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Spatial distribution of light fields in a silicon conical waveguide

T.I. Kuznetsova, V.S. Lebedev

Abstract. The spatial distribution of monochromatic light
fields is studied in a tapered silicon fibre with the
subwavelength aperture. The lowest-order electric TM,,
mode is analysed theoretically in a cone with perfectly
reflecting metal walls filled with a light absorbing medium.
Exact formulas and approximate expressions are obtained for
a medium with the complex permittivity, which describe the
spatial dependences of the electric and magnetic energy
densities inside the cone. The behaviour of the field at the
waveguide exit is analysed for the aperture diameter as small
as ~ 1/30 of the wavelength. The main attention is devoted to
the transmission coefficients of the probe, which were
calculated for a wide range of its geometrical parameters
in the wavelength region from 400 to 830 nm. It is found that
silicon provides a substantial increase in the output light
energy density at the optical probe end both in the IR and
visible spectral regions compared to glass.

Keywords: scanning microscopy, near-field optics, tapered wave-
guide, silicon, dissipative medium, transmission coefficient.

1. Introduction

Metallised tapered optical waveguides with the subwave-
length aperture have received wide applications in near-field
scanning optical microscopy. The results of earlier studies
in this field are reported in Refs [1—3]. The propagation of
light in optical probes with glass or silica cores has been
recently studied in many experimental papers (see, for
example, papers [4—8], review [9], and references therein).
These investigations were aimed at obtaining high-quality
images of nanometre structures. This requires the high
degree of localisation of light fields with rather high energy
densities. The main problem consists in the increase in the
transmission coefficient of optical probes and the achieve-
ment of a high spatial resolution.

The behaviour of light fields in tapered optical fibres was
studied in a number of theoretical works. Thus, trans-
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mission of the 488-nm radiation in glass probes with a small
exit aperture (~ 20 nm) providing a small size of the region
of localisation of light fields in the near-field zone was
studied in Refs [10—12]. Numerical calculations were per-
formed in Refs [10—12] by the multiple multipole method.
Fibres with metal inclined walls and open ends [10, 11] and
tapered fibres completely covered by a metal layer whose
thickness drastically decreased at the probe end [12] were
studied. A specific feature of the second variant [12] is the
possibility of exciting surface plasmon modes and the
transmission of light through a thin metal layer at the
fibre exit, which increase the resulting transmission coeffi-
cient of the system. The numerical simulation of the
distribution of light fields in optical probes with the
subwavelength aperture was also used in some papers
(see, for example, Refs [6, 13—15]) to determine their
optimal shape and geometrical parameters.

A simple method for calculating the spatial distribution
of the electromagnetic energy density along the longitudinal
coordinate in tapered fibres with perfectly reflecting walls
and an open aperture was proposed in Ref. [16]. The results
obtained in Ref. [16] are based on the numerical solution of
two coupled differential equations for amplitudes of the
incident and reflected waves in a supercritical waveguide.
The results [16] are applied to the description of light fields
with a plane wave front when the waveguide walls make a
small angle with its axis.

The spatial characteristics of light waves in a circular
tapered waveguide with the subwavelength aperture were
investigated in papers [17, 18]. The method to analyse light
fields with a plane wave front was developed, which is based
on the use of transverse modes parametrically depending on
the longitudinal coordinate z. The infinite-order exact
system of equations was obtained for the field, which takes
into account the waves with all the transverse indices and
their mutual interaction. When the wall inclination with
respect to the waveguide axis is small, a simplified variant
follows from this system of equations in which independent
modes exist (as in a cylindrical waveguide). This corre-
sponds to the adiabatic approximation when the waveguide
radius a(z) slowly varies along the z axis. It was shown
recently [19] that, by using the perturbation theory, the
method [17, 18] allows one to obtain a simple system of two
coupled equations [16] as the first approximation in the
steepness of the waveguide wall inclination. The authors of
Refs [17—-19] also developed the method for describing
independent modes taking into account the higher-order
terms in the derivative of the waveguide radius with respect
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to z (¢ 'da/dz) and studied transformations of the funda-
mental wave into higher-order waves.

A great attention was paid in Refs [17—19] to the ana-
lytic and numerical study of the structure of electric and
magnetic fields in a tapered waveguide of a special profile
(‘hypergeometrical’ waveguide). The region of values of the
waveguide parameters was found where the amplitudes of
all the modes, except the lowest one, are small and the
adiabatic approximation provides a high accuracy. For
these parameters, the dependence of the transmission
coefficient of the system on the characteristics of input
radiation and the steepness of the waveguide profile was
obtained.

