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Polynomial model of the frequency characteristic
of a slowly rotating vibrating laser gyro
with differently amplified counterpropagating waves

E.A. Bondarenko

Abstract. Expressions are obtained for calculating the four
first coefficients of a polynomial model of the frequency
characteristic of a slowly rotating laser gyro on a vibration
stage. The expressions are valid when the gyro operates at the
gain line centre and currents in its arms are balanced,
however, the amplifications of counterpropagating waves are
slightly different due to slightly different Q factors of the
resonator for these waves. Analysis of the expressions
suggests that the difference in the amplification of counter-
propagating waves of the laser gyro leads to the zero shift and
produces the component of the output signal that does not
commute with the angular velocity.
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1. Introduction

Among the main types of laser gyros (LGs) widely used in
practice, a gyro based on a ring gas He—Ne laser
(®Ne : 2 Ne = 1 : 1) with a flat N-mirror (N > 3) resonator
emitting radiation linearly polarised in the sagittal plane
can be distinguished. The laser emitting, as a rule, at
0.6328 um is pumped by a dc discharge using a symmetric
circuit consisting of one cathode and two anodes [, 2].

LGs of this type mounted on a vibrating stage can be
used, for example, as sensitive elements in a stageless inertial
navigation system (SINS) for large airplanes in civil aviation
performing maneuvering at small angular velocities [3].

To project the SINS and simulate its operation, it is
necessary to have a mathematical model of the output signal
of a vibrating LG. One of the components of this model is
an analytic expression for the output characteristic of the
device, which is called the dynamic frequency characteristic
[4] or simply frequency characteristic.

The frequency characteristic of a vibrating LG is
determined by the expression
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where k; is the frequency multiplication coefficient (k, = 1,
2,4, ...), which is realised by means of the optoelectronic
system for data retrieving and processing; dN/d¢ is the
repetition rate of information pulses N from the LG output;
and wy,; 1s the circular beat frequency of counterpropagat-
ing waves averaged over the oscillation period. The
frequency characteristic (1) is determined if the expression
for mpe,; 18 known as a function of the angular rotation
velocity Q of the LG, of its internal parameters, and
parameters of torsional vibrations of a monoblock.

The LG includes necessarily automated systems to
stabilise the resonator perimeter and discharge currents.
The first of them provides lasing in the LG at the emission
line centre, while the second one ensures stable and identical
currents in the discharge arms. The combined operation of
these systems provides the specified lasing regime of the LG
and eliminates the effect of undesirable factors such as the
frequency detuning and current unbalance on the LG
accuracy.

However, other, irremovable factors yet remain, which
can give rise to additional errors in the LG operation upon
multiplicative interaction. These factors are backscattering
and absorption of radiation in optical elements of the
resonator and the difference in the gains for counter-
propagating waves due to different Q factors of the
resonator for these waves. The consideration of these
two factors and the quantitative analysis of their influence
on the output signal of LGs is the object of this paper.

For a slowly rotating LG, under the necessary condition
that the automated system of vibrational frequency sepa-
ration contained in the LG produces with the help of a
special algorithm the noise of the vibration amplitude of the
monoblock [2, 3, 5], thereby suppressing the dynamic syn-
chronisation of counterpropagating waves [4, 6—8], it is
expedient to represent the dependence Wpey = Wpea((2) in
the form of the polynomial

J
Oper = Ko + (1 + K))MQ+ > K;M/Q/. )
J=2

Here, Ky, K, and K; (j=2, ..., J) are the coefficients of
the polynomial model of the frequency characteristic of a
vibrating LG, which are caused by coupling between
counterpropagating waves through backscattering from
the resonator mirrors and by losses inhomogeneously
distributed along the axial contour; and M is a scale
factor. In a perfect LG, where counterpropagating waves
are uncoupled, the coefficients K, K, and Kj in (2) are zero
and Wpey = MQ.
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Expressions for calculating odd coefficients K;, Kj,
Ks, ... of polynomial (2) can be obtained from the results
presented in section 3.6 of paper [2] devoted to the analysis
of the nonlinearity of the frequency characteristic of a
vibrating LG with a resonator with identical Q factors.
The specific feature of these expressions is that they contain
the coupling coefficients for the waves not only in the second
power but also in higher powers (see section 5).

The author has failed to find expressions for even
coefficients K, K5, Ky, ... of polynomial (2) in the literature
available.

The aim of this paper is, by considering the case J = 3,
to obtain in the second order of smallness in the coupling
coefficients the expressions for calculating the four first
coefficients K, K;, K,, and K3 of polynomial model (2) of
the frequency characteristic (1) of a vibrating LG under the
condition that the LG systems for stabilisation of the
resonator perimeter and discharge currents operate per-
fectly, but the gains for counterpropagating waves are
slightly different due to different Q factors of the resonator
for them. The reasons for the latter are not specified.

