymmetric solutions and bistability.

Moreover, the system under consideration contains
regions in which dynamic regimes (for a system with a
small aperture) and spatial structures (for a system with a
large aperture) may appear. These regions lie on the
asymmetric branch of the steady-state curve. The effect
of the a-factor leads to an increase in the size of the
instability region, as well as to a decrease in the lower
threshold of the Hopf instability in 7. On the other hand, the
regions of instability to static perturbations with k; # 0,
which lead to the formation of spatial structures, simply
undergo a size variation without any displacement. In other
words, the characteristic size of spatial structures formed in
such systems remains the same.
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