The methods used in Refs [16] and [17—19] allow one to
elucidate a number of important features in the behaviour of
light fields in metallised optical probes with the subwave-
length aperture. However, their application is restricted by
the region of geometric parameters of the system and
wavelengths where the transmission coefficients are small.
The numerical calculations [10—12] of the transmission
coefficients at 488 nm also use a restricted set of parameters
of such probes. To move to the region of parameters where
the optimal transmission of optical probes is expected, a new
approach was developed recently [20, 21] for the description
of the light fields both in the waveguide itself and in the
near-field zone beyond its subwavelength aperture. The
approach uses the modes of the cone with perfectly
conducting metal walls and permits the investigation of
the spatial structure of waves with a spherical wave front
and the calculation of the transmission coefficient of such
probes. A peculiarity related to the subwavelength size of
the exit aperture was taken into account in Refs [20, 21] by
choosing proper solutions — standing waves with amplitudes
drastically decreasing as the cone apex is approached. This
method allows one to solve the problem exactly, so that the
restrictions on the steepness of the waveguide profile were
eliminated in Refs [20, 21].

In all the above papers, the light fields were considered in
optical probes with glass waveguide cores. The refractive
index n of glass in the optical range very weakly depends on
frequency and is ~ 1.5, while absorption is virtually absent.
It is obvious that an increase in the refractive index n of a
medium should lead to an increase in the transmission
coefficient of light in the probe because of a decrease in the
wavelength in its core (4, = 4/n, where 4 is the wavelength
of light in vacuum). Therefore, the length of the supercritical
region of a tapered waveguide decreases with increasing n,
resulting in a drastic decrease in the field attenuation. On the
other hand, absorption of light becomes substantial in
media with the high refractive index in the visible region.
This leads to an additional attenuation of the field prop-
agating in the optical probe. To elucidate the role of these
two competing factors, it is necessary to develop the theory
of propagation of light in probes filled with a medium with
the complex permittivity.

Of special interest for practical applications is analysis of
the spatial structure of light fields in optical probes with a
silicon core. Already the first experiments [22 —24] in the IR
spectral region have shown that the transmission coefficient
of such probes can be substantially increased and the high
spatial resolution can be simultaneously achieved. This
conclusion is confirmed by the comparative analysis [25]
of transmission of IR radiation at 1.3 pm in glass and silicon
two-dimensional probes with a small tapering angle. The

numerical calculation [25] was performed using a two-
dimensional model assuming the absence of absorption
in the probe. Note that silicon probes tapering down to
the nanometre diameters are also used in apertureless near-
field scanning microscopy based on the detection of scat-
tered light [26].

The aim of this paper is to study the propagation of
visible and near-IR radiation in tapered optical probes with
a silicon core. The theory is developed taking into account
the frequency dispersion and absorption of light in the
silicon core of the probe. The analytic description of the
behaviour of light waves in a tapered probe with perfectly
conducting metal walls, which is filled with an absorbing
medium with the complex permittivity, is presented in
sections 2 and 3. The description was performed for the
lowest-order transverse magnetic TM,; mode. We analysed
the dependences of the energy densities corresponding to
different components of the field (£,, £, and H,,) and of the
integrated total energy density W, on the cone angle and
the radial coordinate r measured from the cone apex. Both
exact formulas and simple analytic expressions were
obtained which describe the drop of the electromagnetic
energy density as the cone apex is approached. Asymptotic
expressions are also presented which can be applied for
values of r exceeding the wavelength.

The developed approach is used in section 4 to study the
dependences of the transmission coefficient of an optical
silicon probe on its geometrical parameters and the wave-
length. The calculations were performed for the 400—830-
nm wavelength region. A special attention was paid to the
study of the effect of absorption of light in silicon on the
transmission of the probe in the IR and visible spectral
regions. For this purpose, we investigated the dependences
of the transmission coefficient on the probe length.

2. Basic expressions for light fields in a medium
with the complex permittivity

Let us present basic expressions for electromagnetic fields in
a dispersion medium of a cone with perfectly reflecting
metal walls. Consider the monochromatic dependence of
the fields on time, the factor exp(—iwf) being omitted
below. The initial equation for the Hertz function U(r, 0, ¢)
of the electromagnetic field in a cone in the spherical
coordinate system (r, 8, ¢) has the form [27]

Pu 11 df. U 1 a2Uu] .,
57*ﬁ[5@@@m&@>+ﬁrﬁgﬂ+kU—O*”
where r is the distance from the cone apex; and 6 and ¢ are
the polar and azimuthal angles, respectively. The wave
number k in (1) for an absorbing medium is complex:

kz%@M”%(wf”:n+m, )

where w and ¢ are the frequency and velocity of light; and »
and » are the refractive index and attenuation coefficient of
the medium, respectively. Assuming that the magnetic
permeability of the medium is 4 = 1, we obtain the relation
between the complex permittivity &(w) = &'(w) +ie” (w)
and quantities n(w) and »(w) [28]:

2 2
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For the electric waves under study [transverse magnetic
(TM) modes], the relations between the field components
and the Hertz function have the form [27]
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The components E,, Ey, E, and H,, Hy, H, are the

corresponding projections of the electric (E) and magnetic
(H) fields on the axes of the spherical coordinate system r,
0, ¢. In this case, the boundary condition has the form
U(r,0)[g_g, = 0, where 20, is the cone angle (Fig. 1).
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Figure 1. Scheme illustrating propagation of spherical waves in a
metallised tapered waveguide with a silicon core: () exit aperture radius;
(26,) cone angle; (z;,) and (z() the entry and exit longitudinal coordinates
of the waveguide; (r;,) radial coordinate at the waveguide entrance
(Zin = I'in COS 00)

For the case of propagation of light through a tapered
waveguide with the subwavelength aperture, we will use the
exact solution of Eqn (1) corresponding to a standing wave:

U(r,0, ) = R(r)P" (cos 0)"™?,

(6)

R(r) = Crj, [(n +ix) %} .

The dependence of the Hertz function on the polar angle 0
in (6) is determined by the adjoined Legendre function of

the first kind P)"'(cos6) of power v and order m [29] (m is
an integer). The radial dependence R(r) is described by the
spherical Bessel function of the first kind j,(z) with the
complex argument and the non-integer index v. C is an
arbitrary constant”.

In an absorbing medium (x # 0), general expression (6)
for the radial part of the Hertz function at large distances
from the cone apex (r > 1/|k|) has the form

C c or iy
Rr)~—= ——+— —x+in)— — —
(r) 2i w(n+ix) {exp [( %+ in) c 2 }

—exp {(/—m)%—i-l%v}} 7

Asymptotic expression (7) describes a standing wave, which
is a superposition of two counterpropagating travelling
waves. The ratio of amplitudes of these waves is determined
by the exponential factor exp (—2xwr/c). For a transparent
medium (when » = 0), expression (7) takes a very simple
form

R(r) zﬁsin(?rfg) > /o). ®)

The function R(r) decreases according to a power law as
the cone apex is approached [r < ¢/(w|n + ix|)]:

R(r)

N {a’("“%)];w o
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Taking the specific form of the Hertz function (6) into
account, the boundary condition for TM waves can be
written in terms of the adjoined Legendre function of the
first kind: P;"(cos ) = 0. This condition determines a set of
eigenvalues v,,, (m =0, 1,2, ..., n=1, 2, 3, ...). Each choice
of a pair of numbers m and n specifies certain TM,,,, modes
of the field. The eigenvalues v,,, obtained in this case depend
on the cone angle 20,, the value of v,, increasing with
decreasing 0. For example, for 0, = n/2, n/3, n/4, and = /6,
the eigenvalues for the lowest-order TM,,,, mode with n = 1
and m =0, are 1, 1.777, 2.548, and 4.083, respectively.

In this paper, we consider the behaviour of the funda-
mental electric TM; mode in a dispersion medium of the
cone. In this case 0U/0p =0, so that, according to
expressions (4)—(6), there exist only three nonzero compo-
nents of the field: E,, Ey and H,. By substituting (6) into (4)
and (5), we obtain

v+ o _ 10R(r) 0P, (cos 0)
E =S R(P(eos0), Ey = =22 0= (10)
Lo’ +ie") 1 0P, (cos0)
Hy =125 R () (11)

“Note that the Hertz function in a cone filled with a transparent glass
(»x = 0) was expressed in our paper [20] in terms of the usual Bessel
function J/>(x) rather than in terms of the spherical Bessel function

Ju(x) = (n/2x)l/2J\,+|/2(x), as in (6). Therefore, constants C in Ref. [20]

and here differ by the factor [rc/(2w/2)]"?.
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where P,(cos 0) is the Legendre function of the first kind of
power v [29].

3. Field energy density in a dissipative medium

In a dissipative medium with the complex permittivity (3)
and magnetic permeability u=p' +in”, the general
expression for the time-averaged electromagnetic energy
density (see, for example, Ref. [28]) leads to the relations

w 7Ld(w8')
0T e do

1 d(we), . » 2
wr_ﬁ do | r| |E0| )
(12)

_ 1 d(op)

= \H,|*
? lon dw ¢

for the radial (w,), polar (wy), and azimuthal (w,)
components of the field energy density, respectively.