2. Basic relations

According to Ref. [9], the expression for the beat frequency
Wpeat Of a uniformly rotating LG of the type under study
has the form

2 2
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+ Doy r 7, Sin gy, (0=MQ). (3)
The first and second terms in the right-hand side of (3) are
known from papers [10, 11] [expressions (10) and (23),
respectively].

Expression (3) was obtained by solving, in the weak
coupling approximation for counterpropagating waves, the
system of differential equations describing the dynamics of
the LG, which, using relations (6.45)—(6.47) from [12] or
(5.55)—(5.57) from [2] (by generalising the latter to the case
of different gains for counterpropagating waves), can be
written in the known form [expressions (7)—(9) in Ref. [13]]
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Ii,, ¥, and Y are the dimensionless intensities, the
instantaneous phase difference, and the instantaneous

circular beat frequency of counterpropagating waves,
respectively; a;,, f, and 0 are the Lamb coefficients
characterising the excess of the linear gain over losses for
each of the counterpropagating waves, their self-saturation,
and mutual saturation, respectively; r;, and ¢, are the
moduli and arguments of the complex integral coefficients
of coupling between counterpropagating waves through
backscattering;  is the splitting of circular frequencies of
counterpropagating waves caused by the LG rotation in the
inertial space at the angular velocity  and calculated by
neglecting coupling between the waves; M, is the geo-
metrical scale factor of the LG; A is the area encompassed
by the axial contour; L is the perimeter of the axial contour;
A is the lasing wavelength; o, are the Lamb coefficients
determining a small correction to the geometrical scale
factor; and M is the scale factor of the LG taking the effect
of the active medium into account.

The coefficients o, , in equations for /; , are determined
by the expressions '

0‘1,2 = O(:Fé, (6)

from which it follows that and
o= (OCZ — OCl)/Z.
The parameters o, and a,, in (3) are calculated from the

expressions

o= (a0 +0y)/2

o, (1 —h)
p:aa Ocm:plﬁs (7)

where i = 0/f, and represent the inverse relaxation times of
the sum and difference of the intensities of counter-
propagating waves, respectively, i.e.,

1 1
Op =7, Om =7 )
p T“p " T&’ln

where T, and T, are the relaxation times.

The small dimensionless parameter D in (3) characterises
the difference in the gains for counterpropagating waves. It
is defined by the relation

p=2

m

(ID] < 1), ©)

and when this difference is caused by the different Q factors
of the resonator for counterpropagating waves (characte-
rised by the quantity AQ/Q), this parameter is calculated
from the expression

AQ 1+h
=—= . 1
0 1—-h (10)
Expression (3) also contains parameters r, and ry

representing combinations of the coupling coefficients for
counterpropagating waves. They can be calculated from
expressions

rp = (rf + 13 +2rr cosslz)l/z,
(11

2 2 1/2
Fm = (l‘l +}’2 —27'11”2C05812) ,

where &, = ¢, + &,.
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3. Formulation of the problem

Let us assume that the law of torsional vibrations of the LG
monoblock has the form

(1) = Asinvt, (12)
where 4 and v are the amplitude and circular frequency,
respectively, averaged over the vibration period.

According to (12), the angular velocity Q.4(1) of
vibrations of the LG monoblock is described by the
expression

Qa(t) = Weost, (13)
where W =vA is the amplitude of the relative angular
velocity of vibrations of the LG monoblock.

To solve the formulated problem, it is necessary to
obtain from (3), taking (13) into account, the expressions for
calculating the four first coefficients K, K, K,, and K3 of
polynomial model (2) for Q small compared to the
amplitude W.

4. Brief description of the calculation method
and the result obtained

By using identical transformations, expression (3) for wye
can be reduced to the form

2r 1, COS €y aéRg
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where Rg = r}f +2D(r} — 1) w = MQ.

The second, third, and fourth terms in square brackets in
(14) characterise corrections to the scale factor of the
uniformly rotating LG caused by coupling between counter-
propagating waves. These terms are grouped in the
diminishing order according to their significance. For large
Q, the second term dominates because it contains Q? in the
denominator. The third and fourth terms contain Q* in the
denominator and, therefore, their contributions are much
smaller. An LG on a vibration stage typically rotates at
large angular velocities. Taking this into account, we
simplify expression (14) by excluding small quantities
from it to obtain

| 2r 1y COS €5
Wpeat = - 062 + wz w
m

2
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Note here that this expression for D =0 and a large
frequency splitting w = MQ gives the well-known [expres-
sion (16) in Ref. [14]] asymptotic representation

2r ) COS €y
Wpeat = W — ® 5

(16)

which was verified experimentally for a broad range of
values of r; and r, and, which is essential, for &;;.