To find the transmission coefficient of a tapered wave-
guide, we introduce, according to Ref. [20], integrals from
quantities w,, wy, and w, over the surface of the sphere of
radius r within the cone (see Fig. 1):

0y
Wy = 2n1‘2J wy(r,0)sin0d0 (B =r,0,¢). (13)

0

We will call these quantities the integrated energy densities.
The resulting equations for W,, Wj, and W, explicitly
dependent on the radial coordinate r can be obtained from
expressions (10)—(13) using expression (6) for the Hertz
function. In this case, the integrated energy density W,

takes the form

C|* d(we’ , 2
) =G b 0 o 2 || )
by
3§‘>(90):J [P, (cos 0)]7 sin 0d0. (15)
0

The angular integral S&l) in (14) depends on the cone angle
20y. The expression for the polar component W, can be
obtained using the known relation for the derivative of the
spherical Bessel function. This gives

_ICP (@) <o)

Wo(r) 2 do

(v + 1)), [(n+ix)%}

2

- [(n +ix) ?} ot {(n +ix) ?} : (16)

where the angular integral is

0, 2
32 (0,) = J {W} sin 0d0
0

=v(v+ 1)3"(6y). (17)

Similarly, using expressions (10)—(13) and (6), we obtain
the expression for the component W, (r):

Cl*le’ +ie"|* [ wr 2, . L or]]?
) LT (oYl por]

By summing expressions (14), (16), and (18), we obtain the
total integrated density of the electromagnetic field energy
inside the cone:

b9
Wi (r) = 2mr? J (w, + wy + w,,) sin 0d0O
0

= W,(r) + Wy(r) + W, (r). (19)

It is interesting to study the asymptotic behaviour of the
integrated energy densities for the electric (Wy = W, + W)
and magnetic (W, = W,) components of the field at large
distances r from the cone: r — oco. The corresponding
expressions follow directly from general expressions
(14)—(18) by using the asymptotic expression for the
spherical Bessel function j,(z) with the complex argument.
As a result, we obtain for Wy(r) at r> c¢/(w|n+ix|) the
expression

X [cosh <2x a)r) + cos <2nﬂ — nv)] . (20)
c c

A similar asymptotic expression for the integrated magnetic

energy density W, in a dissipative medium of a tapered

waveguide has the form

2
<]

T

X [cosh <2xﬂ) — Cos <2nﬂ — nv)]
¢ ¢

It follows from (20) and (21) that at large radial coordinates
r the oscillations of electric and magnetic fields in the
tapered waveguide are out of phase. Note also that the term
cosh (2xwr/c) entering the dependences of W and W, on r
shows the effect of absorption of light in the dissipative
medium.

By summing expressions (20) and (21), we obtain the
asymptotic expression for the integrated density of the total
energy of the field Wi, = W + Wy, in the tapered wave-
guide

C? - d(we' wr
Wior = %Jéz){ [ (dw ) + |a|} cosh <2,¢7>

250 o))

Therefore, the dependence of the integrated density of the
total electromagnetic energy W, (r) on the radial coor-
dinate for r> ¢/(w|n+ ix|) exhibits oscillations. These
oscillations, which do not disappear with increasing r, are
produced due to the permittivity dispersion. They are
absent in transparent (dispersionless) media (x =0, n=
const). In this case, asymptotic expressions (20)—(22) are
reduced to a very simple form

Wi e’ +ie"|3?)

@n

(22)
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|C‘28~(2) , ((hor v
Wy = 3,7 cos” [ — —— ), (23)
8 c 2
Cl*e - nor  mv
Wa = | 8| \552) sin’ (——7),
P
Wit = | 8‘ £330, 1> ef(no) (24)

in accordance with results obtained in Refs. [20, 21].

In the presence of the frequency dispersion of a medium,
the amplitudes of oscillations of the energy density of
electric [W, o d(we’)/dw] and magnetic (W,  |¢|) fields
in the tapered waveguide are different. Therefore, these
oscillations are not mutually compensated upon summation
of expressions (20) and (21). The case when the imaginary
part of the permittivity of the medium is small ¢” <&’ (i.e.
% < n) is most interesting for applications. In this case, the
relative amplitude of oscillations of the integrated density of
the total energy of the electromagnetic field in the region
r > c¢/(wn) is determined by the quantity y = (wde’/dw)/(2¢’
+wdze' /dw). Tt is obvious that y < 1 in the case of a small
dispersion: wde’/dm <¢’. In the opposite limiting case
(wde'/dw > &), the value of y is of the order of unity.