Following the method proposed in Ref. [2], we will solve
the formulated problem by using a quasi-static approach.
This approach is approximate and uses the expression for
Wpeat that is valid for the uniform rotation of the LG, which
is, however, then averaged over the vibration period
7 = 2n/v of the LG monoblock. This approach is intuitively
based on the condition of smallness of relaxation times 7,
and T, compared to the vibration period . When this
condition is satisfied, the laser system will have time to
follow an external perturbation. Note that the possibility of
using the quasi-static approach for a slowly rotating LG on
a vibration stage was also pointed out in Ref. [4] [integral
relation (57)].

Let us make a substitution in (15)

w = MQ + wcos i, 17
where w= MW = MvA is the amplitude value of the
frequency splitting for counterpropagating waves in the LG
caused by the angular vibration of the monoblock with
respect to the LG housing.

Consider now the case of small angular velocities and
expand (15) as a power series in Q restricting ourselves to
the four first terms of the series, which we will average over
the period 7. As a result, we obtain

Ovear = Ko + (1 + K))MQ + KM ?Q? + KsMPQ°, (18)
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The parameters Ny, and N, in the right-hand side of (21)
can be calculated from expressions

Np=1+ 2(0(5 - a,%)wfz + ocg(ocg - 4ocli)w74 — ZaSméwf(’,

(23)

)wi2 + océ (ocrf1 - 4oc§)w74 - Zmrflo:éw*(’.

(24)

Np:1+2(o<§1—oc§

The coefficient K, in expression (18) characterises the
shift of the LG zero, K, determines the correction to the
scale factor, and K, gives the component of the beat
frequency, which depends quadratically on Q and does
not commute with the angular velocity. The coefficient
K; characterises the component of ., proportional to
Q3. which commutes with the angular velocity.
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The even coefficients K, and K, of polynomial (18) are
caused by the multiplicative interaction of the factors of
different gains for counterpropagating waves and their
coupling through backscattering. The odd coefficients K;
and K3 are caused only by the latter factor.

Therefore, expressions (19)—(24) for calculating the four
first coefficients K, K, K5, and K3 of polynomial model (2)
of the frequency characteristic (1) of the vibrating LG are
the result of the solution of the problem formulated above.

5. Comparative analysis of the obtained results
and known data

The results obtained above can be compared with the
known data presented explicitly in Ref. [2] only for the case
of a slowly rotating (2 < W) gyro with the same (D = 0)
gain of counterpropagating waves.

Expression (6.4) for the coefficient S,;(22) of the relative
nonlinearity of the frequency characteristic of the LG on a
vibration stage presented in Ref. [2] is valid for all values of
Q (except the point Q = 0) and was obtained by averaging
the expression

2 2

r r
Opegr = |1 — P + m o (o=MQ) (25
beat 2(rd+w?)  2(xh+w?) ( ) @5)

over the vibration period t.
By using our notation, the expression for Sy () can be
written in the form

Su(Q) = Si7 (@) + 547 (@), (26)
where
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By approximating (26) by the expression
Su(Q) = S; + SsM*Q? (31)

and retaining the terms of no higher than the third order of
smallness over the coupling coefficients, we obtain the
expressions for S; and Sj

S - I‘S 4 O‘mrr%l (32)
1 2(r§+w2>3/2 2(0(314’102)3/2’
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Let us compare in pairs expressions (20) and (32) for K,
and S; and also expressions (22) and (33) for K3 and Sj.

Analysis of these relations shows that they are equivalent

only if r; =1, =7, &), = n, when cosé;, = —1, r, =0, and
rm = 2r. Under these conditions,
201
Ki=§ =2l
(o3 + w?)
2 2 2 (34)
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The discrepancy between the results of calculations
obtained from the expressions analysed increases when
&1, decreases from m to zero.

Consider now the result obtained in paper [4]. Assuming
that r, = 0 in (25), we obtain

2

'm ]a) (0 = MQ).

2(9(1121 + wz) (33)

Wpeat = |:1 +

It is this expression for myg, that was used in Ref. [4]
[integral relation (57)] for determining S,;(€2). By applying
the above method to (35), we find

S = fxmr,%1 _ (3w2 — Zaé)o:mré (36)
2(aé+w2)3/2 4(z]%+w2)7/2

It follows from these relations that, under the condition
3w?>20.2, the quantities S, and S; are positive for any
values of the parameter ¢;,. In a particular case ry =r, =r,
&1, = m, expressions (36) take the form (34).

6. Numerical example

Let us estimate numerically the coefficients K, K;, K, and
K3 of the polynomial model of the frequency characteristic
of the vibrating LG and analyse quantitatively their
influence on the output signal.

Consider the LG that has been studied theoretically and
experimentally in Ref. [15]. The resonator of the gyro has
the form of an equilateral triangle with the nominal
perimeter L =210 mm. We will assume below, however,
that L is equal to 215.5 mm. In this case, the calculated arc
scale division of the LG pulse for k, =1 will be equal to
3.147", in accordance with Ref. [15]. In addition, we will
neglect dispersion coefficients ¢, in (5), thereby assuming
that M = M,, which introduces only a small error in
calculations. Then, for L = 215.5 mm, the scale factor is
M = 411793.

Let us first calculate the parameters «, and «,,. Accord-
ing to Ref. [15], o, = (¢/L)y(N,e — 1), where y is the average
losses per transit for counterpropagating waves and N, is
the relative excess of the pump over the threshold. Let
Ny =145 and y = 1.8 x 10°. Then, o, = 21 x 179465 s~
(which  gives the angular velocity Q, = /M =
156.9 deg s_l). For the LG under study, the estimated ratio
h=20/ is 1.564/2.228 =0.702, which gives (1 —/h)x
(1+h) " =0.175. Therefore, o, =2n x 314255 (Q, =
27.5 deg s~ ). These values of op and oy, yield the relaxation
times T, =89 x 1077 s and T, =51 x107% s.

Let us calculate the parameter D. For example, for
AQ/Q =102, we have D = 0.057.

Let us now specify the values of coupling parameters for
counterpropagating waves. According to Ref. [15], (L/c)r| =
(L/c)rs =3 x 10°%, which gives rj =r, =21 x 6655
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(Q,, =Q,, =0.58 deg s71). We will take the value of the 4

parameter ¢;, so as to obtain the half-width Q = r,/M of
the static synchronisation region of the LG equal to

0.05 deg s™'. This condition is satisfied for ¢, = 175°.
Then, cosg, = —0.996, sing;, =0.087, and r, =2nx
5857

Let us specify finally the parameters of torsional 6.

vibrations of the LG monoblock assuming approximately

that 4 =3’ and v =271 x 500 s~'. In this case, the ampli- &

tude W of the relative angular velocity of vibrations is
157.1 deg s~ and the period 7 is 2 x 1077 s.

Then, using (19)—(24), we obtain the following esti- g

mates: Ky =4.53x 107 57!, K, =4.56 x 10°%, K, =6.71

x1071 s, and K3 = 4.95 x 107'% §%. 11.

These values of the coefficients allow us to estimate now
all the components of the output signal of the LG. For this
purpose, we rewrite expression (18) for wy., in the form

Wpeat = W + 0y + ©1 + Wy + w3. (37)

e 15.

Here, ® = MQ is the main component of the beat frequency
of counterpropagating waves neglecting their coupling
through backscattering (approximation of a perfect LG);
g = Ko, ) = KlMQ, Wy = Kz(MQ)z, and w3 = K3(MQ)’;
are the corrections to the beat frequency caused by coupling
between the waves and their different gains. Let, for
example, the LG rotate in the inertial space at the angular
velocity @ = 30 deg s~'. In this case, w = 21 x 34316 5™,
wy =21 x7.21 x 1074 57, w; =21 x1.56 x 107" 571,
W, =21 x 496 x 107 s, and w; =21 x 7.89 x 107 s~
Let us estimate the relative contribution of each of the
corrections to wy.,; With respect to the main component w.
We obtain from the expression p; =w;/w that p,=
2.10x 1078, p, =4.56 x 107°°, p, = 1.45x 107, and p; =
2.30 x 1077,

7. Conclusions

We have obtained expressions (19)—(24) for calculating the
four first coefficients K, Kj, K,, and K3 of the polynomial
model of the frequency characteristic of a slowly rotating
LG on a vibration stage. The expressions are valid when the
LG operates at the emission line centre and currents in the
discharge arms are balanced, however, the gains for
counterpropagating waves are slightly different due to
different Q factors of the resonator for the waves.
Analysis of the expressions has shown that the non-
identity factor of the gains of counterpropagating waves in
the LG interacts multiplicatively with their coupling factor
through backscattering, leads to the shift of zero, and
produces the component of the output signal which does
not commute with the angular velocity. The latter circum-
stance can introduce an additional error in the case of low-
frequency local angular vibrations of the LG stage.
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