The transmission coefficient is calculated by averaging
expression (22) over the period of the oscillating component
of the integrated energy density of the electromagnetic field.
This gives

— CP oy [d(we’ r
Wit = %052) { (dw ) + |8‘:| cosh <2%T)

(25

For a transparent medium (x = 0), this expression trans-
forms to (24).

One should bear in mind that in the presence of energy
dissipation in a tapered waveguide, the energy fluxes in the
incident wave,

_ W o (r) exp(2xowr/c)
nlexp(2xwr/c) + exp(—2xwr/c)]’

Sin(r) (26)

and in the counterpropagating wave reflected from the
waveguide walls,

Wi (r) exp(=2xwr/c)
nlexp(2xwr/c) + exp(—2xwr/c)]

Sr(r) =- (27

are different. One can easily see that the ratio of these fluxes
is |S;/Si| = exp(—4xwr/c). Note also that asymptotic
expressions (22)—(27) are applied in the region
r> c¢/(w|n+ix|). This means that the distance r from the
cone apex should exceed the wavelength of light in the
medium.

Consider the spatial distribution of the electromagnetic
energy in a silicon tapered waveguide with the subwave-
length aperture (see Fig. 1). According to Ref. [30], the
refractive index n(w) of silicon monotonically increases from
3.67 to 5.57 in the region from 1.5 to 3.1 eV (corresponding
to the wavelength range from 830 to 400 nm), while the
attenuation coefficient »(w) increases from 0.005 to 0.387. In
this case, the ratio »/n increases from 1.4 x 1073 to 6.9%

1072, Therefore, energy losses caused by absorption of light
in silicon are especially large in the visible spectral region,
whereas their role in the IR region is insignificant.

Figure 2 shows the radial dependences of the integrated
density of the total field energy W = W, + Wy + W,
calculated for the fundamental electric TMy; wave. The
calculations were performed for the cone angle 26, = /3
and wavelengths of light in vacuum equal to 800 and
500 nm (Figs 2a and b, respectively). One can see that
these two dependences are qualitatively different.

Wi (arb. units)
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1.5 F

1.0 | = -

0.5 F

0 250 500 750 1000 1250

r/nm

Wi (arb. units) |
0.8
0.6
0.4 +

0.2

0 250 500 750 1000 1250

r/nm

Figure 2. Radial dependences W, (r) of the total electromagnetic energy
density in a silicon cone integrated over the segment 0 < 6 < 0,,
0 < ¢ < 27 of a spherical surface. Calculations were performed for the
lowest-order TM,,,, mode (m =0, n = 1) for the cone angle 20, = 60°
(v =4.084) and wavelengths of light in vacuum equal to 800 (a) and
500 nm (b). Solid curves were calculated by general expressions (14),
(16), (18), and (19). Dashed curves are the values of W, (r) averaged
over oscillations determined by expression (25).

In the near-IR region at 800 nm, the attenuation
coefficient is x = 6.1 x 107 and the refractive index of
silicon is n = 3.69. It follows from Fig. 2a that the radial
dependence W, (r) for a metallised silicon probe is quite
similar to that for a metallised glass probe (cf. Fig. 2 in
Ref. [20]). Some differences are related to the presence of
weak oscillations in the integrated density of the total energy
of the electromagnetic field W, in silicon (solid curve in
Fig. 2a), which do not attenuation with increasing r. The
nature of these oscillations in dispersion media was dis-
cussed in section 3. The dashed curve in Fig. 2a illustrates
the radial dependence of the integrated energy density W,
averaged over oscillations in the asymptotic region
r > ¢/(nw). One can see that, because of a weak attenuation
of the field in silicon at 800 nm, the value of W, is almost
constant in the region satisfying the condition
c/(nw) < r < ¢/(xw). Therefore, the behaviour of W, in
the IR region in a metallised silicon tapered probe shown in
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Fig. 2a is similar to that in the case of a transparent glass
[20, 21].

The values of x and » in silicon in the visible region at
500 nm are 7.3 x 1072 and 4.3, respectively. Therefore, the
attenuation coefficient of light increases by an order of
magnitude compared to that at 800 nm. This leads to the
different dependence W, (r) in the region r > ¢/(nw). One
can see from Fig. 2b that, due to absorption of light in the
silicon core of the probe, the integrated energy density
Wio(r) of the field averaged over spatial oscillations
strongly decreases at first as the cone apex is approached
from large values of r (r > Ag;; r = 1500 nm in the example
under study). This occurs down to r~ Ag, where
Jsi = A/ng; = 116 nm is the wavelength of light in silicon
for the wavelength of light in vacuum A = 500 nm.

As in the previous case (Fig. 2a), the dependence W, (r)
exhibits oscillations even in the asymptotic region, i.e., for
r> Ag;. However, due to the increase in the permittivity
dispersion of silicon in the visible region (at 500 nm), the
amplitude of oscillations of the function W, (r) strongly
increases compared to that for 4 = 800 nm. In the region
r ~ Ag;, the integrated energy density has the peak, and then
W..(r) drastically decreases at r < Ag; as the cone apex is
approached. According to (9), the decrease follows the
power law W, o (|k|r)*, as in the case of transparent
glass core.

As a whole, however, the behaviour of optical fields in
the short-wavelength region in a silicon probe substantially
differs from that in a glass probe because of a strong
attenuation of light waves. The energy dissipation in silicon
becomes especially significant when the length r;, of the
probe generatrix (see Fig. 1) considerably exceeds the
characteristic attenuation length r, = ¢/(2xw) of the field
(r, = 2.66, 0.84 and 0.45 pm for A = 633, 532, and 488 nm,
respectively).

4. Transmission of light in a tapered silicon
probe

The study of the dependences of the transmission coefficient
of an optical silicon probe on its geometrical parameters
and wavelength attracts special interest. In the case of a
probe with the subwavelength aperture, it is necessary to
distinguish transmission coefficients corresponding to the
transmission of incident radiation to the near- and far-field
zones (see, for example, Refs [9, 18]). In this paper, we will
consider the transmission coefficient allowing the determi-
nation of the electromagnetic field in the near-field zone at
the probe exit. According to Refs [18—21], such a trans-
mission coefficient 7 is defined in terms of the integrated
energy densities of the field at the probe entrance and exit
rather than in terms of energy fluxes (as in the case of
propagating waves). In this case, one should bear in mind
that the expressions for fields presented in sections 2 and 3
are relevant to the case of a closed metallised cone. The
scale of perturbations of the fields caused by the presence of
the entrance and exit apertures in an optical probe was
estimated in papers [18—21]. It was found that reflection of
fields from the exit aperture only slightly changes the
amplitude and distribution of light fields calculated for a
closed cone under the condition that the aperture diameter
d is substantially smaller than the wavelength A.

The transmission coefficient 7" for spherical waves is
equal to the ratio W'/ W of the field energy density

Wt = W,.(zo) at the exit of a truncated cone (z = z,)
integrated over a flat aperture of radius a (see Fig. 1),

a
Wt =2 | walpzpdp, a=ztant, (28)

0

wtol(p> ZO) = wr(pa ZO) + w(?(pa ZO) + wrp(p7 ZO) (29)

to the integrated density of the total energy Wy, at the
probe entrance. _

In a dissipative medium, the expression for W,y should
be modified somewhat compared to the case of a trans-
parent medium (cf. Ref. [20]). The quantity o(ry,, w) should
be introduced, which depends on the frequency w and
distance ry, from the cone apex to the probe entrance. In
this case, the corresponding general expression takes the
form

. 0o
Wi = w2nr [ Weot (Fin, 0) sin 60, (30)
JO
S.. (1, 1
a("in,w) — (nﬁj) ll’l(’lll) — . (31)
Wiot(Fin) 1 + exp(—4xwri,/c)

The integration in (30) is performed over the part of a
spherical surface inside the cone (0 < 0 <6, 0 < ¢ <2n)
for r = ry,. The quantity o is introduced in (30) to take into
account in the transmission coefficient 7 only the part
Wioi(rin) of the integrated field energy density that
corresponds to the incident wave, excluding completely
the contribution from the reflected wave. The value of « in
(31) changes from 1/2 to 1 depending on the attenuation
coefficient » and the length r;, of the generatrix of a tapered
probe. For a transparent medium (» = 0), we obtain from
(31) «=1/2, so that the definition of the transmission
coefficient in this particular case [20, 21] coincides with the
general definition presented here. In a dissipative medium,
o — 1 if the ratio 2xwr;,/c becomes substantially greater
than unity. This behaviour of o is illustrated in Fig. 3 where

o
1.0
09 5
0.8
4
0.7
3
0.6
2
0.5 1
1 1 1 1 1
400 500 600 700 A / nm

Figure 3. Dependences of o on the wavelength of light in vacuum
calculated by expression (31) taking into account the dispersion of the
attenuation coefficient of light »(4) in silicon according to data [30] for
the radial coordinate ry, =0.5 (1), 1(2),2(3),5(4), and 10 um (5)
measured from the cone apex in front of the probe.
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Figure 4. Dependences of the transmission coefficient 7" of a tapered silicon probe on the wavelength of light in vacuum for distances from the cone
apex to the probe entry r;, =1 (a), 2 (b), 5 (c), and 10 pm (d). Calculations were performed for the TMy; mode, the cone angle 20, = 60° (v = 4.084),
and the exit aperture diameter ¢ = 200 ( /), 100 (2), 70 (3), 50 (4), and 25 nm (5).

the spectral dependences a(4) are presented for silicon in the
wavelength range from 400 to 830 nm for the distance from
the cone apex to the probe entrance ry, = 0.5, 1, 2, 5, and
10 pm.

Figures 4 and 5 show the spectral dependences of the
transmission coefficient of a metallised tapered silicon probe
calculated for the fundamental TM,,; wave. The calculations
were performed for two angles 0, equal to 7/6 (Fig. 4) and
n/3 (Fig. 5) in the wavelength region from 400 to 830 nm.
All the spectral dependences were calculated for four values
i, equal to 1, 2, 5, and 10 pm. This allows us to study the
effect of light absorption in silicon on the transmission
coefficient of the system. Curves (7), (2), (3), (4),and (5)
in Figs 4 and 5 were obtained for the exit-aperture diameters
equal to 200, 100, 70, 50, and 25 nm, respectively.

One can see from Figs 4 and 5 that the transmission
coefficient T of the probe strongly depends on the aperture
diameter 4. The transmission coefficient 7 drastically
decreases with decreasing diameter d, whose values 100,
70, 50, and 25 nm correspond to the supercritical regime of
the waveguide. The case d = 200 nm is distinguished among
the examples studied. This is explained by the fact that the
value d = 200 nm exceeds the critical diameter of the probe
for the TM,, wave in the entire spectral range studied.

Therefore, the transmission of this wave in the probe
corresponds to the case of propagating waves, resulting
in especially large values of T in the long-wavelength region.

A comparison with our previous results [20, 21] shows
that the wavelength dependences of transmission of light in
silicon and glass (or silica) waveguides are substantially
different. The transmission coefficient of waveguides with a
glass core monotonically increases with decreasing 4
[20, 21]. At the same time, the transmission coefficient of
probes with a silicon core first increases with decreasing A,
in the IR region, achieving a maximum at a certain
wavelength  A,.., and then drastically decreases for
A < Amax (see Figs 4 and 5). It is important that the
transmission maximum is located in the visible spectral
region between 550 and 800 nm.

Therefore, analysis of our results shows that trans-
mission of a silicon probe is high both in the near-IR
and visible regions if the probe length r;, does not exceed a
few micrometres. For example, for 4 = 830 nm, the cone
angle 20, = 60° and r;, =2 pm, we have T=1.9 x 107°,
48 x107% 6.4 x 107 and 8.5 x 1072 for the exit-aperture
diameters d = 25, 50, 70, and 100 nm, respectively. In the
visible region at the He— Ne laser wavelength of 633 nm, the
transmission coefficient of a silicon probe is two-—three
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Figure 5. Same as in Fig. 4 for the cone angle 20, = 120° (v = 1.777).
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orders of magnitude higher than that of a glass probe. It is
equal to 1.6 x 107>, 3.6 x 1073, 4.1 x 1072 and 3.9 x 107!
for d = 25, 50, 70, and 100 nm, respectively, and the same
cone angle 20, and waveguide length r;,. For an argon laser
wavelength  of 488 nm, we obtain 7T =94x 10’6,
1.6 x 10’3, 1.2x 1072 and 4.5 x 1072 for the same values
of d, respectively. Note that, although absorption of light in
silicon at this wavelength drastically increases, the trans-
mission coefficient 7 of a silicon probe also considerably
exceeds that of a metallised tapered glass probe.

As in the case of a glass waveguide, the transmission
coefficient increases with increasing the cone angle (see
Figs 4 and 5). As a result, for the angle 20, = 120°,
A =633 nm, and the same distance r;, =2 pm from the
cone apex to the probe entrance, we have 7= 7.6 x 1073,
8.0x 102,23 x 10" and 6.2 x 10" for d = 25, 50, 70, and
100 nm, respectively.

A comparison with our recent calculations [20, 21] of the
transmission coefficient of a metallised glass fibre (n = 1.55)
suggests that the use of a silicon core in optical probes
provides a significant increase in their transmission coeffi-
cient. For a specified cone angle, the advantages of silicon
probes over glass or silica probes are especially revealed for
small diameters of the exit aperture (i.e., under conditions
providing a high spatial resolution of a near-field micro-

scope). For example, for a probe of length r,, =2 pm and
the cone angle 20, = 60°, the ratio Tg;/Tyias of the trans-
mission coefficients at 633 nm is 345, 620, 800, and 981 for
the diameter d = 100, 70, 50, and 25 nm, respectively.

Another characteristic feature is that the transmission
coefficient 7(4) of a silicon probe for each fixed value of 4
strongly decreases with increasing the probe length r;,
(unlike a glass waveguide [20, 21]). As follows from our
calculations, this dependence is relatively weak in the IR
region and becomes rather strong in the short-wavelength
part of the visible spectrum (see Figs 4 and 5). For example,
as the probe length r;, increases from 2 to 10 pm, the
transmission coefficient at 4 < 500 nm decreases by a few
orders of magnitude.

Note also the following circumstance. The consideration
performed in the paper allows us to explain the physical
reason for high transmission coefficients (7' > 1), which can
be obtained at large cone angles when the radius of the exit
aperture is close to the critical one. This is related to a
specific interference pattern of the field in the cone. For a
certain combination of the wavelength of a light wave and
geometrical parameters of the system, the integrated density
of the field energy at the probe exit proves to be close to its
peak value W™, which can exceed substantially the
corresponding values W, at the probe entrance (see Fig. 2).
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Another reason for high transmission coefficients is
related to the spherical wave front of optical fields consi-
dered in the cone. Unlike the case of a plane wave front,
percolation of such fields through a tapered waveguide after
reflection from its inclined walls is not accompanied by the
transfer of energy of the fundamental wave to higher-order
waves (which restricts transmission of light in the system
[18]). Therefore, to provide high output energy densities of
the field in practice, the input parameters of the field should
be properly chosen. In particular, a converging initial wave
front should be provided by focusing radiation coupled into
a probe.

5. Conclusions

(i) We have developed the theoretical approach for
calculating the spatial distribution of the energy density
of the electromagnetic field in tapered optical probes filled
with a medium with the complex permittivity. The
approach is based on the consideration of spherical
modes of a cone with the radial dependence suited for
the description of the distribution of fields in optical probes
with the subwavelength aperture. The specific case of the
lowest-order TM,; mode was considered. The results of
similar calculations for the dominating magnetic wave (the
TE,; mode) will be published elsewhere.

(ii) The approach can be used at arbitrary cone angles of
a tapered waveguide with the subwavelength aperture. It
gives a clear picture of the behaviour of fields in an optical
probe in a broad range of its geometrical parameters and
wavelengths taking into account absorption of light and
dispersion of the permittivity of the medium. The effect of

dissipative losses in the core of a silicon probe on the radial

distributions of the electric and magnetic energy densities
was studied. It was found that the spatial distributions of

the integrated density of the total electromagnetic energy in

the short-wavelength and long-wavelength spectral regions
are substantially different.

(iii) We have calculated the transmission coefficients of a
metallised conical waveguide with a silicon core in the
spectral region from 400 to 830 nm. As in the case of a

metallised glass waveguide studied earlier, the calculations mm

demonstrate strong dependences of the transmission coeffi-
cient on the exit aperture radius a, the cone angle 26,, and

the wavelength of light 4. The effect of absorption of light in

silicon on the transmission coefficient of an optical probe
was investigated.

(iv) The main differences between the calculated trans-
mission of light in tapered optical waveguides with silicon
and glass cores are caused by the following circumstances.
First, absorption of light in silicon leads to an additional
attenuation of the field percolated through a tapered probe.
Therefore, the transmission coefficient in the short-wave-

length region substantially depends on the probe length, g3

unlike the case of glass fibres [20, 21]. On the other hand, the
high refractive index of silicon compared to glass leads to a

considerable decrease in the length of the part of a tapered &= 15.

waveguide where it operates in the supercritical regime. This

e 12.

silicon used in optical probes always has a great advantage
over glass and silica because it provides high transmission of
light. In the visible spectral range the transmission coeffi-
cient is strongly dependent on the length of the silicon
probe. For waveguide lengths no more than a few micro-
metres, significant advantages of using silicon also become
obvious. For example, if the probe length is ~ 2 pm and the
cone angle is 60°, the transmission coefficient increases by a
factor of 10> — 10° in the 550—700-nm region compared to
that for glass waveguides. However, if the probe length
exceeds 8—10 pm, the transmission coefficient drastically
decreases due to absorption of light in silicon. Therefore, in
this case the advantage of silicon retains only in the long-
wavelength part of the visible spectrum and in the IR region.

(vi) The main conclusion of the paper is that in the case
of a proper choice of geometrical parameters of a silicon
probe, refraction of light dominates over its absorption. For
this reason, the use of probes with the silicon core in near-
field microscopy provides the high transmission coefficients
in the visible and near-IR regions along with a high spatial
resolution. Note in conclusion that it is also interesting to
apply the developed approach to other absorbing media
with high refractive indices.
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